ebook img

Construction of Negatively Curved Cubic Carbon Crystals via Standard Realizations PDF

2.8 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Construction of Negatively Curved Cubic Carbon Crystals via Standard Realizations

Construction of Negatively Curved Cubic Carbon Crystals via Standard Realizations HisashiNaito DedicatetoYumikoNaito 6 1 0 2 n a J 9 Abstract In[1],weconstructedphysicallystablesp2negativelycurvedcubiccar- ] bonstructureswhichreticulateaSchwarzP-likesurface.Themethodforconstruct- i c ingsuchcrystalstructuresisbasedonthenotionofthestandardrealizationofab- s - stract crystal lattices. In this paper, we expound on the mathematical method to rl constructsuchcrystalstructures. t m Keywords: discretesurfaces,carbonstructures,schwarzites . t a m - 1 Introduction d n o In the last few decades, there have been many studies about carbon allotropes. In c this paper, we mainly study their geometric structures. For example, it is consid- [ ered that C60, graphene sheets, and single wall carbon nanotubes (SWNTs) span 1 2-dimensional surfaces in R3. In particular, they span the sphere S2, the plane R2 v and cylinders, respectively. Since the Gauss curvature of S2 is positive and that of 2 4 R2andcylinderiszero,C60spansapositivelycurvedsurfaceandbothofgraphene 1 sheetsandSWNTsspanflatsurfaces. 2 It is natural to ask whether there is an sp2 carbon allotrope which spans a neg- 0 atively curved surface. Mackay-Terrones [2] first constructed such an sp2 carbon . 1 crystalstructure.Inthispaper,wecallthis“Mackay-TerronesC192”.Thestructure 0 canbeplacedontheSchwarzP-surface,whichisawell-knowntriplyperiodicmin- 6 imalsurface.SinceminimalsurfaceshavenegativeGausscurvature,wemaycon- 1 siderMackay-TerronesC192tobeanegativelycurved“discretesurface”.Following : v Mackay-Terrones’ work, there have been many examples of carbon crystal struc- i X tures which can be considered to be triply periodic sp2 negatively curved discrete r a HisashiNaito Graduate School of Mathematics, Nagoya University, Nagoya Japan, e-mail: naito@math. nagoya-u.ac.jp 1 2 HisashiNaito surfaces(cf.[3–9]).In[1],wealsoconstructedsuchexamples,andthemainfeatures ofourmethodweremathematicalandsystematic.Toconstructsuchstructures,we usedthenotionofthestandardrealizationoftopologicalcrystal(cf.[10,11]). In this paper, first, in Section 2, we summarize the combinatorial structures of sp2 carbon allotropes and define the notion of “discrete surfaces” and their “total discretecurvature”.InSection3,weexpoundthenotionoftopologicalcrystalsand theirstandardrealizations.Afterthat,inSection4,wediscusshowtoconstructsuch structuresbyusingthestandardrealizationoftopologicalcrystals. Themainpurposeofthispaperistoconstructphysicallystablenegativelycurved sp2carbonstructures.Inparticular,weonlyconsiderstructuresthatcanbeplacedon asurfacewhosesymmetryisthesameastheSchwarzP-surface.Wenotethatwhen we discuss the mathematical structure of sp2 “carbon” networks, atomic species donoteffecttheconstructionofsuchstructuresexceptforsearchingforphysically stablestructuresbyusingfirstprinciplecalculations. 2 Minimalsurfacesandschwarzites Minimal surfaces in R3 are examples of surfaces with negative curvature. More- over,therearemanyexamplesoftriplyperiodicminimalsurfaces.Onewell-known example is the Schwarz P-surface [12–15] (cf. Figure 1(a)), which has following properties: 1. Itisatriplyperiodicminimalsurface,whosefundamentaldomainiscubic, 2. ItisparameterizedbyaconformalmapfromaRiemannsurfacewithgenus3, 3. Ithasthesamesymmetrythepcunet.Inotherwords,itsspacegroupisPm3m. WeremarkthatSchwarzD-andG-surfacesalsosatisfyproperties1and2,andthe followingdiscussionmayapplytoD-andG-surfaces.However,forsimplicity,we onlydiscusstheSchwarzP-surfacebyassumingproperty3.Here,cubicmeansthat theperiodlatticeisorthogonal,thatistosay,thegrammatrixoftheperiodlattice is proportional to the identity matrix. In [2], Mackay-Terrones construct a carbon crystalstructurewhichisplacedontheSchwarzP-surface(cf.Figure1(b)).Since thestructureisplacedonatriplyperiodicminimalsurfaceanditisacrystalstruc- ture, hence, it can be considered to be an example of a “negatively curved carbon crystal”.Here,wenotethatstructureswhichareplacedonatriplyperiodicminimal surfacearecalledschwarzites,whereasstructureswhichareplacedonapositively curvedsurfacearecalledfullerenes.Moreprecisely,aschwarziteisatrivalentnet- work(ansp2structure)thatreticulatesatriplyperiodichyperbolicsurface.Aswe mentioninRemark2.3,suchastructurecontainsringslargerthanhexagons.Later, in [5], Lenosky et al. also constructed similar structures. There are many works constructingschwarzites(cf.[3,4,6,7,16–20]). Ontheotherhand,locallyfinitegraphsaresuitablemathematicalobjectstocon- sider as molecular/crystal structures. We consider not only merely abstract graph structuresbutalsorealizationsofgraphs.AsmentionedintheIntroduction,sincewe ConstructionofNegativelyCurvedCubicCarbonCrystalsviaStandardRealizations 3 (a) (b) (c) Fig. 1 (a) Fundamental domain of Schwarz P-surface with respect to parallel transformations. Thetotalsurfaceisexpandedbyorthogonalparalleltransformations.(b)Mackay-TerronesC192, embeddedonSchwarzP-surface.(c)SchwarzP-surfaceandpcunet. willstudysurfaceswhicharespannedbymolecular/crystalstructures,weconsider polyhedraconstructedbyrealizationsofgraphs,andcallthem“discretesurfaces”. Definition2.1([11,Section7.1]).LetX =(V,E)bealocallyfinitegraph.Amap Φ: X −→Rd is called a d-dimensional realization of X, identifying X with a 1- dimensionalcellcomplex. From this section, a realization X of a locally finite graph denotes a molecu- lar/crystal structure, and we only consider 3-dimensional ones. Moreover, if the structure is periodic with period lattice Γ, we write X/Γ as X if there is no con- fusion.Hence,weonlyconsideronlyrealizationsofafinitegraphstostudymolec- ular/crystalstructures. Nowwedefinethenotionof“discretesurfaces”.LetX bearealizationofafinite graph.Moreover,weassumeeachsimpleclosedpathofX spansasurfaceswhich does not self-intersect. Since such a realization is considered to be a polyhedron, wecallX adiscretesurface.Inparticular,iftheunderlyingfinitegraphofX isof degree3,wecallX adiscretesurfaceofdegree3. Now,weconsiderC60,SWNTsandsp2schwarzites.Expressingthembyreal- izations of graphs, each underlying graph of X is of degree 3 (trivalent), since we consideronlysp2structures. LetV(X),E(X)andF(X)bethenumbersofvertices,edgesandfacesinadis- cretesurfaceX.ByconsideringX asaCWcomplex,wemaydefinethegenusg(X) ofX asg(X)=dimH (X,Z).Then,byEuler’stheorem(Euler-Poincare´ theorem), 1 V(X)−E(X)+F(X)=2−2g(X). (1) ForasmoothsurfaceM,bytheGauss-BonnetTheorem,2π(2−2g)=K(M),where K(M)isthetotalcurvatureofM.Therefore,wedefinethetotaldiscretecurvature K(X)ofX by K(X)=V(X)−E(X)+F(X). 4 HisashiNaito Here,weonlyconsiderthesignatureofK(X),andwesaythatX istotallynegatively curved if and only if K(X)<0. Hence, we can call a carbon structure negatively curvediftherealizationX ofthegraphofthestructureisnegativelycurved. Example2.2.C60 is totally positively curved, and the total discrete curvatures of SWNTsandgraphenesheetsarezero.Mackay-TerronesC192istotallynegatively curved(cf.Table1). Remark2.3.ForadiscretesurfaceX ofdegree3,weobtain k k V(X)= ∑N , E(X)= ∑N , F(X)=∑N , (2) k k k 3 2 k k k whereN isthenumberofk-gon.ByusingEulertheorem,we,therefore,obtain k (cid:18) (cid:19) k ∑ 1− N =2−2g(X). (3) k 6 k IfX satisfiesK(X)<0,equality(3)impliesthatX containsatleastonek-gon(k≥ 7). Table1 C60structureisatruncatedicosahedron,ForgraphenesheetsandSWNTs,wetakefun- damentaldomainwithrespecttoZ2-andZ-action,respectively.ForMackay-TerronesC192,we takethefundamentaldomainwithrespecttoZ3-action.SeeAppendixforchiralindexofSWNTs. V(X)E(X)F(X) K(X)g(X) C60 60 90 32 2 0 SWNT,chiralindex=(6,0) 24 36 12 0 1 SWNT,chiralindex=(6,3) 64 126 42 0 1 SWNT,chiralindex=(6,6) 24 36 12 0 1 Mackay-TerronesC192 192 288 102 −4 3 3 Topologicalcrystalsandtheirstandardrealizations Scientistsusespacegroups(crystallographicgroups)todescribestructuresofcrys- tals.Aspacegrouprepresentsthesymmetryofatomsinthecrystal,butitdoesnot describe bonds of atoms. The notion of a crystal lattice or a topological crystal, whichwasintroducedbyKotani-Sunada[10],representsplacementsofatomsand theirbondsinacrystal.Thedefinitionoftopologicalcrystalsisasfollows: Definition3.1([11, Section 6.2]). A locally finite graph X =(V,E) is called a topological crystal or a crystal lattice if and only if there exists a finite graph X =(V ,E )andaregularcoveringmapπ: X −→X suchthatthecoveringtrans- 0 0 0 0 formationgroupΓ ofπ isabelian.Moreover,iftherankofΓ ⊂H (X ,Z)isd,X 1 0 iscalledd-dimensional. ConstructionofNegativelyCurvedCubicCarbonCrystalsviaStandardRealizations 5 AtopologicalcrystalX =(V,E)isanabstractstructureofacrystal,thatistosay, eachvertexofX representsanatomofacrystal,andifv andv ∈V areconnected 1 2 byanedge(v ,v )∈E,thenatomsv andv arebonded.However,thecoordinates 1 2 1 2 of vertices are not defined. To determine, the coordinates of vertices, we define a realizationofX. Definition3.2([11,Section7.1]).LetX =(V,E)bead-dimensionaltopological crystal,whichisidentifiedwitha1-dimensionalcellcomplex.AmapΦ: X−→Rd is called a realization of X. Moreover, if there exists an injective homomorphism ρ: Γ −→Rd suchthatΦ(σv)=Φ(v)+ρ(σ)foranyv∈V andσ ∈L,andρ(Γ) isalatticesubgroupofRd,thenΦ iscalledaperiodicrealization. Sincephysicalcrystalshaveperiodicstructures,itisnaturaltoconsideronlyperi- odicrealizations.Figure2shownexamplesofrealizationsofthesamecrystallattice. As show in Figure 2, we would like to select good ones among all realizations of a given crystal lattice. To do this, we define the energy functional with respect to realizationsofagivencrystallattice. Definition3.3([11,Section7.3]).TheenergyofarealizationΦ ofacrystallattice X isdefinedby 1 E(Φ)= ∑ |Φ(v )−Φ(v )|2, 1 2 2 (v1,v2)∈E0 whereX isthefundamentalgraphofX.Moreover,Φ iscalledaharmonicrealiza- 0 tionifΦ isacriticalpointofE. (a) (b) (c) (d) Fig.2 Structures(a),(b)and(c)areperiodicrealizationsofthesametopologicalcrystals(hexago- nallattice).(a)isnotaharmonicrealization,(b)and(c)areharmonic.Moreover(c)isthestandard realizationofthehexagonallattice.(d)isthefundamentalgraphofthehexagonallattice. ItiseasytoshowthatΦ isharmonicifandonlyifΦ satisfies ∑ (Φ(v)−Φ(v ))=0, (4) 1 (v,v1)∈E0 for all v ∈X . Note that 1) the left-hand side of (4) is the discrete Laplacian of 0 (Φ(V ),E );2)Φ isharmonicifandonlyifallverticesofΦ(X)satisfymechanical 0 0 equilibrium;3)structuresinFigure2(b)andFigure2(c)areharmonic.However,we 6 HisashiNaito consider the structure in Figure 2(c) as the most symmetric object among all real- izationsofX.Toselectthemostsymmetricobjectbyusingthevariationalmethod, wealsoconsidervariationswithrespecttolatticesΓ. Definition3.4([11, Section 7.4]). Let X be a d-dimensional crystal lattice with thefundamentalgraphX .Moreover,letΓ bethecoveringtransformationgroup.A 0 realizationΦ: X −→Rd iscalledstandard ifandonlyifΦ isacriticalpointofE withrespecttovariationsΦ andΓ subjecttoVol(Γ)=1. Theorem3.5([10]).ForanytopologicalcrystalX,thereexistsastandardrealiza- tionΦ ofX.MoreoverΦ isuniqueuptoscalingandparalleltranslations. Remark3.6.In[21,Theorem4],Delgado-Friedrichsconsideredequilibriumplace- ments Φ: X →Rd of d-periodic graphs X, and proved the unique (up to affine translations) existence of the equilibrium placement for any periodic graph (See also [22]). The notion of equilibrium placements corresponds to the notion of harmonic realizations. Moreover, Delgado-Friedrichs also proved that, for any d- periodicgraphX,thereexistsauniqueequilibriumplacementΦ suchthat,forev- ery γ ∈Γ ⊂Aut(X), an isometry γ∗: Rd →Rd associated to γ with respect to Φ exists([21,Theorem11]).Thisequilibriumplacementcorrespondstothestandard realization. Example3.7.For the hexagonal lattice (Figure 2), all lattice Γ are parameterized by the angle θ between period vectors. The energy of all harmonic realizations attainsitsminimumatθ =π/3,whichimpliesthatthestandardrealizationofthe hexagonallatticeisFigure2(c). Example3.8.There is a general method of calculating the standard realization of a given topological crystal (cf. [11,23]). The diamond crystal is obtained by this procedurefromthefundamentalgraphinFigure3(a).Thesrsnetwork,whichhas adeeprelationshipwiththeGyroidsurface,isalsoobtainedbythismethod.More- over,Sunada[24]showsthattheonlynetworkswhichsatisfythe“stronglyisotropic property” are diamond (dia) and srs. For the relation of the srs network and the Gyroid surface, see [25,26]. For the definition of the strongly isotropic property, see[24,p.212],andfortheexplicitfigureofK ,see[23],[26,Figure5].Here,we 4 notethatweshowphysicalmeta-stabilityofcarbonK structurein[27]. 4 Themostimportantpropertyofthestandardrealizationisasfollows: Theorem3.9([24, Theorem 1]). Let X be a d-dimensional crystal lattice, and Φ a realization of X. Then there exists a homomorphism T: Aut(X) −→ M(d) suchthatΦ(gx)=T(g)Φ(x)foranyx∈X andg∈Aut(X),whereAut(X)isthe automorphismgroupofX andM(d)isthemotiongroupof Rd. Theorem3.9impliesthatthestandardrealizationisthemostsymmetricamongall realizations. ConstructionofNegativelyCurvedCubicCarbonCrystalsviaStandardRealizations 7 Fig.3 (a)Thefundamental graph of the diamond lat- (a) (b) tice.Thediamondlatticeis obtainedbythestandardreal- izationofthemaximalabelian coveringofthisgraph.(b)The fundamentalgraph(K4graph) ofthesrsnet(theK4lattice). Thesrsnetisobtainedby thestandardrealizationofthe maximalabeliancoveringof K4graph. 4 Constructionofnegativelycurvedcarboncrystals Our main aim is to construct examples of physically stable sp2 negatively curved carbonstructures.Inparticular,weconstructsuchstructureswiththesamesymme- tryaspcu.Forthe3-netpcu,seeDelgado-Friedrichsetal.[28]andHydeetal.[26]. Inthefollowing,weabbreviatethesymmetryascubicsymmetry.Inthissection,we usethewordnetwork,whichmeansarealizationofgraphs. 4.1 Constructionoftopologicalcrystals To construct network (graph) structures with cubic symmetry, first we construct them in the hexagonal region, then extend to the fundamental region (unit cell) of crystals(seeFigure1(a)andFigure4(a)).Sincethehexagonalregionhasreflective symmetryoforder3,weonlyconsidernetworkswithsuchsymmetry.Wecallthe fundamental region of such symmetry the kite-region (see Figure 4(b)). Using the orbifoldnotation,thekite-regionisthe∗2223orbifold,andthehexagonalregionis the∗222222orbifoldinH2.Fortheorbifoldnotation,see[29,30] As the first step to construct such networks, we construct networks in the kite- regionsatisfyingthefollowingproperties: 1. Anyinnervertexisofdegree3, 2. Anyvertexontheboundaryisjoinedwiththetwoneighbouringverticesonthe boundary,orwithaninnervertexandnotwithbothneighbouringverticesonthe boundary, 3. A network is planar and connected, and there are at least four vertices on the boundary, 4. Anetworkdoesnothaveaconsecutivesequenceofoddverticesontheboundary, 5. Anetworkistriangle-free. Condition1correspondstoconsiderationofsp2crystals.Byconditions2,3and4. wemayextendthenetworktothehexagonalregion.Condition5impliesavoiding 3-ringsinstructures.Itiseasytoprovethatnetworkswiththeaboveconditionsmust 8 HisashiNaito (a) (b) (c) Fig. 4 (a) The combinatorial structure of Mackay-Terrones C192 in the hexagonal region ∗222222). Mackay-Terrones C192 is obtained by reflecting this structure by group action of ∗222222.(b)ThecombinatorialstructureofMackay-TerronesC192inthekite-region(∗2223). Structure(a)isobtainedbyreflectingthestructureinthekite-regionwithrespecttolinesthrough the right vertex (the vertex with π/3 symmetry). (c) An image of the hexagonal region in H2 (See[31,Figure7(c)]). haveanevennumberofvertices.Networkswith6and8verticesinthekite-region areclassifiedin[1,Figure2].Sincethekite-regionishomeomorphictothedisk,we mayconstructsuchnetworksinthediskregion. Thesecondstepistoextendnetworksinthekite-regiontothehexagonalregion byreflections.Inthisstep,ifthereexistdegree2verticesonreflectionboundaries, wedeletethem.Bytheseprocedures,wemayconstructanetworkinthehexagonal region. Finally, by extending the network in the hexagonal region to the fundamental regionbyparalleltransformations,weobtainarequirednetwork.Wenotethatthe above properties are not sufficient conditions to obtain trivalent networks which reticulateaSchwarzP-likesurface.Constructingnetworksinthehexagonalregion, andpatchingtheminasuitablemanner,wemayobtainnetworksonD-and/orG- likesurface.However,astheaimofthisnoteistoconstructexamplesofnetworks on a P-like surface, we consider the hexagonal region as a hexagonal face of the trucatedoctahedron,thenweobtainarequiredtrivalentnetworkbyextendinginthe abovemanner. 4.2 Constructionofstandardrealizations Let X =(V ,E ) be a network constructed as in Section 4.1. Since X has cubic 0 0 0 0 symmetry,wemayextendX toa3-dimensionaltoplogicalcrystalX =(V,E).Our 0 purposeinthissectionistoconstructthestandardrealizationofX,andtoprovethat therealizationhascubicsymmetry.Thatistosay,translationvectorsofthestandard realizationareorthogonal. FirstweletΦ: X−→R3bearealizationwithΓ =X/X ,and{e ,e ,e }bethe 0 x y z basisofR3withdet(e e e )=1.Byusingthisrealization,wemayfindcoordinates x y z ConstructionofNegativelyCurvedCubicCarbonCrystalsviaStandardRealizations 9 ofverticesx =Φ(v)∈R3forv ∈V.Tocalculatestandardrealizations,weshould i i i definetheenergyofrealizations.Ifv ∈V ,thenedges(v,v )satisfyeitherv ∈V , i 0 i j j 0 v ∈V +e orv ∈V −e forsomeα ∈{x,y,z},hence,wewritethat(v,v )is j 0 α j 0 α i j ineitherE ,E orE .Underthisnotation,theenergyofΦ maybewrittenas 0 (0,+) (0,−)  1 E=  ∑ |xi−xj|2 2 (vi,vj)∈E0 (5)  + ∑ |xi+eα−xj|2+ ∑ |xi−eα−xj|2. (vi,vj)∈E(0,+) (vi,vj)∈E(0,−) SincethestandardrealizationisthecriticalpointofE withvariationswithrespect tovariables{x}and{e }subjecttodet(e e e )=1,thentoobtainthestandard i α x y z realization,usingLagrangianmultiplier,wemustsolvethefollowingequations: ∂E =0, (6) ∂x i and ∂ (E−λdet(e))=0. (7) ∂e α Proposition4.1([1,Theorem2ofSupplementarymaterials]).Thelinearsystem (6)issolvable. Proof. Thelefthandsideofequation(6)is ∂E =x +x +x −3x +b (8) ∂x j1 j2 j3 j j i where{v ,v ,v }areverticesadjacenttov ,andb=(b)isdefinedby j1 j2 j3 j i +eα if(vj,vj(cid:96))∈E(α,+)forsome(cid:96)∈{1,2,3},α ∈{x,y,z}, bi= −eα if(vj,vj(cid:96))∈E(α,−)forsome(cid:96)∈{1,2,3},α ∈{x,y,z},  0 otherwise Thatistosay,theequation(6)iswrittenas ∆Gx=b, (9) where ∆G = A−3I is the discrete Laplacian of G = X/Γ, and A is the adja- cency matrix of G. Since the discrete Laplacian of a connected graph has only a 1-dimensional kernel, and the kernel is spanned by (1,...,1). Since ∑b =0, we i obtainthatbisperpendiculartoKer∆G.hence,equation(6)issolvable. (cid:116)(cid:117) Theorem4.2([1,Theorem3ofSupplementarymaterials]).Thegrammatrixof thelattice{e ,e ,e }whichgivesthesolutionof(6)and(7)istheidentitymatrix. x y z 10 HisashiNaito Proof. Let{xi}bethesolutionof(6)with∑xi=0,andtα bethereflectionwith respecttotheplanewithnormalvectore .Moreover,letT bethegroupgenerated α by {t ,t ,t }. Since the energy E is invariant under the action of T, the solution x x y z satisfies: 1. If Tx(vi)=vj, then xi =Ki,xex+Ki,yey+Ki,zez and xj =−Ki,xex+Ki,yey+ Ki,zez. 2. (v,v )∈E ifandonlyif(v ,v)∈E . i j (α,+) j i (α,−) Thereforeweobtain ∂E = ∑ (x +e −x)− ∑ (x −e −x)=K e . ∂e j α i j α i α α α (vi,vj)∈E(α,+) (vi,vj)∈E(α,−) Sincetheactionexchanginge ande belongstoT,wemayobtainK:=K =K = x y x y K andK(cid:54)=0.By2,weobtainKe =λe ×e withε =ε .Hence,weobtain z α β γ αβγ xyz thatK(cid:104)e ,e (cid:105)=λδ . (cid:116)(cid:117) α β αβ Remark4.3.Theorem4.2isalsoobtainedfromTheorem3.9.ByTheorem3.9,the standardrealizationhasmaximalsymmetry,andthesymmetryoftherealizedcrys- tal must be same as that of the topological crystal. Since the topological crystal, whichweareconsidering,isinvariantundertriplyperiodicityandcubicgroupac- tion,therefore,suchactionsextendtoactionsM(d),Hence,thegrammatrixof{e } α shouldbeproportionaltotheidentitymatrix. 4.3 Constructionofstableconfigurations By using Theorem 4.2, we obtain candidates for negatively curved cubic crystals. However, distances of neighbouring atoms in such structures are not almost the same.Byphysico-chemicalconsiderations,thedistancesshouldbealmostthesame for physically stable configurations. To find stable configurations with respect to bindingenergies,weperturbcoordinatesofatoms,thenfindstableones,whichwe call relaxed configuration, by using first principle calculations. For this purpose, setting the standard realization as the initial configuration, perturbing positions of atoms,andcalculatingbindingenergiesofcarbonstructures,weobtainstablecon- figurations. By using the above method, we search for physically stable configu- ration, and we obtain negatively curved cubic sp2 carbon crystals as examples of schwarziteswhichreticulateaSchwarzP-likesurface. Result4.4.We obtain four physically stable structures: 6-1-1-P (C176), 6-1-2-P (C152), 6-1-3-P (C152) and 8-4-2-P (C168). Relaxed configurations of them are physically stable. Moreover, 6-1-1-P (C176), 6-1-2-P (C152), 6-1-3-P (C152) are metaland8-4-2-P(C168)isasemi-conductor. OurstructuresareillustratedinFigure6,andTable2liststheirbasicproperties.For theirenergybandsandphononspectrumofthem,see[1,Figures4-8].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.