ebook img

Constructive Theory of Functions of Several Variables: Proceedings of a Conference Held at Oberwolfach April 25 – May 1, 1976 PDF

297 Pages·1977·3.71 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Constructive Theory of Functions of Several Variables: Proceedings of a Conference Held at Oberwolfach April 25 – May 1, 1976

Lecture Notes in Mathematics Edited by A Dold and B. Eckmann 571 Constructive Theory of Functions of Several Variables Proceedings of a Conference Held at 0 berwolfach April 25 - May 1, 1976 Edited by w. Schempp and K. Zeller Springer-Verlag Berlin' Heidelberg· New York 1977 Editors Prof. Dr. Walter Schempp Lehrstuhl fOr Mathematik I Universitat Siegen H6lderlinstra6e 3 5900 Siegen 211BRD Prof. Dr. Karl Zeller Mathematisches Institut Universitiit Tubingen Auf der Morgenstelle 10 7400 TObingen lIBRD ......" . '" e_, ..... Io. C ...... I . ..., ""._ 0 ••• IIa1n ezttI;'J' 1.1:II4er uw, (Leetl.ln DOte. 1A _tlwcaties ; 571) ~hcrr~. B1bl.1*.~, p. 1Dc1wl.u .t..I4a. 1. Pw>c~ of • ."..-1l1 " oJ. varlolllH.'COncre. .... I. Sc"""'w. Woltill'. II. &ell. ... Ka.rl. UI. 8 ...1 .. , ~ ""t .. in .._ UCI (B ....l b» ; 571. :0.0.3.126 DC. 511 (W31.,1 51O',S. ('l:i'.84] n·l912 AMS Subject Classifications (1970): 41A63 ISBN 3·540-06069·4 SpringerNeriag Berlin' Heidelberg· New York ISBN o-387-{)6069'4 Springer·Verlag New York' Heidelberg' Berlin This work is 8ubjcciiO copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those 01 translation, reo printing, fe'use of lilustrations, broadcasting, reproduction by photocopying machine or similar means. and storage in data banks. Under § 54 01 the German Co~right Law where copies are made for other than private use, a fee is payablo 10 the publisher, the amount of the fee to be determined by agreement with the pubtisher. o by Sprlnger-Vertag Bertin' Heidelberg 1071 Printing and binding: Beltz Offsetdruck. HemabachiBerg8lr. 43210 Preface The conference ·Constructive Theory of Functions of Several was held at the Oberwolfach Mathematical Research Variables~ Institute, April 25 - May 1, 1976. It was attended by 46 mathe maticians from seven countries. These proceedings contain most of the papers presented during the conference. The topics treated cover different problems on multivariate approximation theory such as new results in the theory of spline approxi mation, multivariate interpolation, cubature, poSitive operators, intermediate spaces, special functions of mathematical physics, etc. wo take this opportunity to oxpross our thanks to all those who participated in the conference or contributed to this volume. OUr particular thankS are due to Prof. Or. G. Meinardus (Siegenj for his interest in this conference although he was unable to participate, to Dr. F.J. Delvos \Siegenj , who did a large part of the editorial and organizational work, to the Oberwolfach Mathematical Research Institute for financial assistance and for the facilities provided, and to the staff of Springer Verlag for their courtesy and valuable co-operation. September 1976 Walter Schempp, Slegen Karl Zeller, TUbingen CONTENTS J. ALBRECHT and H. ENGELS Zur numerischen Integration Uber ~reisbereichen .... . . 1 B.O. BJORNESTAL Stability of Steiner Points 6 K. BOHMER and GH. COMAN Blending Interpolation Schemes on Triangles with Error Bounds 14 J. BOMAN Comparison Theorems for Generalized Moduli of Continuity. Vector-Valued Measures ..............•.... 38 F.J. DELVOS and H. POSOORF N-th Order Blending ..............•....•••............ 53 B. DRESELER On Summation Processes of Fourier Expansions for Spherical Functions ,................................. 65 J. DUCHON Splines Minimizing Rotation-Invariant Semi-Norms in 85 Sobolev Spaces .................... ..............•.... W. HAUSSMANN and P. POTTINGER On Multivariate Approximation by Continuous Linear Operators 101 K. JETTER and F. LOCHER A Note on Numerical Fourier Analysis and Uniform Approximation on Cubes •. " .........•.. , •.•.•.•..••... 109 H. JOHNEN and K. SCHERER On the Equivalence of the ~-Functional and Moduli of Continuity and Some Applications ...............•...•. 119 T. KOORNWINDER Harmonics and Spherical Functions on Grassmann Mani folds of Rank Two and Two-Variable Analogues of Jacobi polynomials ••.••..•............•............•........ 14-1 y, H.M. MOLLER Hermite Interpolation in Several Variables Using Ideal-Theoretic Methods .. , ............••...... ..•.... 155 W. NIETHAMMER On the Numerical Analytic Continuation of Power Series 164 K. REIMER Clenshaw Sums in Several Variables................... 176 A. SARO Function Spaces for Analysis 186 W. SCHXFER and W. SCHEMPP Error Bounds for Bivariate Spline Interpolation.. .... 196 W. SCHEMPP Bernstein Polynomials in Several Variables ......•.•.. 212 W. SCHEMPP Approximation in G-Homogeneous Banach Spaces ......••. 220 H.J. SCHMID Interpblatlon of Harmonic Functions . ..•...•.•.•••.•.• 226 H.S. SHAPIRO Convergence Almost Everywhere of Convolution Integrals with ill Dilation Parameter .•......•..•.•••.•••.. •... .. 250 D.O. STANCU Use of Biermann's Interpolation Formula for Con- structing a Class of Positive Linear Operators for Approximating Multivariate Functions . ......•..••••... 267 w. TREBELS Estimates for Moduli of Continuity of Functions Given by their Fourier Transform ...•.... ••. •••••..••. .•.... 277 List of Authors .... .••••••• ••••... ••••• ••••••• ••..... 289 ZUR NUMERISCHEN INTEGRATION USER KREISSEREICHEN J. Albrecht und H. Engels Der Gau8'schen Idee gemaa ist man auch zur numerischen Integration Uber Kreisbereichen N(n) J J u(x,y)dxdy=w ~ a u(x ,y ) V u(x,y)cP4n_l X 2 +y 2 ~, " =1 " \I \I (n-':2 :3,4 :5,6,7,8: •.• ) bestrebt'), minimale StUtzstellenzahl N(n) zu erre1chen, jedoch so, d~a 2 x +y2<1 und a >0. Ein1ge Kubaturformeln mit diesen beiden Eigenschaften, " " " bei denen allerdings offen ist, ob N(n) minimal ist, verwenden die Ecken regelm~8iger Polygone al5 5tijtz5tellen: Nr(n ) nr ". . , a "u (x ", y ") -,,-15 4 54(0'4 ) ,\I .V mit 52 (0')- 2rm u(O'cosJl"- ,,,sln~-II1 (2m=4) m \1=1 m m (2m_4;8;16) bezeichnet die Menge aller Polynome vom H5chstgrad 4n-1 . , un" , , • n 2 ] 6 7 • 12 28 76 108 1<0 17' Lit. [,] [ .] 2 Zur Herleitunq der Formeln: Aus den Taylorentwicklungen ) r f J -:-k , P u(x,y)dxdy:., p! (P+1) ,6. u(O,O) 22 p=02 P x +'/ !,.1 , ,/p p-lm (p-l.Jn)! (p+lml! 1121m u (0,0) 22p , 1 2p r... 1 ~r 2p p-l~ -22p -p'I-pll!P u+2 1=1( -1) palm ,2p (p-lm)T! (p+lm) IliUm (0,0) ergeben sieh mit den Abkilrzungen (n-' ;2;3,4 ;5,6,7,8; ... ) n-, 1, r 2p ,pi" 4 v- l t 4,\1 t 4,v (n=2;3,4 ;5,6,7,8; ... ) (p-o(1)2n-l) r2 ,p -8 nvI-- 2l t 82p,\ 1 t 8,v (n'"3,4;5,6,7 ,8; . . . J n-' r 2p 4,p- 16.c"L , T16,v t 16,v (n-5,6,7,8: ••. ) 2JOie Beweise der Taylorentwlcklungen von S2m(a) und T (t) sind 2m J, - elnschlleBlich der Definition der Operatoren lI~q - in [, [2] zu finden; der KUrze halber wird hier die Konvergenz dcr Taylor [11, relhen vorausgesetzt (Vgl. [2] 1. 3 durch Taylorabgleich folgende Bedinqung~n: 10 IP+ 1, ,p+ 1, ,p +1, ,p+ ••• - ..', (p-o(,) 2n-1) IQ,p-L"p (p-2 (') 2n-1) • 0 Lo,p+I"p-I ,p (p-4(1)2n-l) 2 • 0 Lo,p+I"p+L2,p-I4,p • 0 (ps6(1)2n-l) (n-, ;2;3,4;5,6,7,8: ... J. Aus Ihnen tolgt, dae die Abstandspar~ter Nullstellen bestimmter Polynome (n-1;2;3,4;5,6,7,81 (n"'3,4;5,6,7,8) (n-S,6,7,8) sind und daB (nach daren Berechnungl die Gewlchte 54,v' t 4,v' ts,v' t 16•v LQsungen linearer Gleichungssysteme sind. &1n1ge Beispiele: , , PO,2-S2,04 -54o4+9 P",-4T4-3 1 0,0" 2"1 Io.,· ;i • PO,3a6317094Q:-l00222450!+4149900o;-336375 • 2 P,,2-1S3T4-2S0T4+15 2 P2,,-6Ta-S \' 168899 " 98617 l.o,o· 337500 L, .0" 331500 \' 7661 "0,,· 45000 PO,4-220SBOO8a!-47224002a:+32262915a!-73827000;+352125 , • 2 P,.3-392T4-763T4+450T4-75 • 2 P2,2=28Ta-42Ts+15 r 5057 t 9'J:l7 o•o• T'25oO [.1,e'" 337500 '\' 6389 '\' 111541 La.,· 45000 [.1,,""35000 \' 193 [.1.:'= ~ Die Ergebnisse fUr n-S,6,7,B wurden mit Hilfe der Programmiersprache FORMAC errnittelt [3J; aie wurden auf andere Weise auch von A. Haegemans berechnet [4J. 5 Literatur Albrecht, J., Collat2, L.: Zur numerischen Auswertung mehrdimen sionaler Integrale, ZAMM 38 (1958) 1-15. 2 ALbrecht, J.: YormeLn zur numerischen Integration Uber Kreisbe reiche, ZAM.M 40 ( 1960) 514-517. 3 Engels, H. • Numerical Quadrature and Cubature, Academic Press, London 1977. 4 Haegemans, A.: Circularly symmetrical integration formulas for two-dimensional circularly symmetrical regions, BIT 16 (1976) 52-59. 5 Ham~er, p,e. , Stroud, A.H., Numerical evaluation of multiple integrals II, MTAC 12 (1958) 272-279. 6 v. Mises, R.: Formules de cubature, Revue mathematlque de l'Unlon Interbalkanique, Athen 1936, 17-31. 7 Mysowskich, I.P.: On the construction of cubature formulas for the simplest regions, Z. Vyelsl. Mat. i Mat. Fiz. 4 ( 1964) 3-14. 8 Stroud, A.M.: Approximate Caleulat~on of Multiple Integrals, Prentieo Hall, Englewood Cliffs 1971, 4315. Prof. Dr. J. Albrecht Technische Universit~t Clausthal Institut flir Mathematik Erz:straBe 1 3392 Clausthal-Zellerfeld Prof. Dr . H. Engels Technische Universlt~t Aachen Institut fUr Geometrle und Praktische Mathematik Templergraben 55 5100 Aachen

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.