ebook img

Constructive description of Hardy-Sobolev spaces in $\mathbb{C}^n$ PDF

0.26 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Constructive description of Hardy-Sobolev spaces in $\mathbb{C}^n$

Constructive description of Hardy-Sobolev spaces in Cn Alexander Rotkevicha 6 aDepartment of Mathematical analysis, Mathematics andMechanics Faculty, St. Petersburg 1 State University,198504, Universitetskyprospekt, 28, Peterhof, St. Petersburg, Russia 0 2 v o N Abstract 9 Inthis paperwe studythe polynomialapproximationsinHardy-Sobolevspaces ] onfor convexdomains. We use the method ofpseudoanalyticalcontinuationto V C obtain the characterization of these spaces in terms of polynomial approxima- . h tions. t a Keywords: Hardy-Sobolev Spaces, polynomial approximations, m pseudoanalytical continuation, Cauchy-Leray-Fantappi`eintegral [ 2010 MSC: 32E30,41A10 2 v 8 1 1. Introduction 2 3 0 ThepurposeofthispaperistogiveanalternativecharacterizationsofHardy- . 1 Sobolev (see. [1]) spaces 0 6 1 Hl(Ω)= f H(Ω): f + ∂αf < (1) p { ∈ k kHp(Ω) k kHp(Ω) ∞} : v |Xα|≤l i X on strongly convex domain Ω Cn. ⊂ r a We continue the research started in [15] and devoted to description of ba- sic spaces of holomorphic functions of several variables in terms of polynomial approximationsandpseudoanalyticalcontinuation. In particular,we show that for1<p< andl 1aholomorphiconastronglyconvexdomainΩfunction ∞ ≥ f is in the Hardy-Sobolev space Hl(Ω) if and only if there exist a sequence of p Email address: [email protected] (Alexander Rotkevich) Preprint submitted toJournal of Approximation Theory November 10, 2016 2k degree polynomials P such that − 2k ∞ p/2 dσ(z) f(z) P (z)222lk < . (2) | − 2k | ! ∞ Z k=1 ∂Ω X Intheonevariablecasethisconditionfollowsfromthecharacterizationobtained by E.M. Dynkin [5] for Radon domains. The paper is divided into five sections with one appendix. In section 2 we givemaindefinitions andpreliminariesofthis work. Section3 isdevotedto the Cauchy-Leray-Fantappi`e integral formula, the polynomial approximations and estimates of its kernel. We also define internal and external Kor´anyi regions, the multidimensional analog of Lusin regions. In section 4 we introduce the method of pseudoanalytical continuation and three constructions of the con- tinuation with different estimates. We use these constructions to obtain the characterization of Hardy-Sobolev spaces in terms of estimates of the pseudo- analytical continuation. To prove this result we use the special analog of the Krantz-Li area-integral inequality [8] for external Kor´anyi regions established in appendix A. Finally, section 5 contains the proof of characteristics (2). 2. Main notations and definitions Let Cn be the space of n complex variables, n 2, z = (z ,...,z ), z = 1 n j ≥ x +iy ; j j ∂f 1 ∂f ∂f ∂f 1 ∂f ∂f ∂ f = = i , ∂¯ f = = +i , j j ∂z 2 ∂x − ∂y ∂z¯ 2 ∂x ∂y j (cid:18) j j(cid:19) j (cid:18) j j(cid:19) n n ∂f ∂f ∂f = dz , ∂¯f = dz¯ , df =∂f +∂¯f. k k ∂z ∂z¯ k k k=1 k=1 X X The notation n ∂f(z) ∂f(z), w = w . k h i ∂z k k=1 X is used to indicate the action of ∂f on the vector w Cn, and ∈ ∂f ∂f ∂¯f = +...+ . | | ∂z ∂z (cid:12) 1(cid:12) (cid:12) n(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 2 The euclidean distance form the point z Cn to the set D Cn we denote ∈ ⊂ asdist(z, D)=inf z w :w D .LebesguemeasureinCn wedenoteasdµ. {| − | ∈ } For a multiindex α = (α ,...,α ) Nn we set α = α + ... + α 1 n 1 n ∈ | | and α! =α1!...α2!, also zα =z1α1...znαn and ∂αf = ∂z¯1α∂1|.α..|∂fz¯nαn. LetΩ= z Cn :ρ(z)<0 beastronglyconvexdomainwithaC3-smooth { ∈ } defining function. We need to consider a family of domains Ω = z Cn :ρ(z)<t t { ∈ } that arealso stronglyconvexfor each t <ε, where ε>0 is smallenough, that | | is d2ρ(z) is positive definite when ρ(z) ε. For z Ω Ω we denote the ε −ε | | ≤ ∈ \ nearest point on ∂Ω as pr (z). Then the mapping ∂Ω pr :Ω Ω ∂Ω ∂Ω ε\ −ε → is well defined, C2 smooth on Ω Ω and z pr (z) =dist(z, ∂Ω). − ε\ | − ∂Ω | For ξ ∂Ω we define the complex tangent space t ∈ T = z Cn : ∂ρ(ξ), ξ z =0 . ξ { ∈ h − i } The space of holomorphic functions we denote as H(Ω) and consider the Hardy space (see [18], [6]) Hp(Ω):= f H(Ω): f p = sup f(z)pdσ (z)< ,  ∈ k kHp(Ω) | | t ∞ −ε<t<0  ∂ZΩt  where dσt is induced Lebesgue measure on the boundary of Ωt. We alsodenote dσ =dσ . Hardy-Sobolev spaces Hl(Ω) are defined by (1). 0 p Throughout this paper we use notations ., . We let f . g if f cg for ≍ ≤ some constant c > 0, that doesn’t depend on main arguments of functions f and g and usually depend only on dimension n and domain Ω. Also f g if ≍ c−1g f cg for some c>1. ≤ ≤ 3. Cauchy-Leray-Fantappi`e formula In the context of theory of several complex variables there is no unique reproducing formula formula, however we could use the Leray theorem, that 3 allows us to construct holomorphic reproducing kernels ([2], [12], [13]). For convex domain Ω = z Cn :ρ(z)<0 this theorem brings us Cauchy-Leray- { ∈ } Fantappi`e formula, and for f H1(Ω) and z Ω we have ∈ ∈ 1 f(ξ)∂ρ(ξ) (∂¯∂ρ(ξ))n−1 f(z)=K f(z)= ∧ = f(ξ)K(ξ,z)ω(ξ), Ω (2πi)n ∂ρ(ξ), ξ z n Z h − i Z ∂Ω ∂Ω (3) where ω(ξ)= 1 ∂ρ(ξ) (∂¯∂ρ(ξ))n−1, and K(ξ,z)= ∂ρ(ξ), ξ z −n. (2πi)n ∧ h − i The(2n 1)-formωdefineson∂Ω Leray-LevymeasuredS,thatisequivalent t − to Lebesgue surface measure dσ (for details see [2], [10], [11]). This allows us t to identify Lebesgue, Hardy and Hardy-Sobolev spaces defined with respect to measures dσ and dS. Also note, that measure dV defined by the 2n-form t dω =(∂∂¯ρ)n is equivalent to Lebesgue measure dµ in Cn. By [14] the integral operator K defines a bounded mapping on Lp(∂Ω) to Ω Hp(Ω) for 1<p< . ∞ The function d(w,z) = ∂ρ(w), w z defines on ∂Ω quasimetric, and |h − i| if B(z,δ) = w ∂Ω : d(w,z) < δ is a quasiball with respect to d then { ∈ } σ(B(z,δ)) δn, see for example [14]. Therefore ∂Ω,d,σ is a space of homo- ≍ { } geneous type. Note also the crucial role in the forthcoming considerations of the following estimate that is proved in [15]. Lemma 3.1. Let Ω be strongly convex, then d(w,z) ρ(w)+d(pr (w),z), w Cn Ω, z ∂Ω. ≍ ∂Ω ∈ \ ∈ 3.1. The polynomial approximation of Cauchy-Leray-Fantappi´e kernel In lemma 3.3 here we construct a polynomial approximations of Cauchy- Leray-Fantappi´ekernel based on theorem by V.K. Dzyadyk about estimates of Cauchy kernel on domains on complex plane (theorem 1 in part 1 of section 7 in[3]). Theapproximationischoosedsimilarlyto[16]. Thisconstructionallows us in theorem 5.1 to get polynomials that approximate holomorphic function with desired speed. 4 Lemma 3.2. Let Ω be a strongly convex domain with 0 Ω, then for every ∈ ξ Ω Ω the value of λ = h∂ρ(ξ), zi for z Ω lies in domain L(t), bounded ∈ ε \ h∂ρ(ξ), ξi ∈ by the bigger arc of the circle λ = R = R(Ω) and the chord λ C : λ = | | { ∈ 1+eits, s R, λ R , where t= π arg( ∂ρ(ξ), ξ ). ∈ | |≤ } 2 − h i Proof. For ξ ∂Ω define ∈ ∂ρ(ξ), z Λ(ξ)= λ C:λ= h i, z Ω . ∈ ∂ρ(ξ), ξ ∈ (cid:26) h i (cid:27) The convexity of Ω with 0 Ω implies that ∈ ∂ρ(ξ), ξ & ∂ρ(ξ) ξ &1, (4) |h i| | || | Re ∂ρ(ξ), z ξ 0, z Ω¯, ξ Ω Ω. (5) ε h − i≤ ∈ ∈ \ The domain Λ(ξ) C is also convex and contains 0, thus the equality ⊂ ∂ρ(ξ), z ∂ρ(ξ), z ξ h i =1+ h − i ∂ρ(ξ), ξ ∂ρ(ξ), ξ h i h i with estimates (4), (5) completes the proof of the lemma. (cid:3) Lemma 3.3. Let Ω be a strongly convex domain and r > 0. Then for every k N there exist function Kglob(ξ,z) defined for ξ Ω Ω and polynomial in ∈ k ∈ ε\ z Ω with degK (ξ, ) k and following properties: k ∈ · ≤ 1 1 1 K(ξ,z) Kglob(ξ,z) . , d(ξ,z) ; (6) − k kr d(ξ,z)n+r ≥ k (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 1 Kglob(ξ,z) .kn, d(ξ,z) . (7) k ≤ k (cid:12) (cid:12) Proof. Due to [3] an(cid:12)(cid:12)d [17] for a(cid:12)(cid:12)ny j N there exists a function Tj(t,λ) ∈ polynomial in λ with degT (t, ) j such that j · ≤ 1 1 1 T (t,λ) . (8) 1 λ − j jr 1 λ1+r (cid:12)(cid:12) − (cid:12)(cid:12) | − | (cid:12) (cid:12) for λ L(t) λ: 1 (cid:12)λ < 1 and coe(cid:12)fficients of polynomials T (t,λ) contin- ∈ \ | − | j j uously dependnon t. Note alsoothat by maximum principle 1 T (t,λ).j, λ L(t) λ: 1 λ < . (9) j ∈ | − | j (cid:26) (cid:27) \ 5 Let t(ξ)= π arg( ∂ρ(ξ), ξ and for j N and (j 1)<k jn define 2 − h i ∈ − ≤ 1 ∂ρ(ξ), z Kglob(ξ,z)=Kglob(ξ,z)= Tn t(ξ),h i . k jn ∂ρ(ξ), ξ n j ∂ρ(ξ), ξ h i (cid:18) h i(cid:19) Due to definition of T polynomials Kglob(ξ, ) satisfy relations (6), (7). (cid:3) j k · 3.2. Kora´nyi regions For ξ ∂Ω and ε>0 we define the inner Kora´nyi region as ∈ Di(ξ,η,ε)= τ Ω:pr (τ) B(ξ, ηρ(τ)), ρ(τ)> ε . { ∈ ∂Ω ∈ − − } The strongconvexityofΩ implies thatarea-integralinequality byS. Krantz and S.Y. Li [8] for f Hp(Ω), 0<p< , could be expressed as ∈ ∞ p/2 dµ(τ) dσ(z) ∂f(τ)2 c(Ω,p) f pdσ. (10)  | | ( ρ(τ))n−1 ≤ | | Z Z − Z ∂Ω Di(z,η,ε) ∂Ω     Consider the decomposition of vector τ Cn as τ = w + tn(ξ), where ∈ w T , t C, and n(ξ) = ∂¯ρ(ξ) is a complex normal vector at ξ. We define ∈ ξ ∈ ∂¯ρ(ξ) | | the external Kora´nyi region as De(ξ,η,ε)= τ Cn Ω:τ =w+tn(ξ), { ∈ \ w T , t C, w < ηρ(τ), Im(t) <ηρ(τ), ρ(τ)<ε . (11) ξ ∈ ∈ | | | | } p In appendix A we will proof the area-integral inequality similar to (10) for external regions De(ξ,η,ε). We point out two rules for integration over regions De(ξ,η,ε). First, for every function F we have dµ(τ) F(z) dµ(z) dσ(ξ) F(τ) . | | ≍ | | ρ(τ)n Z Z Z Ωε\Ω ∂Ω De(ξ,η,ε) Second, if F(w)=F˜(ρ(w)) then ε F(τ) dµ(τ) F˜(t) tndt. | | ≍ De(ξZ,η,ε) Z0 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 6 Similar rules are valid for regions Di(ξ,η,ε). We could clarify the estimate of d(τ,w) in lemma 3.1 for τ De(z,η,ε). ∈ Lemma 3.4. Let Ω be a strongly convex domain and ε,η >0, then d(τ,w) ρ(τ)+d(z,w), z,w ∂Ω, τ De(z,η,ε). (12) ≍ ∈ ∈ Proof. For τ De(z,η,ε) we denote τˆ = pr (τ), then d(τˆ,z) . ηρ(τ) and ∈ ∂Ω by lemma 3.1 d(τ,w).ρ(τ)+d(τˆ.ρ(τ)+d(τˆ,z)+d(z,w).ρ(τ)+d(z,w). On the other hand, ρ(τ)+d(z,w).ρ(τ)+(d(z,τˆ)+d(τˆ,w)).(1+η)ρ(τ)+d(τˆ,w) .ρ(τ)+d(τˆ,w).d(τ,w). (cid:3) 4. The method of pseudoanalytical continuation 4.1. Definition of pseudoanalytical continuation The main tool of this paper is the method of continuation of function f ∈ H(Ω) outside the domain Ω. Let f H1(Ω) and let the boundary values of ∈ f almost everywhere coincide with the boundary values of some function f ∈ C1 (Cn Ω) such that ∂¯f L1(Cn Ω). Then by Stokes formula for z Ω we loc \ ∈ \ ∈ have (cid:12) (cid:12) (cid:12) (cid:12) 1 f(ξ)∂ρ(ξ) (∂¯∂ρ(ξ))n−1 f(z)= lim ∧ = r→0+(2πi)n ∂ρ(ξ), ξ z n Z h − i ∂Ωr 1 ∂¯f(ξ) ∂ρ(ξ) (∂¯∂ρ(ξ))n−1 lim ∧ ∧ r→0+(2πi)n ∂ρ(ξ), ξ z n CnZ\Ωr h − i 1 ∂¯f(ξ) ∂ρ(ξ) (∂¯∂ρ(ξ))n−1 = ∧ ∧ , (2πi)n ∂ρ(ξ), ξ z n CnZ\Ω h − i 7 since (for details see [13]) ∂ρ(ξ) (∂¯∂ρ(ξ))n−1 d ∧ =0, z Ω, ξ Cn Ω. ξ ∂ρ(ξ), ξ z n ∈ ∈ \ (cid:18) h − i (cid:19) This formula allows us to study properties of function f H(Ω) relying on ∈ estimates of its continuation. Definition 4.1. We call the function f C1 (Cn Ω) the pseudoanalytic con- ∈ loc \ tinuation of the function f H(Ω) if ∈ 1 ∂¯f(ξ) ∂ρ(ξ) (∂¯∂ρ(ξ))n−1 f(z)= ∧ ∧ , z Ω. (13) (2πi)n ∂ρ(ξ), ξ z n ∈ CnZ\Ω h − i Note that it is not necessary for the function f to be a continuationin terms of coincidence of boundary values. 4.2. Continuation by symmetry For z Ω Ω we define the symmetric along ∂Ω point z∗ Ω by ε ∈ \ ∈ z∗ z =2(pr (z) z). − ∂Ω − Theorem 4.1. Let f H1(Ω) and 1<p< , m N. There exist a pseudo- ∈ p ∞ ∈ analytical continuation f C1 (Cn Ω) of function f such that supp f Ω , ∈ loc \ ⊂ ε ∂¯f(z) Lp(Ω Ω) and ε ∈ \ (cid:12) (cid:12) (cid:12) (cid:12) ∂¯f(z) . max ∂αf(z∗) ρ(z)m−1, z Ω Ω. (14) ε |α|=m| | ∈ \ (cid:12) (cid:12) Proof. Define(cid:12) (cid:12) (z z∗)α f (z)= ∂αf(z∗) − , z Ω Ω. (15) 0 ε α! ∈ \ |α|X≤m−1 Letα ek =(α1,...,αk 1,αn)anddefine (z z∗)α−ek =0ifαk =0.Inthese ± ± − notations we have ∞ (z z∗)α (z z∗)α−ek ∂¯ f = ∂α+ekf(z∗) − ∂αf(z∗) − ∂¯ z∗ j 0 α! − (α e )! j k Xk=1|α|X≤m−1(cid:18) − k (cid:19) ∞ (z z∗)α = ∂α+ekf(z∗) − ∂¯ z∗, (16) α! j k Xk=1|α|X=m−1 8 hence, ∂¯f (z) . max ∂αf(z∗) ρ(z)m−1, z Cn Ω. 0 |α|=m| | ∈ \ (cid:12) (cid:12) Consider functi(cid:12)on χ (cid:12)C∞(0, ) such that χ(t) = 1 for t ε/2 and χ(t) = 0 ∈ ∞ ≤ for t ε. The function f(z) = f (z)χ(ρ(z)) satisfies the condition (15) and 0 ≥ supp f Ω . ε ⊂ Let d = dist(z∗, ∂Ω)/10, then for every mutiindex α such that α = m by | | Cauchy maximal inequality we have ∂αf(z∗) .d−m+1 sup ∂f(τ) .ρ(z)−m+1 sup ∂f(τ) , | | | | | | |τ−z∗|<d τ∈Di(pr∂Ω(z),c0d,ε) for some c >0. Finally, by theorem 2.1 from [8] we get 0 p ∂¯f(z) pdµ(z). dµ(z) sup ∂f(τ) ZΩε\Ω ZΩ\Ω−ε τ∈Di(pr∂Ω(z),c0d,ε)| |! (cid:12) (cid:12) (cid:12) (cid:12) . ∂f p < . k kHp(Ω) ∞ (cid:3) 4.3. Continuation by global approximations. Let f H1(Ω) andconsider a polynomialsequence P ,P ,... convergingto 1 2 ∈ f in L1(∂Ω). Define λ(z)=ρ(z)−1 P (z) P (z) , 2−k <ρ(z) 2−k+1. | 2k+1 − 2k | ≤ Theorem 4.2. Assume that λ Lp(Cn Ω) for some p 1. Then there exist ∈ \ ≥ a pseudoanalytical continuation f of function f such that ∂¯f(z) .λ(z), z Cn Ω. (17) ∈ \ (cid:12) (cid:12) Proof. Consider functio(cid:12)n χ (cid:12) C∞(0, ) such that χ(t) = 1 for t 5 and ∈ ∞ ≤ 4 χ(t)=0 for t 7. We let ≥ 4 f (z)=P (z)+χ(2kρ(z))(P (z) P (z)), 2−k <ρ(z)<2−k+1, k N, 0 2k 2k+1 − 2k ∈ and define the continuation of a function f by formula f =χ(2ρ(z))f (z). 0 9 Now f is C1-function on Cn Ω and ∂¯f(z) . λ(z). We define a function \ Fk(z) as Fk(z) = f(z) for ρ(z) > 2−k and(cid:12)(cid:12)as Fk(cid:12)(cid:12)(z) = P2k+1(z) for ρ(z) < 2−k. The the function F is smooth and holomorphic in Ω , and ∂¯F (z) . λ(z) k 2−k k for z Cn Ω . Thus similarly to 13 we get (cid:12) (cid:12) ∈ \ 2−k (cid:12) (cid:12) 1 ∂¯F (ξ) ∂ρ(ξ) (∂¯∂ρ(ξ))n−1 k P2k+1(z)=Fk(z)= (2πi)n ∧∂ρ(ξ), ξ∧ z n , z ∈Ω, CnZ\Ω h − i Wecanpasstothelimitinthisformulabythedominatedconvergencetheorem; hence, function f satisfies the formula (13) and is a pseudoanalytical continua- tion of function f. (cid:3) 4.4. Pseudoanalytical continuation of Hardy-Sobolev spaces Theorem 4.3. Let Ω be a strongly convex domain, 1 < p < , l N and ∞ ∈ f Hp(Ω). Then f Hl(Ω) if and only if there exists such pseudoanalytical ∈ ∈ p continuation f that for some η >0 p/2 dσ(z) ∂¯f(τ)ρ(τ)−l 2dν(τ) < , (18)   ∞ Z Z ∂Ω De(z,η,ε) (cid:12) (cid:12)  (cid:12) (cid:12)    where dν(τ)= dµ(τ) . ρ(τ)n−1 Proof. Let f Hl(Ω). By theorem 4.1 we could construct pseudoanalytical ∈ p continuation f such that ∂¯f(z) . max ∂αf(z∗) ρ(z)l, z Cn Ω. |α|=l+1| | ∈ \ (cid:12) (cid:12) Note that th(cid:12)e sym(cid:12)metry (z z∗) with respect to ∂Ω maps the external 7→ sector De(z,η,ε) into some internal Kor´anyi sector. Indeed, for every η > 0 there exists η ,ε >0 such that 1 1 τ∗ :τ De(z,η,ε) Di(z,η ,ε ). 1 1 { ∈ }⊆ 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.