nanomaterials Article Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications AdrianeCherpinski1,MelikeGozutok1,HilalTurkogluSasmazel2 ID,SergioTorres-Giner1 ID andJoseM.Lagaron1,* ID 1 NovelMaterialsandNanotechnologyGroup,InstituteofAgrochemistryandFoodTechnology(IATA), SpanishCouncilforScientificResearch(CSIC),CalleCatedráticoAgustínEscardinoBenlloch7, 46980Paterna,Spain;[email protected](A.C.);[email protected](M.G.); [email protected](S.T.-G.) 2 DepartmentofMetallurgicalandMaterialsEngineering,AtilimUniversity,Incek,Golbasi, 06830Ankara,Turkey;[email protected] * Correspondence:[email protected];Tel.:+34-96-3900022;Fax:+34-96-3636301 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:29May2018;Accepted:21June2018;Published:27June2018 Abstract: Thispaperreportsonthedevelopmentandcharacterizationofoxygenscavengingfilms made of poly(3-hydroxybutyrate) (PHB) containing palladium nanoparticles (PdNPs) prepared by electrospinning followed by annealing treatment at 160 ◦C. The PdNPs were modified with the intention to optimize their dispersion and distribution in PHB by means of two different surfactants permitted for food contact applications, i.e., hexadecyltrimethylammonium bromide (CTAB)andtetraethylorthosilicate(TEOS).Analysisofthemorphologyandcharacterizationofthe chemical,thermal,mechanical,andwaterandlimonenevaporbarrierpropertiesandtheoxygen scavengingcapacityofthevariousPHBmaterialswerecarriedout. Fromtheresults,itwasseen that a better dispersion and distribution was obtained using CTAB as the dispersing aid. As a result,thePHB/PdNPnanocompositescontainingCTABprovidedalsothebestoxygenscavenging performance. Thesefilmsofferasignificantpotentialasnewactivecoatingorinterlayersystemsfor applicationinthedesignofnovelactivefoodpackagingstructures. Keywords: polyhydroxyalkanoates;palladiumnanoparticles;packaging;electrospinning 1. Introduction Animportantincreasingquantityofplasticwasteisbeinggeneratedyearlyforwhichtheprecise neededtimeforitsbiodegradationiscertainlyunknown. Thisenvironmentalawarenesshasdriven thedevelopmentandimprovementofnewbiodegradablepolymers,especiallyforsingle-useplastic items [1]. In this sense, polyhydroxyalkanoates (PHAs) are well-known biopolymers that can be producedmicrobiallybyavarietyofmicroorganismsasanenergystoragemechanism. Theyexhibit similarperformanceintermsofmechanical,thermal,andbarrierpropertiesthanpetroleum-derived polymersand,thus,theycanpotentiallyreplaceconventionalthermoplastics(e.g.,polyolefins)ina widerangeofapplications[2]. Inparticular,barrierpropertiesareoffundamentalimportanceforfood packagingapplications. Forinstance,therearemanyfoodproductsthatareverysensitivetooxidation and,toovercomethisissue,packageswithreducedoxygenpermeabilityaredesirable. Additionally, thewaterresistanceisalsoimportant,particularlyforplasticmaterialsintendedfordirectcontactwith highmoisturefoodstuffaswellasmaterialstobeappliedinhighhumidityconditionsduringstorage and/ortransport[3]. Nanomaterials2018,8,469;doi:10.3390/nano8070469 www.mdpi.com/journal/nanomaterials Nanomaterials2018,8,469 2of19 Poly(3-hydroxybutyrate)(PHB)iscurrentlythemostcommonrepresentativeofPHAsandthis biopolymerhasbeenproposedforshort-termfoodapplications[4].However,PHBisabrittlepolymer, as its enzymatic polymerization leads to the formation of macromolecules with highly ordered stereochemicalstructures,resultinginalargedegreeofcrystallinity[5]. Oneofthegreatadvantages of PHB over many other biodegradable polymers is its biodegradability under aerobic as well as anaerobicconditions[6]. Forthisreason,PHBandtheirblendswithotherbiopolymers,forinstance polylactide(PLA),havebeenextensivelyinvestigatedforfoodpackagingapplications[7–9].Oneofthe potentialapplicationfieldsofthesematerialsisthedevelopmentoffilmsforpackagingapplications. Asanexample,Zhangetal.[10]studiedPHB/PLAblendsindifferentratiosandconcludedthatby blending PLA with 25 wt. % of PHB some interactions between both biopolymer matrices can be achieved. Furthermore,theirresultsalsoshowedimprovedmechanicalproperties. Palladium nanoparticles (PdNPs) are well known by their ability to dissociate hydrogen molecules to single atoms. This fact is further enhanced due to its nano-sized form and resultant highsurface-to-volumeratio[11].Ithasbeendemonstratedthattheoxygenscavengingactivityof palladium-basedoxygenscavengingfilmsisstronglydependentonthecoatingsubstrateaswellason thepalladiumdepositionthickness.Optimizationoftheseparameterscanresultinactivescavenging filmswheretheresidualheadspaceoxygenofpackagedfoodscanbescavengedveryquickly[10]. Thereisadrivetofindwaystoincorporateactivepackagingtechnologiesdirectlyintothepackage walls. In spite of the advantages that they offer in maintaining quality and extending shelf life, suchsystemsarestilllittleused. Thereasonstemsfromtheadditionalcostinvolved,thepotential toxicity of the added scavenger in the food contact layer, and even more so because of the lack of sufficienttechnicalinformationontheirperformanceandthelackofunderstandingofhowtoapply themeffectively[12]. Electrospinningisafiberproductionmethodthatemployshighelectricforcestodrawcharged threadsofpolymersolutionsormeltsuptofiberdiametersbelow100nm. Itisalowstartupcost processinwhichawidevarietyofbothpolymerandnon-polymermaterialshavebeenusedtoform matscomposedofnanofiberswithahighsurfacearea-to-volumeratio[13].Theelectrospinningprocess hasawidevarietyofapplicationssuchasmedical,filtration,tissueengineering,foodengineering, packaging,etc.[14–16]. Untilnow,thisprocessingtechnologyremainedtoalaboratoryscale. However, recentdevelopmentsininstrumentationandprocessaiddesignhaveallowedthisprocesstobescaled to achieve the production volumes required in certain industrial commodity applications such as fortifiedfoodsandactivepackaging[17]. Inactivepackaging,nanotechnologyhasasignificantpotentialbecausenanostructuresdisplay ahighsurface-to-volumeratioandspecificsurfaceproperties. Consideringthehighsurfaceenergy ofnanoparticles,whichtendtoagglomerateandtopreventthisaggregation,eitherpolarpolymers orsurfactantscanbeusedasprotectiveagentsandstabilizersofthenanoparticles. Thisisextremely necessarytoobtainmono-disperseduniformparticlesandtobe,thereafter,usedinvariousapplication purposes[18–20]. Theobjectiveofthepresentstudywastoprepareandcharacterize,forthefirsttime, PHBfilmsbytheelectrospinningprocessincorporatingPdNPs. Inordertoimprovethedispersionof thePdNPsinthePHBmatrix,differentsurfactantsweretested. 2. MaterialsandMethods 2.1. Materials BacterialaliphatichomopolyesterPHBwassuppliedbyBiomer(Krailling,Germany)asP226F. According to the manufacturer, this is certified both as compostable and food contact grade, presentingadensityof1.25g/cm3 andameltflowrate(MFR)of10g/10minat180 ◦Cand5kg. The weight-average molecular weight (M ) estimated by the manufacturer was 500 kDa and the w polydispersityindex(PDI)was2. Nanomaterials2018,8,469 3of19 2,2,2-trifluoroethanol(TFE)with99%purityand -limonenewith98%puritywerebothpurchased D fromSigma-AldrichS.A.(Madrid,Spain). Thetwotestedsurfactants,hexadecyltrimethylammonium bromide(CTAB),with99%purity, andtetraethylorthosilicate(TEOS),with98%purity, aswellas palladium(Pd)nano-powder,<25nmparticlesizemeasuredbytransmissionelectronicmicroscopy (TEM)and≥99.5%tracemetalsbasis,werealsopurchasedfromSigma-AldrichS.A.Allproductswere usedasreceivedwithoutfurtherpurification. 2.2. Electrospinning A PHB solution for electrospinning was prepared by dissolving the biopolymer at 10 wt. %. The PdNPs were added at 1 wt. % in relation to PHB to the solution. To improve the dispersion ofthePdNPs,CTABandTEOSwerealsoaddedasdispersingaidsat0.5wt.%withthePHBand PdNPsmixture. Electrospinning was performed using a Fluidnatek® LE50 benchtop line from Bioinicia S.L. (Valencia,Spain)withavariablehigh-voltage0–30kVpowersupply. Thisdevicewasequippedwitha motorizedinjectorthatwasscanningtowardsametalliccollector,aimingtoobtainahomogeneous electrospundeposition.Thedifferentbiopolymerssolutionsweretransferredtoa30-mLplasticsyringe andthesyringewasconnectedthroughpolytetrafluoroethylene(PTFE)tubestoastainless-steelneedle (Ø=0.9mm)whereastheneedletipwasconnectedtothepowersupply. Thesolutionwaselectrospun for2hunderasteadyflow-rateof6mL/husingamotorizedinjector,scanninghorizontallytowardsa metallicgrid. Thedistancebetweentheinjectorandcollectorwasoptimalat15cmandthevoltage wassetat15kV.Thebiopolymersolutionswereelectrospuninacontrolledenvironmentalchamber at 23 ◦C and 40% relative humidity (RH), for a given processing time and in optimal conditions toachievesteadyfiberformation. Theprocessingandsolutioncharacterizationparametersforthe optimalelectrospinningofthisPHAgradeweredeterminedandoptimizedinapreviouswork[21]. Finally,theobtainedelectrospunmatsweresubjectedtoanannealingstepbelowthebiopolymer’s meltingpointwithoutapplyingpressureusingahydraulicpress4122-modelfromCarver,Inc.(Wabash, IN,USA).Theannealingwasfoundoptimalat160◦C,withoutpressure,for5±1s,basedonour previousstudy[21].Theresultantfilmswereaircooledatroomtemperature.Priortothermaltreatment, theelectrospunmatswereequilibratedinadesiccatorat25◦Cand0%RHbyusingsilicagelforat least1week. 2.3. Characterization 2.3.1. FilmThickness FilmthicknesswasmeasuredwithadigitalmicrometerseriesS00014,having±0.001mmaccuracy, fromMitutoyoCorporation(Kawasaki,Japan)atthreerandompositions. Thepost-processedsamples hadathicknessoftypically55±4µm. 2.3.2. ScanningElectronMicroscopy A S-4800 microscope from Hitachi (Tokyo, Japan) was used to observe by scanning electron microscopy (SEM) the morphology of the electrospun PHB fibers and the film cross-sections and surfaces. Cross-sectionsofthesampleswerepreparedbycryo-fractureoftheelectrospunPHBfilms usingliquidnitrogen.Then,theywerefixedtobeveledholdersusingconductivedouble-sidedadhesive tape,sputteredwithamixtureofgold-palladiumundervacuum,andobservedusinganaccelerating voltageof5kV.ImageJLauncherv1.41softwarewasusedtodeterminetheaveragefiberdiameter andstandarddeviationbymeasuringthediameterofatleast100fibers. 2.3.3. TransmissionElectronicMicroscopy ThemorphologyanddistributionofthePdNPswasstudiedusingaJEOL1010fromJEOLUSA, Inc. (Peabody,MA,USA)byTEMusinganacceleratingvoltageof80kV. Nanomaterials2018,8,469 4of19 2.3.4. DifferentialScanningCalorimetry ThermalpropertiesoftheneatelectrospunPHBfibersandfilmsandofthemultilayersystems wereevaluatedbydifferentialscanningcalorimetry(DSC)usingaPerkin-ElmerDSC8000(Waltham, MA,USA)thermalanalysissystemundernitrogenatmosphere. Themeasurementwascarriedouton ~3mgofeachsampleusingatwo-stepprogramfrom0to200◦Cfollowedbyasubsequentcooling downto−50◦C,bothataheatingrateof10◦C/min. TheDSCequipmentwaspreviouslycalibrated withindiumasastandardandtheslopeofthethermogramswascorrectedbysubtractingsimilar scansofanemptypan. Testsweredone,atleast,intriplicate. 2.3.5. ThermogravimetricAnalysis Thermogravimetric analysis (TGA) was performed in a TG-STDA Mettler-Toledo model TGA/STDA851e/LF/1600analyzerfromMettler-Toledo,LLC(Columbus,OH,USA).Thesamples, with an initial weight typically about 15 mg, were heated from 50 to 500 ◦C at a heating rate of 10◦C/minundernitrogen/airflow. 2.3.6. InfraredSpectroscopy Fouriertransforminfraredspectroscopy(FTIR)spectrawerecollectedcouplingtheattenuated totalreflection(ATR)accessoryGoldenGateofSpecac,Ltd. (Orpington,UK)toBrukerTensor37FTIR equipment(Rheinstetten,Germany). Singlespectrawerecollectedinthewavelengthrangefrom4000 to600cm−1byaveraging20scansataresolutionof4cm−1. 2.3.7. MechanicalTests Dumbbell-shapedspecimensweredie-cutfromtheelectrospunfilmsandconditionedtoambient conditions,i.e.,25◦Cand50%RH,for24hpriortotensiletesting. Testswerecarriedoutatroom temperatureinauniversalmechanicaltestingmachineAGS-X500NfromShimadzuCorp. (Kyoto, Japan)inaccordancewithASTMD638(TypeIV)standard. Thiswasequippedwitha1-kNloadcell andthecross-headspeedwassetat10mm/min. Aminimumofsixspecimenswasmeasuredforeach sampleandtheaverageresultswithstandarddeviationwerereported. 2.3.8. WaterVaporPermeability The water vapor permeability (WVP) of the samples was determined, in triplicate, using the gravimetricmethodASTME96-95. Tothisend,5mLofdistilledwaterwasplacedinsideaPayne permeabilitycup(Ø=3.5cm)fromElcometerSprl(Hermalle-sous-Argenteau,Belgium)toexposethe filmto100%RHononeside. Theliquidwasnotincontactwiththefilm. Oncethefilmsweresecured withsiliconrings,theywereplacedwithinadesiccatorat0%RHcabinetat25◦C.Thedrynessof thecabinetwasheldconstantusingdriedsilicagel. Cupswithaluminumfilmswereusedascontrol samples to estimate solvent loss through the sealing. The cups were weighted periodically using ananalyticalbalancewitha±0.0001gaccuracy. Watervaporpermeationwascalculatedfromthe steady-state permeation slopes obtained from the regression analysis of weight loss data vs. time, andtheweightlosswascalculatedasthetotallossminusthelossthroughthesealing. 2.3.9. D-LimonenePermeability PermeabilitytolimonenevaporwasmeasuredasdescribedaboveforWVP.Forthis,5mLof D-limonenewasplacedinsidethePaynepermeabilitycups. Thecupscontainingthefilmswereplaced atcontrolledenvironmentalconditions,i.e.,23◦Cand40%RH.Limonenevaporpermeationrates wereestimatedfromthesteady-statepermeationslopesandtheweightlosswascalculatedasthetotal celllossminusthelossthroughthesealing. Thesamplesweremeasuredintriplicateandthelimonene permeability(LP)valueswerecalculatedtakingintoaccounttheaveragefilmthicknessineachcase. Nanomaterials2018,8,469 5of19 2.3.10. OxygenScavengingActivity RNaonuomnadte-rbialos t2t0o18m, 8,S xc FhOlRen PkEEflR aRsEkVsIEfWro mVidraFocS.A.(Barcelona,Spain)withaPTFEstopc5 oocf k18a nda headspacevolumeof50cm3wereusedfortheoxygenscavengingmeasurements.Theflaskscontained 2.3.10. Oxygen Scavenging Activity avalveforgasflushinginandaO -sensitivesensorspot(PSt3,detectionlimit15ppb,0–100%oxygen) 2 Round-bottom Schlenk flasks from VidraFoc S.A. (Barcelona, Spain) with a PTFE stopcock and fromPreSens(Regensburg,Germany)wasgluedontotheinnersideoftheflasksformeasuringoxygen a headspace volume of 50 cm3 were used for the oxygen scavenging measurements. The flasks depletion. Theelectrospunfibersandfilmswerecut(5×5cm2)andplacedintotheflasks. Theflask contained a valve for gas flushing in and a O2-sensitive sensor spot (PSt3, detection limit 15 ppb, wassubsequentlyflushedfor30sat1barwithagasmixturecontaining1vol. %oxygen,4vol. % 0–100% oxygen) from PreSens (Regensburg, Germany) was glued onto the inner side of the flasks for hydrogen, and 95 vol. % nitrogen, which was provided by Abelló Linde, S.A. (Barcelona, Spain). measuring oxygen depletion. The electrospun fibers and films were cut (5 × 5 cm2) and placed into Theotxhye gfleanskcso. nTcheen ftlaraskti ownasi nsutbhseeqceulelnwtlya sflmusohnedit oforre d30b sy aat 1n boanr- wdeitsht rau gcatisv meimxteuares ucorenmtaeinnitngm 1e tvhool.d %u sing theOoXxYyg-4enm, i4n vio(Pl.r e%S ehnysd)romguenlt,i -acnhda n9n5 evlofil.b %er noiptrtoicgeonx,y wgehnichm wetaesr pfororvsiidmedu ltbayn Aeobuelslór eLaidn-doeu, tSo.Af.u pto 4oxy(gBeanrceselonnsao, rsS,puaisne)d. Twhieth osxeyngseonr scobnacseendtroantioan2 imn mtheo pcteilcl awlfiabs emr.oOnxityorgeedn bcoy nac ennotnra-dtieosntrsuoctviveer time weremmeeaasusurermedenbt ymleinthkoidn gustihneg ltihgeh Ot-eXmY-i4t tminigni( 6(P0r0e–S6e6n0s) nmmu)ltoi-pchtiacnanlefil bfiebresr toopttihce oflxyagsekns imnenteerr fsoern sing spotss.imThueltasneenosuosr reemadit-souat coefr utapi ntoa 4m ooxuyngetno fselunsmorins,e ussceedn cweitdhe speennsodrisn bgaosendt hone oa x2y mgemn ocpotniccaeln ftirbaetri. onin Oxygen concentrations over time were measured by linking the light-emitting (600–660 nm) optical thecellthatwascalibratedtoyieldconcentrationbytheequipment. Allmeasurementswerecarried outaftib2e3rs◦ Cto athned flaatsk5s0 %innaenr dse1n0s0in%g sRpHot.s. The sensor emits a certain amount of luminescence depending on the oxygen concentration in the cell that was calibrated to yield concentration by the equipment. All measurements were carried out at 23 °C and at 50% and 100% RH. 2.4. StatisticalAnalysis T2.h4.e Stteatsitstdicaalt aAnwaelyrseis evaluated through analysis of variance (ANOVA) using STATGRAPHICS CenturionThXe VteIstv d1a6ta.1 w.0e3ref reovmaluSatteadtP tohirnotugThe cahnnaloylsoigs ioefs ,vaIrnica.nce(W (AaNrrOenVtAon) ,usVinAg, SUTSAAT)G.RFAisPhHeIrC’sS least signifiCceanntutrdioifnf eXreVnIc ev (1L6S.1D.0)3w farosmu sSetdataPtotihnte T95ec%hncoolnofigidees,n cInecl.e (vWela(rpre<nt0o.n0,5 )V.AM, eUaSnAv)a. lFuieshsearn’sd lsetaasnt dard deviastiigonnifsicwanetr deiafflesroenccael c(uLSlaDte) dw.as used at the 95% confidence level (p < 0.05). Mean values and standard deviations were also calculated. 3. ResultsandDiscussion 3. Results and Discussion 3.1. MorphologyandOpticalProperties 3.1. Morphology and Optical Properties 3.1.1. OpticalAppearance 3.1.1. Optical Appearance Figure 1 shows the contact transparency pictures of the electrospun PHB fibers, Figure 1a–c, Figure 1 shows the contact transparency pictures of the electrospun PHB fibers, Figure 1a–c, as well as of their respective annealed films, Figure 1d–f. From these pictures, it can be observed as well as of their respective annealed films, Figure 1d–f. From these pictures, it can be observed that thatalltheelectrospunfibermatswerecompletelyopaqueduetotheultrathinsizeofthefibersthat all the electrospun fiber mats were completely opaque due to the ultrathin size of the fibers that generateasignificantlevelofporosityandhencerefractthelightverystrongly[21]. Ontheother generate a significant level of porosity and hence refract the light very strongly [21]. On the other hand,theannealedfilmspresentedanimprovedcontacttransparency,speciallythesamplewithCTAB. hand, the annealed films presented an improved contact transparency, specially the sample with DuetCoTtAhBe. pDruesee tno cteheo pfrtehseenPcdeN ofP tsh,et hPedNfiPlms, sthdee fvilemlosp deedvealnopeexdp aenc teexdpedcaterdk dcoarlko rc.olor. FigurFeig1u.reC 1o. nCtaocnttatcrta ntrsapnsaprearnecnycyp ipcitcuturreess ooff tthhee eelleeccttrroossppuunn ppoloyl(y3(-h3-yhdyrodxryobxuytbyruattyer) a(tPeH)B(P) HfibBe)rsfi bers containing palladium nanoparticles (PdNPs) and their respective annealed films: (a) PHB/PdNP containingpalladiumnanoparticles(PdNPs)andtheirrespectiveannealedfilms:(a)PHB/PdNPfibers; fibers; (b) PHB/PdNP/hexadecyltrimethylammonium bromide (CTAB) fibers; (c) (b)PHB/PdNP/hexadecyltrimethylammoniumbromide(CTAB)fibers;(c)PHB/PdNP/tetraethyl PHB/PdNP/tetraethyl orthosilicate (TEOS) fibers; (d) PHB/PdNP film, (e) PHB/PdNP/CTAB film, (f) orthosilicate(TEOS)fibers;(d)PHB/PdNPfilm,(e)PHB/PdNP/CTABfilm,(f)PHB/PdNP/TEOSfilm. PHB/PdNP/TEOS film. Nanomaterials2018,8,469 6of19 3.1.2. MorphologyofElectrospunPHBMaterials The morphology of the electrospun fibers and their annealed films were studied by SEM. Representative images of all the electrospun samples are gathered in Figure 2. The images were takenfromthesurfaceandcross-sectionsoftheobtainedfibersandfilms. AsshowninFigure2a, thediameteroftheneatelectrospunPHBfiberswasdistributedprimarilyintherangeof200–600 nm,presentingasmoothandbead-freemorphology. Inparticular,themeandiameterwasfoundto beat350±147nm. OnecanobservethatthepresenceofthePdNPsledtoafractionwithincreased fiberdiameterandalsoresultedinaspindle-typebeadsformation. Thiseffectcanbeobservedin Figure2d,g,correspondingtotheelectrospunPHB/PdNPandCTAB-containingPHB/PdNPfibers, respectively. Thisobservationmaysuggestthat,insomefibrilarregions,partialagglomerationofthe PdNPsmayoccur. Indeed,somedegreeofagglomerationisacommonphenomenonincomposites duetothelargesurfaceareaandhightotalsurfaceenergyassociatedwithnanoparticlesincorporated into polymer matrices that makes them amenable to clustering [22]. The nanofibers diameter was previouslyreportedtodecreasewhenthesurfactantconcentrationincreasedintheelectrospinning solution[23]. Interestingly,theTEOS-containingPHB/PdNPfibers,showninFigure2j,presenteda significantfractionofthefiberswithreducedfiberdiameter. Thiseffecthasbeenpreviouslydescribed forotherelectrospunmaterialsandithasbeenparticularlyattributedtoboththeexpecteddecreasein surfacetensionandanincreaseinconductivity,whichinturnproduceanincreaseinthestretching forcesinthejetandconsequentlydecreasesthefiberdiameter[24–26]. FromtheSEMimagesofthefiberscross-sections,onecanobservethatFigure2b,e,corresponding to the neat PHB and PHB/PdNP fibers, respectively, showed similar morphologies. In particular, both electrospun mats presented cross-sections with relatively high porosity and low compaction. Alternatively,thecross-sectionofthesurfactant-containingPHB/PdNPfibers,includedinFigure2h,k, wereseentobemorecompactedsincetheadhesionamongthefibersinthelayeredstructurewas higher. For all layers, it was also possible to perceive some particles aggregation that may not be necessarilyrelatedtothepresenceofthePdNPsbut,moreprobably,toadditivessuchasthenucleating agentboronnitride,originallyincludedinthebiopolymerbythemanufacturer. IntheSEMimagesofthefilmscross-sections,showninFigure2c,f,i,l,itcanbeobservedthatthe electrospunfibersfusedandinterconnectedamongeachotheraftertheannealingtreatmentat160◦C, successfullyleadingtothepackingofthefibermatintoacontinuousfilm. Amongthehere-prepared films,theneatPHBfilmshowedamoreuniform,smooth,andhomogeneoussurface.Aftertheaddition ofthePdNPsandsurfactants,thefilmsbecamemoreheterogeneous,rougher,andalsopresentedsome cavities. ThismorphologychangecanbethenrelatedtothepresenceofthePdNPs,whichmorelikely interferedinthefiberscoalescenceprocess. 3.1.3. DispersionofPdNPs InordertoprovideamoreresolvedinformationaboutthedispersionofthePdNPsintothePHB biopolymermatrix,TEMwasperformedonthenanocompositefibersandfilms. Thedistributionof thePdNPsinsidetheelectrospunfibersareillustratedintheTEMimagesincludedinFigure3a,d,g. From the TEM image included in Figure 3a, one can clearly discern that the PdNPs were mainly agglomeratedincertainregionsofthesubmicronPHBfibers. Onecanalsoobservethattheaddition ofbothsurfactants,i.e.,CTABandTEOS,asrespectivelyshowninFigure3d,g,successfullyimproved thePdNPsdispersioninthePHBfibers. Dispersionanddistributionwas,however,seenhigherinthe CTAB-containingsample. Nanomaterials2018,8,469 7of19 Nanomaterials 2018, 8, x FOR PEER REVIEW 7 of 18 Figure 2. Scanning electron microscopy (SEM) images taken on the surface views and cross-sections Figure2.Scanningelectronmicroscopy(SEM)imagestakenonthesurfaceviewsandcross-sectionsof of the electrospun poly(3-hydroxybutyrate) (PHB) fibers containing palladium nanoparticles (PdNPs) theelectrospunpoly(3-hydroxybutyrate)(PHB)fiberscontainingpalladiumnanoparticles(PdNPs) and their respective annealed films: (a) Surface view of the neat PHB fibers; (b) Cross-section of the andtnheeairt PreHsBp efcibtievrse; a(cn)n Ceraolsesd-sfiecltmiosn: o(af )thSeu rnfeaacte PvHieBw filomf;t h(de) nSeuarftaPceH vBiefiwb eorf st;h(eb P)HCBro/Psds-NsePc ftiiboenrso; f the neatP(eH) CBrofisbs-esresc;ti(ocn) oCf rtohses P-sHeBct/PiodnNoPf fitbheersn; (efa) tCProHssB-sfiecltmio;n (odf) thSeu PrfHaBce/PvdiNewP fiolmft; h(ge) PSuHrfBa/ceP vdiNewP ofif bers; (e)Crtohses -PsHecBt/iPodnNoPf/thheexaPdHecBy/ltPridmNetPhyfilabmerms;o(nfi)uCmr obsrso-mseicdteio (nCoTfAtBh)e fPibHerBs/; P(hd)N CProfislsm-s;ec(gti)onS uorff atchee view ofthePHPHB/BPd/NPdP/NCPT/AhBe fxiabderesc; y(lit) rCimroestsh-syelcatmionm oofn ituhem PbHrBo/mPdidNeP(/CCTTAABB )fifilmb;e r(sj); (Shu)rfCacreo svsi-eswec toifo nthoe fthe PHB/PPHdBN/PPd/NCPT/tAetBraefithbyelr so;rt(hi)osCilricoastse- s(eTcEtOioSn) foibfetrhs;e (Pk)H CBr/osPsd-sNecPti/oCn ToAf tBhefi PlmH;B/(Pj)dSNuPr/fTaEcOeSv fiiebwerso; f the PHB/(lP) dCNroPss/-tseetcrtiaoent hoyf lthoer tPhHoBsi/PlidcaNtPe/(TTEEOOSS f)ilmfib. ers;(k)Cross-sectionofthePHB/PdNP/TEOSfibers; (l)Cross-sectionofthePHB/PdNP/TEOSfilm. In relation to the annealed films, the PHB/PdNP film without surfactant, shown in Figure 3b,c, still presented a clear aggregation of the particles. As opposite, Figure 3e,f, for the CTAB-containing Ifnilmre lsaatmiopnlet, oanthde Faignunreea 3lhed,i, fifolmr tsh,et hTeEOPSH-cBo/nPtadinNinPg fifillmm wsaimthpoleu, tcsleuarrflayc sthaonwt,esdh othwatn thine FPidgNuPres 3b,c, stillpwreesree netveednlay calneda rrealgagtirveeglya twioenll odfistthriebuptaerdt iicnl eths.e APHsoBp fpilmossi twe,itFhioguut rfeor3me,ifn,gf oarggthloemCeTraAteBs-. cIonn tthaei ning filmscaamsep olef ,tahne dTFEiOgSu-rceon3thai,ni,infogr ftihlme TsEamOpSl-ec, otnhtea innainnogpfiarlmticlsea mdisppleer,sciolena rwlyass hleosws eudnitfhoramt thwehPend NPs wereceovmenplayreadn dto rtehlea tsiavmelpylew perlelpdairsetdri wbuitthe dCTinAtBh esuPrfHacBtafinltm dsuew tioth thoeu tabfosermncien ogf alagrggleo gmreeyra dtaersk. Ianretahse. case In both PHB films, very small nanoparticles of approximately 5 ± 2 nm can be seen, being oftheTEOS-containingfilmsample,thenanoparticledispersionwaslessuniformwhencompared homogeneously dispersed along the biopolymer matrix. The present results are in agreement with tothesamplepreparedwithCTABsurfactantduetotheabsenceoflargegreydarkareas. Inboth the results showed by Shaukat et al. [27], where PdNPs were incorporated into polyamide 6 PHBfilms,verysmallnanoparticlesofapproximately5±2nmcanbeseen,beinghomogeneously (PA6)/clay nanocomposites and the nanoparticles were largely separated from each other and dispersedalongthebiopolymermatrix. Thepresentresultsareinagreementwiththeresultsshowed bySh aukatetal.[27],wherePdNPswereincorporatedintopolyamide6(PA6)/claynanocomposites andthenanoparticleswerelargelyseparatedfromeachotherandorientedinallpossibledirectionsin Nanomaterials2018,8,469 8of19 Nanomaterials 2018, 8, x FOR PEER REVIEW 8 of 18 oriented in all possible directions in the polymer matrix. However, due to the absence of surfactant, thepolymermatrix. However,duetotheabsenceofsurfactant,someparticlesstillagglomeratedinto some particles still agglomerated into clusters of bigger sizes that increased at the PA6 interfaces with clustersofbiggersizesthatincreasedatthePA6interfaceswiththenanoclays. the nanoclays. Figure 3. Transmission electron microscopy (TEM) images of the electrospun poly(3-hydroxybutyrate) Figure3.Transmissionelectronmicroscopy(TEM)imagesoftheelectrospunpoly(3-hydroxybutyrate) (PHB) fibers containing palladium nanoparticles (PdNPs) and their respective annealed films: (a) (PHB) fibers containing palladium nanoparticles (PdNPs) and their respective annealed films: PHB/PdNP fibers; (b,c) PHB/PdNP film; (d) PHB/PdNP/ hexadecyltrimethylammonium bromide (a)P(HCBT/APBd) NfibPerfis;b (eer,sf); P(bH,cB)/PPdHNBP//CPdTANBP ffiillmm; ;(g(d) P)HPHB/BP/dPNdPN/tePt/rahetehxyald oercthyoltsriliimcaetteh (yTlEaOmSm) foibneirusm; (hb,ir)o mide (CTAPBH)Bfi/PbdeNrsP;/T(eE,Of)SP fHilmB./ PdNP/CTABfilm;(g)PHB/PdNP/tetraethylorthosilicate(TEOS)fibers; (h,i)PHB/PdNP/TEOSfilm. 3.2. Thermal Properties 3.2. ThermalProperties 3.2.1. Melting Profile 3.2.1. MeTlthine gthPerromfialel properties of the electrospun PHB fibers and films containing the PdNPs nanoparticles were firstly investigated by DSC analysis. Table 1 gathers the melting temperatures ThethermalpropertiesoftheelectrospunPHBfibersandfilmscontainingthePdNPsnanoparticles (Tm1 and Tm2) and enthalpies (ΔHm) obtained from the first heating run. Likewise, the crystallization werefirstlyinvestigatedbyDSCanalysis. Table1gathersthemeltingtemperatures(T andT ) temperature (Tc) was also obtained from the cooling run. One can observe that when tmhe1rmal m2 andenthalpies(∆H )obtainedfromthefirstheatingrun. Likewise,thecrystallizationtemperature annealing was apmplied to the fibers, the melting profile of the PHB materials, both temperature and (Tc)ewnathsaalplsyo, solibghtatliyn eddecfrreoasmedt.h Ine pcoarotliicnuglarr,u thne. TOmn vealcuaens oofb tsheer nveeatt hPaHtBw-bhaesendt fhibeerrms avlarainedn eina ltihneg was appl1ie6d8–t1o70th °eCfi rbaenrgse,, tmheelmtineglt iinng a psrinogfillee poefatkh, ewPhHerBeams athteesreia vlsa,lubeost hwteerme pareoruantudr 3e a°Cn dloewnetrh ainlp tyh,esirli ghtly decrceoausnedte.rpInarpt afirltmic usalamrp,tlehse. TIn avdadliutioens,o tfhteh iencnoeraptoPraHtioBn-b oafs ethde fiPbdeNrsPsv ainrtioe dPHinBt hined1u6c8ed–1 a7 0sl◦igChtr ange, m meltdinegcreiansea ins ibnogthle thpee make,ltiwngh teermeapsertahteusree avnadl uenetshawlpeyre asa wroeulln ads re3su◦Cltedlo iwn tehre ifnortmhaetiironc oouf mntuelrtpipaler t film melting peaks. This observation may suggest that the nanoparticles interfered with the crystallization samples. Inaddition,theincorporationofthePdNPsintoPHBinducedaslightdecreaseinboththe process of the homopolyester, producing more imperfect crystals composed of thinner lamellae that melting temperature and enthalpy as well as resulted in the formation of multiple melting peaks. melted over a wider range at lower temperatures and with lower enthalpies [28]. This effect was more Thisobservationmaysuggestthatthenanoparticlesinterferedwiththecrystallizationprocessofthe intense in the case of the surfactant-containing film samples, which suggests that the PdNPs were homopolyester,producingmoreimperfectcrystalscomposedofthinnerlamellaethatmeltedover better dispersed then highly influencing the packing process of the PHB chains during cooling. awiderrangeatlowertemperaturesandwithlowerenthalpies[28]. Thiseffectwasmoreintense in th e case of the surfactant-containing film samples, which suggests that the PdNPs were better dispersedthenhighlyinfluencingthepackingprocessofthePHBchainsduringcooling. Inrelationto thecrystallizationfromthemelt,thePHBfilmsamplesincorporatingthePdNPsalsoshowedslightly Nanomaterials2018,8,469 9of19 lowervaluesofT thanthefibers,whichconfirmsthatthenanoparticlesprovidedananti-nucleating c effect on PHB during the film formation. In any case, given that PHB is known to exhibit cold crystallizationduringthedynamicDSCruns,itbecomesdifficulttodiscusswithcertaintypotential changesincrystallinityandcrystallinemorphology[21,26]. Table1.Thermalpropertiesobtainedfromthedifferentialscanningcalorimetry(DSC)curvesinterms ofmeltingtemperature(Tm),normalizedmeltingenthalpy(∆Hm),crystallizationtemperature(Tc), andnormalizedcrystallizationenthalpy(∆Hc)forthevariouspoly(3-hydroxybutyrate)(PHB)and palladiumnanoparticles(PdNPs)fibersandfilmswithandwithouthexadecyltrimethylammonium bromide(CTAB)andtetraethylorthosilicate(TEOS). Sample Tm1(◦C) Tm2(◦C) ∆Hm(J/g) Tc(J/g) ∆Hc(J/g) PHBFibers - 169.1±0.9a 64.1±1.1a 110.2±0.9a 59.3±2.0b,c PHBFilm - 168.4±1.3a 71.8±1.3e 110.5±1.2a 61.1±0.4a,b PHB/PdNPFibers 156.4±2.1a,b 168.3±1.1a,b 59.4±0.9c,d 108.4±0.5a,b 63.1±1.5a PHB/PdNPFilm 155.0±1.2a 168.4±1.2a,b 58.5±0.8d 109.5±2.1a 56.3±1.0c,d PHB/PdNP/CTABFibers 156.7±0.5a,b 167.7±0.9a,b 62.2±1.4b 109.1±0.9a,b 60.3±0.8a,b PHB/PdNP/CTABFilm 158.6±1.4c 165.1±1.4b 60.3±1.5c 106.8±0.3b 55.1±0.7d PHB/PdNP/TEOSFibers 155.2±0.7a 169.9±0.5a 59.7±0.9d 110.8±1.0a 60.1±1.1a,b PHB/PdNP/TEOSFilm 159.4±1.9c 165.5±1.2b 62.9±0.8a,b 110.0±2.3a 51.4±1.8e a–e:Differentsuperscriptswithinthesamecolumnindicatesignificantdifferencesamongthesamples(p<0.05). 3.2.2. ThermalStability Figure4showstheevolutionofthemasslossasafunctionoftemperatureforthePHBsamples, includingthecurvesofthefirstderivativeanalysis(bluelines). AsshowninTable2,itcanbeseenthat theneatPHBinitiateddegradationat207◦Cwhilethebiopolymerfullydecomposedintwosteps, seenat262◦Cand348◦C,providingaresidualmassofapproximately3%. Thermaldegradationofthe PHBfilmscontainingthePdNPsandthesurfactantsalsooccurredintwostageswithaslightincreasein thermalstability. Inparticular,theonsetdegradationtookplaceinthe220–230◦Crangethatcontinued tothefirstdegradationstageat270–275 ◦Cand, ataslowerrate, toover360–380 ◦C,remaininga residueof3–4%oftheinitialmassofthesample. Inthissense,Díez-Pascualetal.[29]demonstrated thattheincorporationofzincoxide(ZnO)improvedtheheatresistanceofPHB,whichwasascribedto thebarriereffectofthenanoparticlesthateffectivelyhinderedthediffusionofdecompositionproducts during thermal degradation. Therefore, the PdNPs probably also functioned as a thermal barrier, absorbingheat,thusalsoresultinginanenhancedthermalstability. ItisalsoworthytonotetheslightincreaseobservedinthethermalstabilityofthePHB/PdNP filmswiththeincorporationofbothsurfactants,especiallyinthecaseofCTAB.Thissuggeststhat the surfactant increased the matrix–nanoparticle interaction, inducing a positive delay in thermal degradation. Taking into account that the ammonium salts degrade at the temperature range of 150–460◦C,thesurfactantscouldsuccessfullyprovideabondingeffectbetweenbothcomponentsof thenanocompositeand,eventually,enhancethewholethermalstabilityofPHAs. Nanomaterials2018,8,469 10of19 Nanomaterials 2018, 8, x FOR PEER REVIEW 10 of 18 FigurFei4g.urTeh e4r. mTohegrrmavoigmraevtirmiceatrnica lyansiasly(sTisG A(T)GcAu)r vceusrvoefst hoef ethleec terloescptruonsppuonl yp(o3l-yh(y3-dhryodxryobxuybtyurtaytrea)te()P HB) (PHB) and palladium nanoparticles (PdNPs) films with and without hexadecyltrimethylammonium andpalladiumnanoparticles(PdNPs)filmswithandwithouthexadecyltrimethylammoniumbromide bromide (CTAB) and tetraethyl orthosilicate (TEOS) surfactants. (CTAB)andtetraethylorthosilicate(TEOS)surfactants. Table 2. Mean values of thermal stability obtained from the thermogravimetric analysis (TGA) curves Table2.Meanvaluesofthermalstabilityobtainedfromthethermogravimetricanalysis(TGA)curves of the electrospun poly(3-hydroxybutyrate) (PHB) and palladium nanoparticles (PdNPs) films with oftheelectrospunpoly(3-hydroxybutyrate)(PHB)andpalladiumnanoparticles(PdNPs)filmswithand and without hexadecyltrimethylammonium bromide (CTAB) and tetraethyl orthosilicate (TEOS) in withotuertmhse xoafd deecgyrlatrdiamtieotnh ytelmampemraotunriue mat b5r%o moifd mea(sCsT lAosBs) (aTn5%d),t edtergareatdhaytlioonr ttheomspileircaattuere(T (ETOdegS)), ianndte rms ofdegrersaiddautailo mnatsesm atp 5e0r0a °tuCr (eRa50t0)5. %ofmassloss(T5%),degradationtemperature(Tdeg),andresidual massat500◦C(R ). 50F0ilm Sample T5% (°C) Tdeg1 (°C) Tdeg2 (°C) R500 (%) PHB 207.0 ± 4.4 262.0 ± 3.8 348.0 ± 6.4 3.08 ± 0.04 FilmSample T (◦C) T (◦C) T (◦C) R (%) PHB/PdNP 5% 224.1 ± 3.6 de2g711.3 ± 2.6 368d.2eg ±2 3.8 3.17 ± 0.05300 PHPBHB/PdNP/C2T0A7B.0 ±242.04.0 ± 8.12 622.078±.1 3±.8 3.4 39324.82. 0± ±5.46 .43.81 ±3 0.0.084± 0.04 PHB/PPHdNB/PPdNP/T2E2O4S.1 ±233.06.2 ± 2.52 712.375±.2 2±.6 4.1 38366.81. 2± ±2.33 .84.44 ±3 0.1.074± 0.03 PHB/PdNP/CTAB 220.0±8.1 278.1±3.4 392.2±5.4 3.81±0.04 PHB/PdNP/TEOS 230.2±2.5 275.2±4.1 386.1±2.3 4.44±0.04 3.3. FTIR Analysis FTIR is a powerful tool, which is very sensitive to the molecular environment, to investigate the 3.3. FTIRAnalysis structural changes that occur in the material during any chemical or physical process. In Figure 5, the FFTTIIRR isspaecptroaw aerer fpurletsoeonlt,ewd hfoicr hthies vabeoryves-emnesnittiiovneetdo PthHeBm-boasleedcu fliabreresn avnirdo fnilmmesn. tF,rtoomi nthvee sgtiivgeante the structsupreacltrcah oafn tghee sPtHhBa tmoactceuriralisn, tthhee bmanadt ecreinatledreudr iant g17a2n2y cmch−1e ims aicna linodricpahtivyes iocfa lthper Coc=eOs ss.trIentchFiinggu re5, vibration for the biopolyester molecule. The absorption bands in the 1200–1300 cm−1 range were theFTIRspectraarepresentedfortheabove-mentionedPHB-basedfibersandfilms. Fromthegiven previously related to the presence of the C–O–C stretching vibrations whereas the band centered at spectraofthePHBmaterials,thebandcenteredat1722cm−1isanindicativeoftheC=Ostretching approximately 980 cm−1 has been ascribed to stretching bands of the carbon–carbon single bond vibration for the biopolyester molecule. The absorption bands in the 1200–1300 cm−1 range were (C–C) in PHAs [21,30]. In the spectra of the pure surfactants, it is interesting to be noted that the previouslyrelatedtothepresenceoftheC–O–Cstretchingvibrationswhereasthebandcenteredat bands at 2873 cm−1 and 2977 cm−1 correspond to the anti-symmetric C–H stretching of CTAB [19] approwxihmilea ttehley b9a8n0dcs mlo−ca1tehda satb 1e1e6n8 acmsc−r1i, b1e1d03t ocmst−r1,e atcnhdi 1n0g80b acnmd−1s hoafvteh beeceanr absosnig–nceadr btoo nthsei nCgHle3 rboocknidng(C –C) in PHaAnds C[2–1O,3 a0s]y.mInmethtreics sptreecttcrhainogf otfh TeEpOuSr, eressuprefcaticvtealny t[s3,1i]t. Fisori nthteer seusrtfiancgtatnot-cboentnaointeindg tPhHatB tfhilembs,a nds at287t3hec amb−ov1ea snudrfa2c9t7an7tc bman−d1s coorr ortehsepros ncodutlod nthoet baen dtie-tseycmtedm metorsitc liCk–elHy dsutree ttoc hthine gloowf cCoTnAceBnt[r1a9ti]onw hile thebainn dwshilcohc athteedse aatd1d1it6iv8ecsm ar−e 1p,r1e1se0n3t cinm t−he1 ,caonmdpo1s0i8te0. cm−1 havebeenassignedtotheCH rocking 3 andC–OasymmetricstretchingofTEOS,respectively[31]. Forthesurfactant-containingPHBfilms, theabovesurfactantbandsorotherscouldnotbedetectedmostlikelyduetothelowconcentrationin whichtheseadditivesarepresentinthecomposite.
Description: