ebook img

Construction Heuristics for the Airline Taxi Problem PDF

211 Pages·2013·4.87 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Construction Heuristics for the Airline Taxi Problem

Construction Heuristics for the Airline Taxi Problem Ian Michael Dougal Campbell A thesis submitted to the Faculty of Engineering and the Built Environment, Uni- versity of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg, October 2013 Declaration I declare that this thesis is my own, unaided work, except where otherwise acknowl- edged. ItisbeingsubmittedforthedegreeofDoctorofPhilosophyintheUniversity of the Witwatersrand, Johannesburg. It has not been submitted before for any de- gree or examination at any other university. Signed this day of 20 Ian Michael Dougal Campbell. i Acknowledgements Firstly, I would like to thank my parents, my sister and my brothers for many years of love and support. Secondly, special thanks to my supervisor, Prof. M.M. Ali, for his unwavering and motivational guidance and support, as well as his patience in wading repeatedly through this tome and his resulting comments and corrections. Thirdly, many thanks to Margaret Campbell and Prof. Robert Reid for their com- prehensive proof reading and valuable corrections. ii Abstract A literature review of vehicle routing problems (VRPs) in general, and specifically airline scheduling problems and the airline taxi problem, is provided. A real-world airline taxi scheduling problem is described as experienced by a tourist airline oper- ating in the Okavango Delta, Botswana. In this problem, a daily schedule is drawn up manually by a team of experienced schedulers a few days before the day in ques- tion. In this research, a slightly relaxed version of the problem is considered in order to develop heuristics and modelling methods which will be useful for general cases. Various methods and heuristics are proposed for the problem and tested on a small versionoftheproblemaswellasthefull-sizedversion. Themostpromisingmethods are demonstrated and solutions provided. One of the methods was applied to the actual problem to demonstrate the practical usefulness. In this case a schedule with a cost 12% lower than the manual schedule cost was achieved. All the heuristics and methods are applicable to certain other VRPs, particularly real-world or highly- constrained VRPs. An example is provided of a solution method for a real-world instance of the multi-vehicle capacitated vehicle routing problem (MVCVRP). An- other example is provided of a standard, benchmark instance from the internet of a capacitated vehicle routing problem with time windows (CVRPTW). iii Contents Declaration i Acknowledgements ii Abstract iii Contents iv List of Figures ix List of Tables x 1 Introduction 1 1.1 Scheduling in Commercial Scheduled Airlines . . . . . . . . . . . . . 1 1.2 On-Demand Airline Scheduling . . . . . . . . . . . . . . . . . . . . . 2 1.3 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Objectives 5 3 Literature Review 6 3.1 Vehicle Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1.1 Types of Vehicle Routing Problems . . . . . . . . . . . . . . . 6 iv 3.1.2 Solving VRPs . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Airline Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.1 Scheduled Airlines . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.2 Charter Airlines . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.3 On-Demand Air Transportation . . . . . . . . . . . . . . . . . 41 3.3 Solving large MIP problems . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 Conclusions from Literature Review . . . . . . . . . . . . . . . . . . 46 4 Methodology 47 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 Small-Scale Benchmark Airline Taxi Problem . . . . . . . . . . . . . 49 4.3 Sefofane Air Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4 Application to Other VRPs . . . . . . . . . . . . . . . . . . . . . . . 50 5 The Sefofane Air Scheduling Problem Description 52 5.1 Sefofane Air Operations . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.2 Problem Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6 Multi-Commodity Network Flow ILP with Time Discretisations 59 6.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 7 Heuristics for Problem Size Reduction 64 7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7.2 Group Aggregation Heuristic . . . . . . . . . . . . . . . . . . . . . . 65 7.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 v 7.2.2 Aggregation Validation . . . . . . . . . . . . . . . . . . . . . 66 7.3 Geographic Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7.3.2 Evaluation of Geographic Heuristic Effect . . . . . . . . . . . 68 7.4 MCNFP Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.4.1 Small Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.4.2 Full Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 8 Agent Routing Variable Generation 76 8.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 8.2 Observations and Results . . . . . . . . . . . . . . . . . . . . . . . . 83 8.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 9 Composite Variable Formulation 88 9.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 9.2 Observations and Results . . . . . . . . . . . . . . . . . . . . . . . . 93 9.2.1 Small Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . 93 9.2.2 Full Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 9.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 10 The Sefofane Air Scheduling Problem 97 10.1 Constrained Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 10.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 100 vi 11 Other VRPs 102 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 11.2 Multi Vehicle CVRP (MVCVRP) . . . . . . . . . . . . . . . . . . . . 102 11.2.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 102 11.2.2 Exact ILP Formulation . . . . . . . . . . . . . . . . . . . . . 103 11.2.3 Composite Variable Formulation . . . . . . . . . . . . . . . . 106 11.2.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 11.2.5 Observations and Results . . . . . . . . . . . . . . . . . . . . 109 11.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 11.3 CapacitatedVehicleRoutingProblemwithTimeWindows(CVRPTW)110 11.3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 110 11.3.2 Variable Generation . . . . . . . . . . . . . . . . . . . . . . . 111 11.3.3 Observations, Results and Discussion . . . . . . . . . . . . . . 116 12 Conclusions 117 13 Recommendations 120 REFERENCES 121 APPENDIX A Sefofane Air Problem Data 134 APPENDIX B Manual Schedule 140 APPENDIX C Aggregation Heuristic Result 145 vii APPENDIX D Agent Routing MATLAB Code - Airline Taxi Prob- lem 148 D.1 Attractiveness Parameters . . . . . . . . . . . . . . . . . . . . . . . . 148 D.2 Agent Routing Function . . . . . . . . . . . . . . . . . . . . . . . . . 148 APPENDIX E Agent-Generated Variable Schedule 169 APPENDIX F Automated Composite Schedule 172 APPENDIX G MVCVRP Data 175 G.1 Problem Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 G.2 Supplied Delivery Lists . . . . . . . . . . . . . . . . . . . . . . . . . . 180 G.2.1 List for Day 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 G.2.2 List for Day 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 G.2.3 List for Day 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 APPENDIX H Agent Routing MATLAB Code - CVRPTW 190 APPENDIX I CVRPTW Data 196 viii List of Figures 3.1 An Insertion Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 A Savings Heuristic. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 2-Opt Exchange Move . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 Multi Agent Cooperative Search . . . . . . . . . . . . . . . . . . . . 23 3.5 GPDP Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.6 Time-Space Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.7 Time-Space Network with Time Discretisations . . . . . . . . . . . . 38 5.1 Cessna C206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 Cessna C208 Grand Caravan . . . . . . . . . . . . . . . . . . . . . . 54 5.3 Map of the Okavango Delta Area . . . . . . . . . . . . . . . . . . . . 56 7.1 Geographic Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 8.1 Agent Routing Method Modelling Process . . . . . . . . . . . . . . . 84 9.1 Linking of Two Flight Variables (Dual Linking) . . . . . . . . . . . . 89 9.2 Composite Variable Modelling Method . . . . . . . . . . . . . . . . . 91 ix

Description:
Heuristics offer the most viable methods to achieve this. This work will only deal with construction of solutions, as opposed to solution improvement emperor foods 32 amandelbult hospital 75 papachinos clearwater 149 mars africa rosslyn 594 harry's fast food centre cc 99 st martins school 305.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.