ebook img

Construction of Hypergeometric Solutions to the q-Painlevé Equations PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Construction of Hypergeometric Solutions to the q-Painlevé Equations

Construction of Hypergeometric Solutions to the q-Painleve´ Equations 5 0 0 K. Kajiwara1,3, T. Masuda2, M. Noumi2,Y. Ohta2 and Y. Yamada2 2 n 1GraduateSchoolofMathematics,KyushuUniversity,6-10-1Hakozaki,Fukuoka812-8581,Japan a 2DepartmentofMathematics,KobeUniversity,Rokko,Kobe657-8501,Japan J 3SchoolofMathematicsandStatisticsF07,UniversityofSydney,Sydney,NSW2006,Australia 1 3 January 30,2005 ] I S . Abstract n Hypergeometricsolutionstotheq-Painleve´equationsareconstructedbydirectlinearizationofdisrcreteRiccatiequa- i l tions.Thedecouplingfactorsareexplicitlydeterminedsothatthelinearsystemsgiverisetoq-hypergeometricequations. n [ 1 1 Introduction v 1 Thisarticleisacontinuationofourpreviouswork[1]onthehypergeometricsolutionstotheq-Painleve´equationsinthe 5 followingdegenerationdiagramofaffineWeylgroupsymmetries[2,3]: 0 1 E(1) → E(1) → E(1) → D(1) → A(1) → (A +A )(1) → (A + A1 )(1) (1) 0 8 7 6 5 4 2 1 1 |α|2=14 5 Thelistofq-Painleve´equationswearegoingtoinvestigateisgiveninsection3below. Weremarkthattheseq-Painleve´ 0 / equationswerediscoveredthroughvariousapproachestodiscretePainleve´ equations,includingsingularityconfinement n analysis, compatibility conditions of linear difference equations, affine Weyl group symmetries and τ-functions on the i l lattices. Also, in Sakai’s framework [2], each of these q-Painleve´ equations is constructed in a unified manner as the n birationalactionofatranslationofthecorrespondingaffineWeylgrouponacertainfamilyofrationalsurfaces. : v i In[4]wehaveintroducedtheformulationofdiscretePainleve´equationsbasedonthegeometryofplanecurvesonP2. X Onthatbasiswewereableinthefirstpartof[1]tofindsuitablecoordinatesforlinearizationoftheq-Painleve´equations r into three-term relations of hypergeometricfunctions. As a result we obtained the following degeneration diagram of a basichypergeometricfunctionscorrespondingto(1): a ϕ ;q,z balanced balanced 1 1 0 ! 0 → W → → ϕ → ϕ → → ϕ ;q,z W 8 7 ϕ 2 1 1 1 0 1 1 −q ! 10 9 3 2 ϕ ;q,z 1 1 b ! This shows the usefulnessof geometric considerationin the study of particularsolutions of discrete Painlee´ equations. Inordertodetermineexplicitsolutionstothoseequationswrittenintheliterature,furtherstepsofprecisecomputations arerequiredsincethevariablestobesolvedarefixedinadvance. Wehaveshownonlytheresultsfortheminthesecond partof[1]. Thepurposeofthisarticleistopresenttheseexplicitsolutionsincludingsubtlegaugefactorsandtoshowthe calculationindetailbasedonthedirectlinearizationofdiscreteRiccatiequations. This article is organized as follows: In section 2, we explain the procedure to construct hypergeometric solutions throughthe linearizationof discrete Riccati equations. We demonstratethis procedureby taking the case of E(1) as an 7 example. In section 3, we give the list of q-Painleve´ equations and their hypergeometricsolutions, with the data that arenecessaryforconstructingsolutions. Amongthecasesinthediagram(1)wehaveexcludedthecaseofD(1),sincea 5 completeidentificationofhypergeometricsolutionshasalreadybeengivenin[5]. 1 2 Construction of Hypergeometric Solutions 2.1 Discrete RiccatiEquation and Its Linearization Theq-Painleve´ equationsadmitparticularsolutionscharacterizedbydiscreteRiccatiequationsforspecialvaluesofpa- rameters.ReductiontodiscreteRiccatiequationhasbeenalreadydoneforalltheq-Painleve´equations[3,6,7,8]. Wealso notethatsuchspecialsituationshavecleargeometricalmeaning,aswasdiscussedin[1]. Thebasicideaforconstructing hypergeometricsolutionisasfollows:welinearizethediscreteRiccatiequationstoyieldsecondorderlinearq-difference equations.Wethenidentifythemwiththethree-termrelationofanappropriatebasichypergeometricseries. Letusexplainthisprocedureindetail. SupposewehaveadiscreteRiccatiequationoftheform Az+B z= , (2) Cz+D wherez = z(t)andz = z(qt). Wealsousethenotationz = z(t/q),andsoforth. Moreover,thecoefficientsA, B,C andD arefunctionsoft. Firstletusputanansatz F z= . (3) G ThenthediscreteRiccatiequationislinearizedto F G = AF+BG, =CF+DG, (4) H H whereHisanarbitrarydecouplingfactor.EliminatingGfromeq.(4)wehaveforF thethree-termrelation H B F+c F+c F =0, c =− (AB+BD), c = HH(AD−BC). (5) 1 2 1 2 B B Thethree-termrelationforabasichypergeometricseriesoftentakestheform V (Φ−Φ)+V Φ+V (Φ−Φ)=0, (6) 1 2 3 where the coefficients V ,V and V are factorized into binomials involving the independent variable and parameters. 1 2 3 Comparingeqs.(5)with(6),wehave V V 2 =1+c +c , 3 =c . (7) 1 2 2 V V 1 2 WelookforthedecouplingfactorH sothatthesequantitiesfactorize. Wethenidentifythethree-termrelationwiththat for appropriatehypergeometricfunction. This is done by trial and error with the aid of computeralgebra, but it is not practically difficult since we already know the hypergeometric function and its three-term relation to appear for each q-Painleve´equation. Step1. FindthedecouplingfactorH suchthat V V 2 =1+c +c , 3 =c , (8) 1 2 2 V V 1 2 factorize. Thenidentifythethree-termrelation V (F−F)+V F+V (F−F)=0, (9) 1 2 3 withthatforanappropriatehypergeometricfunction. Similarly,wehaveforGthethree-termrelation H C G+d˜ G+d˜ G =0, d˜ =− (DC+CA), d˜ = HH(AD−BC). (10) 1 2 1 2 C C 2 However,usually1+d˜ +d˜ doesnotfactorizeforH obtainedabove.ReplacingGwithκG(κ=kκ),wehave 1 2 1F z= , (11) κG H C HH G+d G+d G =0, d =− (DC+CA), d = (AD−BC). (12) 1 2 1 2 kC C kk Wethenlookforksothat1+d +d factorizes,andidentifyeq.(12)withthethree-termrelationofthesamehypergeometric 1 2 functionasF withdifferentparameters.PuttingH/k= K,thisisequivalenttothefollwingprocedure: Step2. Inthethree-termrelation K C G+d G+d G =0, d =− (DC+CA), d = KK(AD−BC), (13) 1 2 1 2 C C finddecouplingfactorK sothat U U 2 =1+d +d , 3 =d , (14) 1 2 2 U U 1 2 factorize. Thenidentifythethree-termrelationwiththatforanappropriatehypergeometricfunction.Nowwehave 1 θ Φ H κ z= 1 , =k, =k, (15) κ θ Ψ K κ 2 whereΦandΨaresomehypergeometricfunctions,andθ (i=1,2)areconstants(gaugefactors). i Finallywedeterminethegaugefactorsθ andθ : 1 2 Step3. Comparethelinearrelations, θ Φ κθ Ψ 1 =Aθ Φ+κBθ Ψ, 2 =Cθ Φ+κDθ Ψ, (16) 1 2 1 2 H H withcontiguityrelationsofthehypergeometricfunctionstodetermineθ andθ . 1 2 2.2 AnExample: Caseof E(1) 7 Inthissectionwedemonstratetheconstructionofthehypergeometricsolutiontotheq-Painleve´ equationoftypeE(1) as 7 anexample,followingtheprocedureintheprevioussection. Beforeproceeding,letusfirstsummarizethedefinitionandterminologyofthebasichypergeometricseries[9]. The basichypergeometricseries ϕ isgivenby r s rϕs ba11,,......,,bars ;q,z!=Xn∞=0(b1;(aq1);nq·)·n·(·b··s;(aqr);n(qq);nq)n h(−1)nq(n2)i1+s−rzn, (17) (a;q) =(1−a)(1−qa)···(1−qn−1a). n Thebasichypergeometricseriesr+1ϕr iscalledbalanced1ifthecondition qa1a2···ar+1 =b1b2···br, z=q, (18) issatisfied,andiscalledvery-well-poisedifthecondition qa1 =a2b1 =···=ar+1br, a2 =qa121, a3 =−qa121, (19) 1The“balanced3ϕ2”inthediagram(1)isduetotheconventionthatwasusedin [10]. 3 issatisfied. Avery-well-poisedhypergeometricseriesr+1ϕr isdenotedasr+1Wr: 1 1 r+1Wr(a1;a4,...,ar+1;q,z)=rϕs 1a1,qa112,−qa12,a4...,ar+1 ;q,z. (20)  a12,−a12,qa1/a4,...,qa1/ar+1  Nowtheq-Painleve´equationoftypeE(1)isgivenby[2,3] 7 (fg−tt)(fg−t2) (f −b t)(f −b t)(f −b t)(f −b t) = 1 2 3 4 , (fg−1)(fg−1) (f −b )(f −b )(f −b )(f −b ) 5 6 7 8 t t t t g− g− g− g− (21) (fg−t2)(fg−tt) b ! b ! b ! b ! = 1 2 3 4 , (fg−1)(fg−1) 1 1 1 1 g− g− g− g− b ! b ! b ! b ! 5 6 7 8 wheretistheindependentvariableandb (i=1,...,8)areparameterssatisfying i t=qt, b b b b =q, b b b b =1. (22) 1 2 3 4 5 6 7 8 Proposition2.1 [3,6]Incaseofb b =b b ,eq.(21)admitsaspecializationtothediscreteRiccatiequation, 1 3 5 7 (tt−1)f +t −(b +b )t+(b +b ) 6 8 2 4 g = {−(b +b )+(nb +b )t} f +b b (1−ott), (23) 6 8 2 4 6 8 (t2−1)b b g+t{(b +b )−(b +b )t} f = 5 7 1 3 5 7 . (24) {t(b +b )−(b +b )}g+(1−t2) 1 3 5 7 Aswaspointedoutin[1],inthecasesofE(1) thevariables f andgarenotexpressedbyratioofhypergeometricfunctions. 6,7,8 Wechoosethevariableas2 g−t/b z= 1. (25) g−1/b 5 ThenthediscreteRiccatiequation(23)and(24)isrewrittenas Az+B z= , Cz+D with A = b b (−b +b t) 1 5 3 5 × b b b q2t3+(b b b −b2b −b b b −b b b −b b b q)qt2 " 4 6 8 1 4 5 4 5 1 4 6 1 4 8 5 6 8 +(b b2+b b b q+b b b q+b b b q−b b b q)t−b b b , (26) 1 4 4 5 6 4 5 8 1 6 8 4 6 8 1 4 5# B = −(b −b )b2(b b −qb b )t(b −b t)(−1+qt2), (27) 1 4 5 1 4 6 8 5 3 C = −b2b (b −b )(b −b )(b −b t)(−1+qt2), (28) 1 4 5 6 5 8 3 5 D = b b (b −b t) 1 5 5 3 × −b b b qt3+(b b2+b b b q+b b b q+b b b q−b b b q)t2 " 1 4 5 1 4 4 5 6 4 5 8 1 6 8 4 6 8 +(b b b −b2b −b b b −b b b −b b b q)t+b b b . (29) 1 4 5 4 5 1 4 6 1 4 8 5 6 8 4 6 8# 2Thisvariablezshouldbeunderstoodasaratioofτfunctions. 4 Step1. WechoosethedecouplingfactorHas 1 H = . (30) qb b (b t−b )(b t−b )(b t−b )(b t−b ) 1 5 5 3 1 5 4 6 4 8 ThenwehaveforF thethree-termrelation V (F−F)+V F+V (F−F)=0, 1 2 3 V b (b −b )(b b −qb b )(−1+t)(1+t)(−1+qt2) 2 = 5 3 4 1 4 6 8 , V q(b −b t)(−b +b t)(−b +b t)(−b +b t) (31) 1 5 1 6 4 8 4 3 5 V (b −b t)(−b +b t)(−b +b t)(−b +b t)(−1+qt2) 3 = 5 3 1 5 4 6 4 8 . V (b −b t)(−b +b t)(−b +b t)(−b +b t)(−q+t2) 1 5 1 6 4 8 4 3 5 Thethree-termrelationforthevery-well-poisedbasichypergeometricseries q2a2 Φ= W a ;a ,a ,a ,a ,a ;q, 0 , (32) 8 7 0 1 2 3 4 5  a a a a a  1 2 3 4 5 isgivenby[11]   U (Φ−Φ)+U Φ+U (Φ−Φ)=0, Φ=Φ| , Φ=Φ| , 1 2 3 a2→qa2,a3→a3/q a2→a2/q,a3→qa3 a qa qa qa qa (1−a ) 1− 0 1− 0 1− 0 1− 0 1− 0 2 a ! a ! a a ! a a ! a a ! U1 = 2 2 a 1 3qa 3 4 3 5 , U3 =U1|a2↔a3, (33) a 1− 2 1− 2 3 a ! a ! 3 3 qa2 qa U = 0 1− 0 (1−a )(1−a )(1−a ). 2 1 4 5 a a a a a a a ! 1 2 3 4 5 2 3 Comparingeqs.(31)with(33),weidentifyF with W as 8 7 b b qb b t b b b b F ∝ W 1 8; 8, 1 , 1 , 2, 4;q, 5 . (34) 8 7 b b b b b t b b b ! 3 5 5 5 5 3 3 6 Step2. WechoosethedecouplingfactorKas 1 K = . (35) b b (qb t−b )(b t−b )(b t−b )(b t−b ) 1 5 5 3 1 5 4 6 4 8 ThenwehaveforGthethree-termrelation X (G−G)+X F+X (G−G)=0, 1 2 3 X b (b −b )(b b −b b )(−1+t)(1+t)(−1+qt2) 2 = 5 3 4 1 4 6 8 , X (b −b t)(−b +b t)(−b +b t)(−b +qb t) (36) 1 5 1 6 4 8 4 3 5 X (qb −b t)(−b +b t)(−b +b t)(−b +b t)(−1+qt2) 3 = 5 3 1 5 4 6 4 8 . X (b −b t)(−b +b t)(−b +b t)(−b +qb t)(−q+t2) 1 5 1 6 4 8 4 3 5 Comparingeqs.(36)with(33),wehave b b b b t b b b qb G ∝ W 1 8; 8, 1 , 1 , 2, 4;q, 5 . (37) 8 7 b b b b b t b b b ! 3 5 5 5 5 3 3 6 Moreover,fromk =H/K =(1−b /qb t)/(1−b /b t),wehaveκ=1−b /b t. Thereforeweobtain 3 5 3 5 3 5 qa2 W a ;qa ,a ,a ,a ,a ;q, 0 8 7 0 1 2 3 4 5 1  a1a2a3a4a5 z∝ 1− b3 Wa ,a ,a ,a ,a ,a ;q, q2a20 , (38) b5t 8 7 0 1 2 3 4 5 a1a2a3a4a5   5 with b b b b t b b b q2a2 qb a = 1 8, a = 8, a = 1 , a = 1 , a = 2, a = 4, 0 = 5. (39) 0 1 2 3 4 5 b b b b b t b b a a a a a b 3 5 5 5 5 3 3 1 2 3 4 5 6 Step3. Letusput F =θ(qa ,a ,a )Φ(qa ,a ,a ), G =θ(a ,a ,a )Φ(a ,a ,a ), (40) 1 2 3 1 2 3 1 2 3 1 2 3 whereθ(a ,a ,a )isagaugefactortobedetermined. Here,wehaveomittedthedependenceofa ,a anda ,sincethey 1 2 3 0 4 5 arenotrelevanttothecalculation.Thenlinearequations(16)yield 1 θ(qa ,qa ,a /q) A θ(qa ,a ,a ) 1 2 3 Φ(qa ,qa ,a /q)= 1 2 3 Φ(qa ,a ,a )+Φ(a ,a ,a ), (41) κHB θ(a ,a ,a ) 1 2 3 κB θ(a ,a ,a ) 1 2 3 1 2 3 1 2 3 1 2 3 and κ θ(a ,qa ,a /q) C θ(qa ,a ,a ) 1 2 3 Φ(a ,qa ,a /q)= 1 2 3 Φ(qa ,a ,a )+Φ(a ,a ,a ), (42) κHD θ(a ,a ,a ) 1 2 3 κD θ(a ,a ,a ) 1 2 3 1 2 3 1 2 3 1 2 3 respectively.Now,wehavethecontiguityrelationsforΦ= W [11] 8 7 a q a q a q a 1− 0 1− 0 1− 0 1 a a ! a a ! a a ! 1 3 1 4 1 5 Φ(a /q,a ,a )− a ↔a a q 1 2 3 1 2 1− 0 (cid:18) (cid:19) (43) a 1 a2q2 =(a −a ) 1− 0 Φ(a ,a ,a ), 1 2 1 2 3  a a a a a  1 2 3 4 5   a a a q (a −1) 1− 0 Φ(a /q,qa ,a )+ 1− 1 1− 0 Φ(a ,a ,a ) 2 1 2 3 1 2 3 a ! q ! a ! 2 1 (44) a a q = a − 1 1− 0 Φ(a /q,a ,a ). 2 1 2 3 q ! a a ! 1 2 We denote eqs.(43) and (44) as CR1[a ,a ,a ] and CR2[a ,a ,a ], respectively. Moreover, note that the relations 1 2 3 1 2 3 CR1[a ,a ,a ]andCR2[a ,a ,a ]holdforanypermutationofa ,a anda ,sincetheseparametersareonequalfooting 1 2 3 1 2 3 1 2 3 inΦ= W . 8 7 NowweeliminateΦ(a ,a ,a /q)fromCR1[a ,a ,a ]andCR2[a ,a ,a ]. Shiftinga toqa ,wehavealinearrela- 1 2 3 1 3 2 3 2 1 1 1 tionamongΦ(a ,qa ,a /q),Φ(a ,a ,a )andΦ(a /q,a ,a ),whichshouldcoincidewitheq. (41). Similarly,eliminating 1 2 3 1 2 3 1 2 3 Φ(qa ,a ,a /q) from CR1[qa ,a ,a ] and CR2[a ,a ,a ], we have a linear relation amongΦ(qa ,a ,a ),Φ(a ,a ,a ) 1 2 3 1 3 2 3 1 2 1 2 3 1 2 3 and Φ(a ,a ,a /q). Elimination further Φ(a ,a ,a /q) from this relation and CR2[a ,a ,a ] yields a linear relation 1 2 3 1 2 3 3 2 1 amongΦ(a ,qa ,a /q),Φ(qa ,a ,a )andΦ(a ,a ,a ),whichshouldcoincidewitheq.(42). Fromthesecalculations,we 1 2 3 1 2 3 1 2 3 findthatθ(a ,a ,a )shouldsatisfy 1 2 3 a a a b t b 1− 2 1− 3 5 1− 3 1− 4 θ(a ,qa ,a /q) a ! a q ! b ! b qt! 1 2 3 = 0 0 = 8 8 , θ(a ,a ,a ) a a a b t b 1 2 3 1− 2 5 1− 3 1− 4 1− 3 a ! a q! b ! b qt! 0 0 8 8 (45) θ(qa ,a ,a ) a b 1 2 3 =1− 1 =1− 3, θ(a ,a ,a ) a b 1 2 3 0 1 θ(qa ,qa ,a /q) θ(a ,qa ,a /q) θ(qa ,a ,a ) 1 2 3 = 1 2 3 × 1 2 3 , θ(a ,a ,a ) θ(a ,a ,a ) θ(a ,a ,a ) 1 2 3 1 2 3 1 2 3 whichyield a a a a b t b b 2 , 3 5, 1 3 , 4 , 3 a q a q a q! qb qb t qb ! θ(a ,a ,a )= 0 0 0 ∞ = 8 8 1 ∞. (46) 1 2 3 a a a b t b 2 5, 3 4 , 3 aq a q! qb qb t! 0 ∞ 8 8 ∞ 6 Thereforewearriveatthefinalresult 1 θ(qa ,a ,a ) Φ(qa ,a ,a ) z = 1 2 3 1 2 3 b θ(a ,a ,a ) Φ(a ,a ,a ) 1− 3 1 2 3 1 2 3 b t 5 1− b3 8W7 a0;qa1,a2,a3,a4,a5;q, qa20 (47) = 1− bb31 Wa ,a ,a ,a ,a ,a ;q, a1aq22aa320a4a5. b5t 8 7 0 1 2 3 4 5 a1a2a3a4a5   3 Hypergeometric Solutions Hypergeometricsolutions to other q-Painleve´ equations can be constructedby the same procedureas that was demon- stratedin theprevioussection. Insteadofdescribingfullprocedure,we givea list ofequations,solutionsandtheother datathatarenecessaryforconstructionofsolutions.WenotethatthecaseofD(1)isomittedasmentionedintheintroduc- 5 tion. 3.1 Caseof E(1) 8 3.1.1 EquationandSolution (1) q-Painleve´equation[3,6,12] (gst− f)(gst− f)−(s2t2−1)(s2t2−1) P(f,t,m ,...,m ) = 1 7 , g g 1 1 P(f,t−1,m ,...,m ) − f − f − 1− 1− 7 1 st !(cid:18)st (cid:19) s2t2! s2t2! (48) (fst−g)(fst−g)−(s2t2−1)(s2t2−1) P(g,s,m ,...,m ) = 7 1 , f f 1 1 P(g,s−1,m1,...,m7) −g −g − 1− 1− st  st ! s2t2! s2t2!   where P(f,t,m ,...,m )= f4−m tf3+(m t2−3−t8)f2 1 7 1 2 (49) +(m t7−m t3+2m t)f +(t8−m t6+m t4−m t2+1), 7 3 1 6 4 2 andm (k=1,2,...7)aretheelementarysymmetricfunctionsofk-thdegreeinb (i=1,2,...,8)with k i b b ···b =1. (50) 1 2 8 Moreover, t=qt, t=q12s. (51) (2) Constraintonparameters[6] qb b b b =1, b b b b =q. (52) 1 3 5 7 2 4 6 8 (3) Hypergeometricsolution s b g− + 1 b s ! Φ(q4a ;a ,q2a ,...,q2a ) z= 1 =λ 0 1 2 7 , (53) s b Φ(a ;a ...,a ) g− + 8 0 1 7 b s ! 8 7 whereΦisdefinedintermsofthebalanced W seriesby 10 9 Φ(a ;a ,...,a )= W (a ;a ,...,a ;q2,q2) 0 1 7 10 9 0 1 7 a q2a q2a , 7;q2 a , 7;q2 + 0 a0 !∞ 6 k ak !∞ W a27;a1a7,...,a6a7,a ;q2,q2 . (54) aa70,qa2a027;q2∞Yk=1 qa2ak0,aaka07;q2!∞ 10 9a0 a0 a0 7  Here,a (i=0,1,...,7)andλaregivenby i 1 q2 s2 a = , a = , a = , 0 qb b b2 1 b b t2 2 b b 1 2 8 2 8 2 8 (55) b b a = i (i=3,5,7), a = i (i=4,6), i i b b 8 1 and b b b b b 1− 4 6 1−q2 4 6 (1−b b t2)(1−b b t2)(1−b b t2) 1− i 3 5 3 7 5 7 b b ! b b ! b ! λ= b1b4b6 1 8 1 8 i=Y2,4,6 1 , (56) b s2 s2 q2s2 b b q b b 8 1− 1− 1− 4 1− 6 1− 1− 4 6 b b ! b b ! b ! b ! b b s2! b b ! 1 8 1 8 8 8 1 8 i=Y3,5,7 1 i respectively. 3.1.2 Data (1) Riccatiequation 1 f g fg 1 f g fg (cid:12)(cid:12) 1 f1 g1 f1g1 (cid:12)(cid:12)=0, (cid:12)(cid:12) 1 f8 g8 f8g8 (cid:12)(cid:12)=0, (57) (cid:12)(cid:12)(cid:12) 1 f3 g3 f3g3 (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) 1 f6 g6 f6g6 (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) 1 f5 g5 f5g5 (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) 1 f4 g4 f4g4 (cid:12)(cid:12)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) where (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) (cid:12)(cid:12) 1 s b f =bt+ , g = + i. (58) i i i bt b s i i g−g TheRiccatiequationforz= 1 isgivenby g−g 8 Az+B z= , (59) Cz+D B=−f g g d′ , 35 13 15 1468 C = f g g d , 46 48 68 1358 (60) D=−f f f g g g g , 35 46 18 13 15 48 68 ∆= AD−BC = f f f f f f g g g g g g g g , 13 35 15 46 48 68 13 15 35 18 46 48 68 18 where f = f − f and ij i j 1 f g f g 1 f g f g 1 1 1 1 1 1 1 1 d =(cid:12)(cid:12) 1 f3 g3 f3g3 (cid:12)(cid:12), d′ =(cid:12)(cid:12) 1 f4 g4 f4g4 (cid:12)(cid:12), (61) 1358 (cid:12)(cid:12)(cid:12) 1 f5 g5 f5g5 (cid:12)(cid:12)(cid:12) 1468 (cid:12)(cid:12)(cid:12) 1 f6 g6 f6g6 (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) 1 f8 g8 f8g8 (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) 1 f8 g8 f8g8 (cid:12)(cid:12)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) respectively. (cid:12) (cid:12) (cid:12) (cid:12) 8 (2) Three-termandcontiguityrelationsforhypergeometricfunction[13] (a) Three-termrelation U (Φ−Φ)+U Φ+U (Φ−Φ)=0, (62) 1 2 3 where a q2a a (1−a ) 1− 0 1− 0 1 2 a ! a ! U = 2 2 , 1 q2a 7 q2a (1− 2) 1− 0 a a a ! (63) 1 Yj=3 1 j q2a 7 U =−(a −a ) 1− 0 (1−a ), U =U | , 2 1 2 a a ! j 3 1a1↔a2 1 2 Yj=3 Φ=Φ(a ;a /q2,q2a ,a ,...,a ), Φ=Φ(a ;q2a ,a /q2,a ,...,a ), (64) 0 1 2 3 7 0 1 2 3 7 andΦisdefinedbyeq.(54). (b) Contiguityrelations Φ(a ;a /q2,q2a ,a ,...,a )−Φ(a ;a ,a ,a ,...,a ) 0 1 2 3 7 0 1 2 3 7 =V Φ(q4a2;a ,q2a ,...,q2a ), (65) 1 0 1 2 7 V Φ(q4a2;a ,q2a ,q2a ,...,q2a )−V Φ(q4a2;q2a ,a ,q2a ,...,q2a ) 2 0 1 2 3 7 3 0 1 2 3 7 =V Φ(a ;a ,a ,a ,...,a ), (66) 4 0 1 2 3 7 where q2a q2a a a 7 0 1− 2 1− 1 2 (1−q2a )(1−q4a ) (1−a ) a a ! q2a ! 0 0 j V = 2 1 0 Yj=3 , 1 q2a q4a a q2a 7 q2a 1− 0 1− 0 1− 0 1− 0 1− 0 a ! a ! a ! a ! a ! 1 1 2 2 Yj=3 j 7 q2a a2(1−a ) 1− 0 1 2 a a ! (67) V = Yj=3 1 j , V =V | , 2 q2a q4a 3 2a1↔a2 1− 0 1− 0 a ! a ! 1 1 a 7 q2a a 1− 2 1− 0 1 a ! a ! V = 1 Yj=3 j . 4 (1−q2a )(1−q4a ) 0 0 (3) Decouplingfactors D f 1 1 H = =− 18 , K = =− , (68) ∆ f f f f g g g g D f f f g g g g 13 15 48 68 35 18 46 18 35 46 18 13 15 48 68 sothat k= H = D2 = f35f46f128g13g15g48g68. (69) K ∆ f f f f g g g 13 15 48 68 35 46 18 (4) Identification 1 F z= , F ∝Φ(q4a ;a ,q2a ,...,q2a ), G ∝Φ(a ;a ...,a ), κ=kκ, (70) κ G 0 1 2 7 0 1 7 wherea (i=0,...,7)aregivenbyeq.(55). i 9 (5) Gaugefactors Putting F =θ(q4a ;a ,q2a ,...,q2a )Φ(q4a ;a ,q2a ,...,q2a ), 0 1 2 7 0 1 2 7 (71) G =θ(a ;a ...,a )Φ(a ;a ...,a ), 0 1 7 0 1 7 wehave: θ(a ;a /q2,a q2,...,a ) 1θ(q4a ;a ,q2a ,...,q2a ) 0 1 2 7 =1, 0 1 2 7 =λ. (72) θ(a ;a ...,a ) κ θ(a ;a ...,a ) 0 1 7 0 1 7 3.2 Caseof E(1) 6 3.2.1 EquationandSolution (1) q-Painleve´equation[3,14,15] (f −b t)(f −b t)(f −b t)(f −b t) (fg−1)(fg−1)=tt 1 2 3 4 , t (f −b t) f − 5 b ! 5 1 1 1 1 g− g− g− g− (73) b ! b ! b ! b ! (fg−1)(fg−1)=t2 1 2 3 4 , t (g−b t) g− 6 b ! 6 t=qt, b b b b =1. 1 2 3 4 (2) Constraintonparameters[3,15] b b =b b . (74) 1 2 5 6 (3) Hypergeometricsolution 1 b g− 1− 3 b b Φ(qa,b,c,d,e) z= 1 = 1 , (75) g−tb b b b t Φ(a,b,qc,d,e) 6 1− 1 2 3 b 5 whereΦisthebalanced ϕ seriesdefinedby 3 2 a,b,c de Φ(a,b,c,d,e)= ϕ ;q, , (76) 3 2 d,e abc! with a= b3b5, b= b3, c=b2b b , d =qb3b25, e=qb b b2. (77) t b 1 2 3 b 1 2 3 2 2 3.2.2 Data (1) Riccatiequation[3,15] b t 1+ 5 (f −b −b ) b b 1 3 1+b t(b b g−b −b ) g= 1 2 , f = 6 3 4 3 4 . (78) f −tb5 g−tb6 TheRiccatiequationfor g−1/b z= 1, (79) g−tb 6 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.