ebook img

Contemporary Algorithms. Theory and Applications PDF

450 Pages·2022·32.163 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Contemporary Algorithms. Theory and Applications

Mathematics Research Developments No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Mathematics Research Developments Non-Euclidean Geometry in Materials of Living and Non-Living Matter in the Space of the Highest Dimension Gennadiy Zhizhin (Author) 2022. ISBN: 978-1-68507-885-0 (Hardcover) 2022. ISBN: 979-8-88697-064-7 (eBook) Frontiers in Mathematical Modelling Research M. Haider Ali Biswas and M. Humayun Kabir (Editors) 2022. ISBN: 978-1-68507-430-2 (Hardcover) 2022. ISBN: 978-1-68507-845-4 (eBook) Mathematical Modeling of the Learning Curve and Its Practical Applications Charles Ira Abramson and Igor Stepanov (Authors) 2022. ISBN: 978-1-68507-737-2 (Hardcover) 2022. ISBN: 978-1-68507-851-5 (eBook) Partial Differential Equations: Theory, Numerical Methods and Ill-Posed Problems Michael V. Klibanov and Jingzhi Li (Authors) 2022. ISBN: 978-1-68507-592-7 (Hardcover) 2022. ISBN: 978-1-68507-727-3 (eBook) Outliers: Detection and Analysis Apra Lipi, Kishan Kumar, and Soubhik Chakraborty (Authors) 2022. ISBN: 978-1-68507-554-5 (Softcover) 2022. ISBN: 978-1-68507-587-3 (eBook) More information about this series can be found at https://novapublishers.com/product- category/series/mathematics-research-developments/ Christopher I. Argyros, Samundra Regmi, Ioannis K. Argyros and Santhosh George Contemporary Algorithms Theory and Applications Volume I Copyright © 2022 by Nova Science Publishers, Inc. https://doi.org/10.52305/IHML8594 All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying, recording or otherwise without the written permission of the Publisher. We have partnered with Copyright Clearance Center to make it easy for you to obtain permissions to reuse content from this publication. Simply navigate to this publication’s page on Nova’s website and locate the “Get Permission” button below the title description. This button is linked directly to the title’s permission page on copyright.com. Alternatively, you can visit copyright.com and search by title, ISBN, or ISSN. For further questions about using the service on copyright.com, please contact: Copyright Clearance Center Phone: +1-(978) 750-8400 Fax: +1-(978) 750-4470 E-mail: [email protected]. NOTICE TO THE READER The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained in this book. The Publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or in part, from the readers’ use of, or reliance upon, this material. Any parts of this book based on government reports are so indicated and copyright is claimed for those parts to the extent applicable to compilations of such works. Independent verification should be sought for any data, advice or recommendations contained in this book. In addition, no responsibility is assumed by the Publisher for any injury and/or damage to persons or property arising from any methods, products, instructions, ideas or otherwise contained in this publication. This publication is designed to provide accurate and authoritative information with regard to the subject matter covered herein. It is sold with the clear understanding that the Publisher is not engaged in rendering legal or any other professional services. If legal or any other expert assistance is required, the services of a competent person should be sought. FROM A DECLARATION OF PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS. Additional color graphics may be available in the e-book version of this book. Library of Congress Cataloging-in-Publication Data ISBN: (cid:28)(cid:26)(cid:28)(cid:16)(cid:27)(cid:16)(cid:27)(cid:27)(cid:25)(cid:28)(cid:26)(cid:16)(cid:23)(cid:21)(cid:24)(cid:16)(cid:25)(cid:3)(cid:11)(cid:72)(cid:37)(cid:82)(cid:82)(cid:78)(cid:12) Published by Nova Science Publishers, Inc. † New York The first author dedicates this book to his beloved grandparents Jolanda, Mihallaq, Anastasia and Konstantinos. The second author dedicates this book to his mother Madhu Kumari Regmi and Father Moti Ram Regmi. The third author dedicates this book to his wonderful children Christopher, Gus, Michael, and lovely wife Diana. The fourth author dedicatesthis book to his lovely wife Rose. Contents GlossaryofSymbols xv Preface xvii 1 BallConvergenceforHighOrderMethods 1 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. LocalConvergenceAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . 3 3. NumericalExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 ContinuousAnalogsofNewton-TypeMethods 13 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. Semi-localConvergenceI . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3. Semi-localConvergenceII . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 InitialPointsforNewton’sMethod 25 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2. Semi-localConvergenceResult . . . . . . . . . . . . . . . . . . . . . . . . 27 3. MainResult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4. OntheConvergenceRegion . . . . . . . . . . . . . . . . . . . . . . . . . 30 5. APrioriErrorBoundsandQuadraticConvergenceofNewton’sMethod . . 31 6. LocalConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7. NumericalExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 8. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4 SeventhOrder Methods 37 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2. LocalConvergenceAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . 38 3. NumericalExample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5 ThirdOrder Schemes 49 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2. BallConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 viii Contents 3. NumericalExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6 FifthandSixthOrderMethods 61 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2. BallConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3. NumericalExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7 SixthOrderMethods 73 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2. BallConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 8 Extended Jarratt-TypeMethods 83 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 2. ConvergenceAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 9 MultipointPointSchemes 91 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2. LocalConvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3. NumericalExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 10 FourthOrderMethods 101 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 2. Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3. NumericalExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 11 InexactNewtonAlgorithm 113 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 2. ConvergenceofNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3. NumericalExamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 12 Halley’sMethod 119 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 2. ConvergenceofHA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 13 Newton’sAlgorithmforSingularSystems 125 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 2. ConvergenceofNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.