G PWM Full-bridge PLL controller converter C V o Reference u r lta instrument re g n e t Device Under Test Construction of a low-ripple inverter with accurate phase control for cali- bration of measurement equipment MasterofScienceThesisinElectricPowerEngineering ADAM EINARSSON ALI ASGARI VAND DepartmentofEnergyandEnvironment DivisionofElectricPowerEngineering CHALMERS UNIVERSITY OF TECHNOLOGY Go¨teborg,Sweden2014 Construction of a low-ripple inverter with accurate phase control for calibration of measurement equipment ADAMEINARSSON ALIASGARIVAND DepartmentofEnergyandEnvironment DivisionofElectricPowerEngineering CHALMERSUNIVERSITYOFTECHNOLOGY Go¨teborg,Sweden2014 Constructionofalow-rippleinverterwithaccuratephasecontrolforcalibrationof measurementequipment ADAMEINARSSON ALIASGARIVAND ©ADAMEINARSSON ALIASGARIVAND,2014. DepartmentofEnergyandEnvironment DivisionofElectricPowerEngineering ChalmersUniversityofTechnology SE–41296Go¨teborg Sweden Telephone+46(0)31–7721000 Cover: Overviewofacalibrationsystemwithaphase-lockedloop(PLL)foraccuratephase controlbetweencurrentandvoltagebranch. ChalmersBibliotek,Reproservice Go¨teborg,Sweden2014 Constructionofalow-rippleinverterwithaccuratephasecontrolforcalibrationof measurementequipment ADAMEINARSSON ALIASGARIVAND DepartmentofEnergyandEnvironment DivisionofElectricPowerEngineering ChalmersUniversityofTechnology Abstract Forthedesignofanelectricpowersystem,knowledgeoftheparametersofallthecompo- nentsisessential.Especiallythetransformersareanimportantpartofthis.Itistherefore important that the measurement equipment for determining these values is accurate. In no-load operation, the transformer mainly consumes reactive power. A small error in the measurement of the power angle therefore gives a large error in the active power calculation. The Technical Research Institute of Sweden, SP, performs calibrations of thesemeasurementsystems.Calibrationsaredonebymeasuringareferencevoltage and generatingacurrentinasecondarycircuitwithacontrollablephaseshift.Thevoltageand current makeup avirtual powerand are measuredby the reference instrument andby the equipmenttobecalibrated. Thisthesisdescribestheworkofconstructingasingle-phasefull-bridgeconverterfor inverteroperationwithaccuratephasecontrolofthecurrentinthesecondarycircuitrelative tothesinusoidalreferencevoltage.ACompactRIO™systemfromNationalInstruments is used to control the converter through pulse-width modulation (PWM). An analogue- to-digital converter (ADC) module is used to sample the reference signal and a digital I/O module outputs the PWM signals. A phase-locked loop (PLL) algorithm estimates the phase of the sampled reference voltage to use in the generation of the PWM signals. ThreedifferentPLLshavebeenimplementedwithLabVIEW™codeontheFPGAchip of the CompactRIO™system. The three PLLs are the inverse Park PLL (IP-PLL) based on the synchronous reference frame, the enhanced PLL (E-PLL) based on the gradient descent method and the KF-PLL based on the Kalman filter. Both the E-PLL and the KF-PLL are also based on models for estimating specific signal components. With the basicconfigurations,theIP-PLLshowssuperiorperformanceinsimulationswithdcoffset and low-orderharmonic inthe input signal. Thisis due toits low-pass filters. Whilethe standard deviation in the phase error of the IP-PLL was 50 µrad it was 350 µrad for the E-PLL and 570 µrad for the KF-PLL with a dc offset at 1.8 % of the fundamental amplitudeintheinputsignal.Withathirdharmonicat10%ofthefundamentalamplitude, thestandard deviations ofthephase errors were50.3µrad,776 µradand 889µradfor the IP-PLL,theE-PLLandtheKF-PLLrespectively.ByextendingtheE-PLLandtheKF-PLL toincludeestimationofdc-offsetandharmonics,thesesteady-stateerrorsarecompletely eliminated.However,especially theKF-PLLbut alsotheE-PLL,is muchmorecomplex andhardertotunethantheIP-PLL.WhenimplementedonCompactRIO™ theKF-PLL includingestimationofdcoffsetgotthebestresultswithastandarddeviationinthephase errorof5.1µradcomparedto49.2µradfortheIP-PLLwithminimizedcut-offfrequency iii ofthelow-passfiltersforadcoffsetof0.41%ofthefundamentalamplitudeintheinput signal. It is shown that the phase error of the complete system can be kept below a standard deviation of 600 µrad, with a stable reference voltage. The pattern of the phase error however has an oscillatory shape with a frequency of about 0.12 Hz. This is thought to originatefromadriftintheclockoftheADCmodulerelativetotheclockoftheFPGAin theCompactRIO™system.Thismustbefurtherinvestigated.Additionally,theamplitude accuracy of the fundamental frequency is found to have a standard deviation of about 63ppm,withadc-sourcespecifiedtobeaccurateto50ppm. Indexterms:PWM,full-bridgeconverter,IGBT,CompactRIO™,Kalmanfilter,PLL. iv Acknowledgements ThisworkhasbeencarriedoutattheDepartmentofEnergyandEnvironmentatChalmers UniversityofTechnologyinGo¨teborgandTheTechnicalResearchInstituteofSweden, SP,inBora˚sfromJanuarytoJuneof2014.WewouldliketothankAndersLindskog,Alf- PeterElg,StefanSvenssonandAllanBergmanatSPforhelpingoutwithmeasurements, supplyofequipment,helpwithLabVIEW™codeanddiscussionabouttheproblem.Many thanksaredirectedtowardsRobertKarlssonatChalmersforindispensablehelpwiththe practicalissues ofconstructinga converter.Weare alsothankfultowards ourexaminerat Chalmers,StefanLundberg,forgivinggoodfeedbackontheworkandthereportandfor gooddiscussionsaboutproblems. AdamEinarsson,AliAsgariVand Go¨teborg,Sweden,2014 v vi Contents Abstract iii Acknowledgements v Contents vii ListofAbbreviations ix 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Previouswork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Purpose/Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Technicalbackground 5 2.1 Phasetracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 ThegeneralPLLalgorithm . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 ThesynchronousreferenceframePLL . . . . . . . . . . . . . . . 6 2.1.3 TheenhancedPLL . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.4 TheKalmanfilter . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Single-phasefull-bridgeconverter . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Pulse-widthmodulation . . . . . . . . . . . . . . . . . . . . . . 16 2.3 Theinsulated-gatebipolartransistor . . . . . . . . . . . . . . . . . . . . 20 2.3.1 Conductionlosses . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.2 Switchinglosses . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.3 Thermalconsiderations . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.4 Gatedriver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 CompactRIO™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.1 Thefieldprogrammablegatearray . . . . . . . . . . . . . . . . . 26 2.4.2 LabVIEW™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 Simulations 29 3.1 Phasetracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.1 ThesynchronousreferenceframePLL . . . . . . . . . . . . . . . 29 3.1.2 TheenhancedPLL . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.3 TheKalmanfilterPLL . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2 Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 vii Contents 3.2.1 Loadmeasurements . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4 Design 59 4.1 Realtimecontrolsystemimplementation . . . . . . . . . . . . . . . . . 59 4.1.1 Userinterface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.1.2 FPGAimplementation . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2.1 Selectionofdc-linkcapacitors . . . . . . . . . . . . . . . . . . . 66 4.2.2 SelectionofIGBTmodule . . . . . . . . . . . . . . . . . . . . . 67 4.2.3 Selectionofgatedriver . . . . . . . . . . . . . . . . . . . . . . . 69 4.2.4 Selectionofheatsink . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2.5 CompactRIO™-to-gatedriverinterface . . . . . . . . . . . . . . 72 4.2.6 Assemblyandgatedriversettings . . . . . . . . . . . . . . . . . 72 5 Testsandmeasurements 75 5.1 PhasetrackingoftheimplementedPLLsonCompactRIO™ . . . . . . . 75 5.1.1 TheinverseParkPLL . . . . . . . . . . . . . . . . . . . . . . . . 75 5.1.2 TheenhancedPLL . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.1.3 TheKalmanfilterPLL . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2.1 Gatedriver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2.2 Switchinginducedvoltagespikes . . . . . . . . . . . . . . . . . 83 5.2.3 Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2.4 Harmonicsattenuation . . . . . . . . . . . . . . . . . . . . . . . 87 5.3 Phaseandamplitudejitter . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6 Conclusionsandfuturework 93 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 References 97 A MATLAB® code 103 A.1 TheKalmanfilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 B Kalmanfiltergainfactorcoefficients 105 C LabVIEW™code 107 C.1 RTcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 C.2 Hostcomputer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 C.3 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 C.3.1 PWMcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . 111 C.3.2 TheinverseParkPLL . . . . . . . . . . . . . . . . . . . . . . . . 112 C.3.3 TheenhancedPLL . . . . . . . . . . . . . . . . . . . . . . . . . 113 C.3.4 TheKalmanfilterPLL . . . . . . . . . . . . . . . . . . . . . . . 113 viii
Description: