ebook img

construction and control of an aerial vehicle for crop monitoring PDF

88 Pages·2017·2.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview construction and control of an aerial vehicle for crop monitoring

CONSTRUCTION AND CONTROL OF AN AERIAL VEHICLE FOR CROP MONITORING MASTER IN OPT OMECHATRONICS A dvisor: PhD. Gerardo Ramón Flores Colunga Student: Andrés Montes de Oca Rebolledo July 2018 León, Guanajuato, México Contents Acknowledgements 9 Publications 10 Abstract 11 Introduction 14 1 Literature review 15 1.1 Commercial multispectral imaging systems . . . . . . . . . . . . . . . . 15 1.2 Aerial imaging system implementation and applications . . . . . . . . . 16 2 Theoretical knowledge 28 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2 Quad-rotor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 Airspeed and groundspeed . . . . . . . . . . . . . . . . . . . . . 30 2.2.2 Euler equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.3 Newton equations . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3 Multispectral properties of vegetation . . . . . . . . . . . . . . . . . . . 37 2 2.3.1 Optical aspect of photosynthesis and its relationship with vege- tation stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.2 Vegetation curve and spectral bands of vegetation . . . . . . . . 41 2.3.3 Vegetation indices . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.3.4 Normalized Difference Vegetation Index . . . . . . . . . . . . . . 45 3 Methodology 47 3.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.1 Hardware components . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.2 Software components . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Multispectral camera design . . . . . . . . . . . . . . . . . . . . . . . . 52 3.3 Flight trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.1 Photogrammetric Parameters . . . . . . . . . . . . . . . . . . . 55 3.3.2 Camera Trigger System . . . . . . . . . . . . . . . . . . . . . . . 57 3.4 Image post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4.1 Georeferencing . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4.2 Orthomosaic generation . . . . . . . . . . . . . . . . . . . . . . 59 3.4.3 NDVI computation . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 Experiments 61 4.1 Camera testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Photogrammetric parameters and flight plan . . . . . . . . . . . . . . . 65 4.3 Image post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3.1 Image rectification . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3.2 Image Georeferencing . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.3 Orthomosaic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3.4 NDVI computation . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.4 Additional experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 Conclusions 78 3 Bibliography 79 4 List of Figures 1 The unmanned aerial vehicle used in this work. This drone is equipped with the proposed multispectral imagery system. . . . . . . . . . . . . . 13 1.1 Commercial multispectral imaging systems. . . . . . . . . . . . . . . . . 16 1.2 Spectrometer-based hyperspectral sensor. . . . . . . . . . . . . . . . . . 17 1.3 Imaging system with external filters. . . . . . . . . . . . . . . . . . . . 19 1.4 Implementation of a multispectral imaging system for NDVI computation. 20 1.5 Multispectral imaging system implemented in a rotary-wing vehicle. . . 21 1.6 Hyperspectral imaging system implemented on a octa-rotor. . . . . . . 21 1.7 Imaging system implemented in a fixed-wing UAV platform. . . . . . . 22 1.8 NDVI obtained with a modified digital camera and a RedEdge-M. . . . 23 1.9 Orthomosaics obtained from aerial imagery. . . . . . . . . . . . . . . . 23 1.10 Aerial imaging system implemented in a fixed-wing platform. . . . . . . 24 1.11 Fixed-wing platform used in [1] to produce a 2D and 3D model of a predefined area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.12 Hyperspectral imaging system used in [2]. . . . . . . . . . . . . . . . . 25 1.13 Quad-rotor for the implementation of an imaging system used in [3]. . . 26 5 1.14 Platforms used for echohydrology application [4]. . . . . . . . . . . . . 26 1.15 Thermal imaging with a rotary-wing vehicle implemented in [5]. . . . . 27 2.1 Quad-rotor inertial and body frame. . . . . . . . . . . . . . . . . . . . . 29 2.2 Euler angles [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3 Absorption spectra of chlorophyll and carotenoids. . . . . . . . . . . . . 39 2.4 Internal structure of a plant [7]. . . . . . . . . . . . . . . . . . . . . . . 40 2.5 Reflectance curves for vegetation at different stages [8]. . . . . . . . . . 41 2.6 Reflectance curve of vegetation [8]. . . . . . . . . . . . . . . . . . . . . 43 2.7 Extended reflectance curve of vegetation [9]. . . . . . . . . . . . . . . . 44 3.1 The overall aerial imaging system architecture. . . . . . . . . . . . . . . 48 3.2 Quad-rotor components equipped with the imaging system. . . . . . . . 49 3.3 Cameras mounting rig developed in the LAB. . . . . . . . . . . . . . . 51 3.4 Mission Planner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5 Quantum efficiency of the Aptina sensor. . . . . . . . . . . . . . . . . . 53 3.6 Wratten 25 transmission curve. . . . . . . . . . . . . . . . . . . . . . . 54 3.7 Graphic representation of overlaps. . . . . . . . . . . . . . . . . . . . . 56 3.8 Elements that integrate the trigger system : flight controller, microcom- puter and cameras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.1 Lenses of both cameras. . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2 RGB image split into individual bands. . . . . . . . . . . . . . . . . . . 63 4.3 Near-infrared image split into the individual bands. . . . . . . . . . . . 64 4.4 Histogram of the three bands of a near-infrared reflectance image. Hor- izontal axis represents pixel values (0 - 255) and vertical axis represents frequency of values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.5 NDVI computed with Fiji. . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.6 Flight trajectory generated by Mission Planner. . . . . . . . . . . . . . 67 6 4.7 Quad-rotor trajectory followed and points in space where the images are captured. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.8 Images taken by the drone. . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.9 Multispectral orthomosaics. . . . . . . . . . . . . . . . . . . . . . . . . 73 4.10 NDVI of a soccer field computed by Fiji. . . . . . . . . . . . . . . . . . 74 4.11 Manual trigger points on a park. . . . . . . . . . . . . . . . . . . . . . . 75 4.12 Orthomosaics of a park. . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.13 NDVI of a small area of a park computed by Fiji. . . . . . . . . . . . . 77 7 List of Tables 3.1 Quad-rotor parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Camera parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 8 Acknowledgements I would like to show my gratitude to Consejo Nacional de Ciencia y Tecnolog´ıa (CONACYT) who brought me a Master scholarship, that was determinant in the de- velopment and continuity of my project. I also want to thank the Academic authori- ´ ties of Centro de Investigaciones en Optica (CIO) who economically supported me to participate in the International Conference on Unmanned Aircraft Systems this year. Similarly I am very thankful with my advisor, Dr. Gerardo Flores, for his continuous support. 9 Publications Concerence papers • Low-cost multi-spectral imagery system for crop monitoring. A. Montes de Oca, L. Arreola, A. Flores, J. Sanchez, G. Flores. International Conference on Unmanned Aircraft Systems 2018 (ACCEPTED). • Improvement in the UAV position estimation with low-cost GPS and vision-based system: Application to a quad-rotor UAV. L. Arreola, A. Montes de Oca, A. Flores, J. Sanchez, G. Flores. International Conference on Unmanned Aircraft Systems 2018 (ACCEPTED). • Nonlinear observer design for 1-DOF upper limb exoskeleton. Authors: J. Santis, A. Flores, A. Montes de Oca, L. Arreola and G. Flores. Conference on Decision and Control 2018 (UNDER REVIEW). • Design of a simple controller for the flight mode transition of a hybrid drone. Authors: A. Flores, J. Sanchez, A. Montes de Oca, L. Arreola and G. Flores. Conference on Decision and Control 2018 (UNDER REVIEW). 10

Description:
The information gathered can be used to determine a set of preventive and that can be captured from the plants, specifically to the near-infrared .. components as the barometer, ultrasonic and infrared sensors are used to [45] A. L. Chan, S. L. Tan, and C. L. Kwek, “Sensor data fusion for attit
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.