ebook img

Constructing a Travel Risks' Evaluation Model for Tour Freelancers Based on the ANP Approach PDF

14 Pages·2016·2.09 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Constructing a Travel Risks' Evaluation Model for Tour Freelancers Based on the ANP Approach

Hindawi Publishing Corporation Advances in Operations Research Volume 2016, Article ID 7968792, 13 pages http://dx.doi.org/10.1155/2016/7968792 Research Article Constructing a Travel Risks’ Evaluation Model for Tour Freelancers Based on the ANP Approach Chin-TsaiLin1andShih-ChiehHsu1,2 1DepartmentofBusinessAdministration,MingChuanUniversity,5F,No.130,JiheRoad,TaipeiCity11162,Taiwan 2DepartmentofTourismManagement,TaHwaUniversityofScienceandTechnology,No.1,DahuaRoad, QionglinShiangHsinchuCounty30740,Taiwan CorrespondenceshouldbeaddressedtoChin-TsaiLin;[email protected] Received31December2015;Accepted28March2016 AcademicEditor:MhandHifi Copyright©2016C.-T.LinandS.-C.Hsu. This is an open access article distributed under the Creative Commons Attribution License,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperly cited. Thisstudyconstructsanewtravelrisks’evaluationmodelforfreelancerstoevaluateandselecttourgroupsbyconsideringthe interdependenciesoftheevaluationcriteriaused.Firstofall,theproposedmodeladoptstheNominalGroupTechnique(NGT) toidentifysuitableevaluationcriteriaforevaluatingtravelrisks.Sixevaluationcriteriaand18subcriteriaareobtained.Thesix evaluationcriteriaarefinancialrisk,transportationrisk,socialrisk,hygienerisk,sightseeingspotrisk,andgeneralriskforfreelancer tourgroups.Secondly,themodelusestheanalyticnetworkprocess(ANP)todeterminetherelativeweightofthecriteria.Finally, examplesofgrouppackagetours(GPTs)areusedtodemonstratethetravelriskevaluationprocessforthismodel.Theresultsshow thattheTokyoGPTisthebestgrouptour.Theproposedmodelhelpsfreelancerstoeffectivelyevaluatetravelrisksanddecision- making,makingithighlyapplicabletoacademiaandtourgroups. 1.Introduction arises.Therefore,freelancersplayanimportantroleinGPTs. Freelancer GPT travel risk evaluation involves multicriteria Typically, travel agencies put together several services pro- decision-making (MCDM). MCDM is designed to employ vided by several distinct travel-related industries to offer a a set of criteria for a decision problem [9–13]. Thus, this favourable tour experience [1–3]. The group package tour paper focuses on the evaluation of travel risk and how the (GPT),ortheorganizedmasstour,isoneofthemajorforms selection of best GPTs meets the freelancer’s needs. These ofoutboundtravelinmanypartsofAsia[1,2,4–7].Themost needs are met by reducing travel risk gaps introduced by distinctivefeatureoftheGPTisthepresenceofatourleader, interdependence and feedback problems occurring among who provides various services to the tour participants [7]. thedifferentcriteriaandsubcriteria,allowingahighevalua- Thesetypesofoutboundtravelprovidetourparticipantswith tionleveltobeachievedandpromotingfreelancers’abilityto aconvenientandfastexcursionenvironmentthatalsooffers providetourparticipantswithfavourabletourexperiences.It certainqualityproductsandservices,savingthetouristtime isessentialforfreelancerstoknowthatthesuccessofleadinga andmoney. grouptourdependsoneffectivemanagementandthecareful Nowadays,competitionamongtravelagenciesisintense. preparationoftasksbeforehand. Inordertoeconomiseonpersonnel-relatedcosts,manytravel Thereareothertermsusedtodescribeatourleaderwhich agencies employ experienced freelancers, who exclusively aretourmanager,tourescort,tourconductor,tourdirector, servicetourgroupsinthepeakseason.GevaandGoldman andtourcourier[14].Tourleadersarebothfront-lineservice [8]haveindicatedthatoneofthemostimportanttasksforthe providers,whosepresentationcanmakeorbreakatour,and tourleaderistosolveproblemsandtoescorttourparticipants administrators,whocarryoutvariousdutiesinthetourdura- so that the tour leader can maintain a tour’s quality and tion[7,15].Thetourleaders canbedividedintotwotypes: keepthemsatisfiedifsomethinggoeswrongoratravelrisk employees and freelancers [16]. The employee tour leader 2 AdvancesinOperationsResearch is a company’s full-time employee. The freelancer is a self- Table1:Proposedcriterionandtheirrelatedsubcriteria. employedpersonandisnotcommittedtoanemployerlong- Criteria Subcriteria term.Leadingagrouptourisacomplextask,encompassing risksthatcanariseinrestaurants,hotels,attractions,airlines, Financialrisk Travelagencygoesbankrupt(C11), and motorcoaches or while shopping or being involved in (C1) pocket-picker(C12) amusement activities and optional tours, and so forth [6]. Safetyoftransportation(C21), Nowadays, increasing number of travel risk issues leads to Transportation safetyofdriving(C22), convenienttelecommunicationfacilities more consumer concerns. Some traditional experiences are risk(C2) (C23), unabletobemet;thus,bytravelriskevaluationforfreelancers publictransitdelayedorcanceled(C24) notonlycantheypromoteabetter,moreefficientevaluation Politicalandeconomicinstability(C31), ofthedecision-makingprocess,buttheyalsoeasilymaintain Socialrisk(C3) possibilityofterroristactivities(C32), thequalityofatourgroupwhileimprovingtheirearnings. assistanceavailableofaccident(C33) Previoustravelrisksstudieshavefocusedonthetourist’s Hygienerisk Hygieneofcateringconditions(C41), perspective[16–20],thetourleader’sperspective[6,21],the (C4) possibilityofinfectiousdiseases(C42) effectsofreligiousaffiliation[22],andtheeffectsofdiseases Sightseeingspot Safetyofrecreationalfacilities(C51), and viruses [23, 24]. Additional studies have addressed the risk(C5) prearrangedmeetingpoint/time(C52) pervasiveness of tourists’ judgements of food-related risks Checkitineraryandflightstatus(C61), [25]. In general, research has examined adventure tourism Generalrisk ensuremeetingpointandtimes(C62), otopuerriasttos’rvsoilnunrtealarytiorinskt-otatkoiunrgisbtehacacviidoeunrtss[2a7n]d,oirncjuorniseusm[2e6r]s,’ (C6) cimusatgoemoefrtchoemcopulanitnrtys/(dCes63ti)n,ation(C64), different cognition of perceived risk attributes [28]. In the hotelsecuritysystem(C65) literature,therearefewMCDMtheoriesaimedatevaluating the travel risk model. There exists, so far, no complete set NGT requires less time and resources than the Delphi of travel risk evaluation models of the tourism market for technique [32]. We adopt NGT [32, 33] to determine the freelanceroperations,eventhoughthetourismindustryhas hierarchicalcriteriasetandtheirinterdependenceproperties rapidlygrown.Thisstudyattemptstousetheanalyticnetwork tohelpafreelanceridentifytravelrisksprioritymeasureindi- process(ANP)approachtodeterminetherelativeweightsof catorsofGPT. multiple evaluation criteria and then decide what the best Delbecqetal.[32]suggestedfivetoeightindividualsasan alternatives of GPT are in terms of an overall evaluation appropriatenumberofmembersinanNGT,and,thus,this criteria set. As a method, the ANP reconstructs a complex studyemployedadecision-makinggroupcomprisingseven MCDMproblemasahierarchy[29].Thus,thisstudyprovides experts. To simplify the process and avoid any misunder- an effective rationale model for a freelancer to evaluate the standing,theinteractionbetweenanyofthesecriteriaisnot GPTtravelrisks. considered in the first instance. Six evaluation criteria and 18 subcriteria are determined through the NGT process, as 2.Methodology showninTable1.Thecriteriasetmaynotincludeallofthe decisionfactorsintheGPTtravelriskevaluation.However, 2.1. Nominal Group Technique (NGT). The importance of theyarethemostmeaningfulmeasuresinourcaseandhave tour leader’s views is now increasingly recognised, partic- beenstressedinnumerousleadingarticles. ularly as customers are more likely to use a service that meets their specific needs. Given the growing emphasis on 2.2.AnalyticNetworkProcess(ANP). ANPisacomprehen- addressing the rising rates of travel risks and customers sive decision-making technique that has the capability to complaints,tourmanagersaremorelikelytoseekfreelancers’ includealltherelevantcriteriainarrivingatadecision[34]. opinions and priorities. However, opinion varies as to the ANP is an extension of analytic hierarchy process (AHP) best method(s) to elicit freelancer evaluations [30]. When and allows for more complex interdependent relationships collectingopinionforaneeds’evaluation,prioritizingneeds, between elements [34]. AHP models assume that there are or making recommendations for action based on needs unidirectional relationships between elements of different evaluation findings, the nominal group technique can be a decisionlevelsalongthehierarchyanduncorrelatedelements valuabletoolforfacilitatinggroupdecision-making. withineachclusteraswellasbetweenclusters.Itisnotappro- NGTisastructuredvariationofasmall-groupdiscussion priate for models that specify interdependent relationships aimed at reaching consensus, where all ideas have equal in AHP. Therefore, this study includes this advantage using importance. The indicators are decided not only according theANP.Thestructuraldifferencebetweenahierarchyand to the criteriaadopted by modifying/deletingfromrelevant anetworkisdepictedinFigure1.ANPcomprisesfourmajor prior research but also according to criteria selected by a steps[35,36]. paneloftourismexpertstodeterminethehierarchicalcriteria set.Theprocessforceseveryonetoparticipate,andnodom- Step 1 (model construction and problem structuring). The inantpersonisallowedtocontroltheproceedings.Further- problem should be stated clearly and transformed into a more,NGTismorelikelytoreachaclearoutcome,providing rationalsystemlikeanetwork.Thestructurecanbeobtained a sense of achievement for participants [31]. Importantly, viatheopinionofdecision-makersthroughbrainstormingor AdvancesinOperationsResearch 3 (a) (b) Figure1:Structuraldifferencebetween(a)ahierarchyand(b)anetwork,Changetal.[29]. otherappropriatemethods.Figure1(b)showsanexampleof ≤0.1,thentheestimateisaccepted;otherwise,anewcompar- thenetworkformat. isonmatrixissoliciteduntilCR≤0.1. Step 2 (pairwise comparisons of matrices and priority vec- Step 3 (supermatrix formation). The supermatrix concept tors). The normal procedure for a pairwise comparison resembles the Markov chain process [35]. To obtain global involves inviting experts to compare a series of pairwise priorities in a system with interdependent influences, the comparisons in which two elements or two components at localpriorityvectorsareaddedtotheappropriatecolumnsof a time are compared in terms of their contribution to their amatrix,knownasasupermatrix.Asupermatrixisactually particularupperlevelcriterion[37].Therelativeimportance apartitionedmatrix,whereeachmatrixsegmentrepresentsa valuesaredeterminedonascaleof1to9,where1represents relationshipbetweentwonodes(componentsorclusters)in the equal importance of the two compared elements and 9 asystem[37].Letthecomponentsofadecisionsystembe𝐶𝑖, indicates the heightened importance of one element (row 𝑖 = 1,2,...,𝑛,inwhicheachcomponent𝐶𝑖 has𝑗elements, component in the matrix) versus the other one (column denoted as 𝑒𝑖𝑗, 𝑗 = 1,2,...,𝑚. The local priority vectors componentinthematrix)[37].Areciprocalvalueisassigned obtained in Step 2 are grouped and located in appropriate to the inverse comparison (i.e., 𝑎𝑗𝑖 = 1/𝑎𝑖𝑗, 𝑖 ≠ 𝑗; 𝑎𝑖𝑗 = 1, positionsinasupermatrixbasedontheflowofinfluencefrom 𝑖 = 𝑗,𝑖,𝑗 = 1,2,...,𝑛),where𝑎𝑖𝑗 denotestheimportanceof one component to another or from a component to itself, 𝑖thelementcomparedto𝑗thelement.Apairwisecomparison as in the loop. Equation (4) presents a standard form of a in ANP is made in the framework of a matrix, and a supermatrix[35].Consider localpriorityvectorcanbeobtainedtoestimatetherelative importanceoftheelementsbeingcomparedbyapplyingthe 𝐶 𝐶 ⋅⋅⋅ 𝐶 followingequation: 1 2 𝑖 𝑒 𝑒 ⋅⋅⋅𝑒 𝑒 𝑒 ⋅⋅⋅𝑒 ⋅⋅⋅ 𝑒 𝑒 ...𝑒 𝐴⋅𝑤=𝜆max⋅𝑤, (1) 𝑒11 11 12𝑤11 1𝑗 21 2𝑤212 2𝑗 ⋅⋅⋅ 𝑖1𝑤𝑖21𝑗 𝑖𝑗 twIhfhe𝐴eerdiegeen𝐴novitseesctthaoecr,opanansidriswt𝜆eismnecaxycoimsmtahptreairxlia,srotghneesnmteeaiitggreeicnnevvsea,cl𝑤utoerroe𝑋fp𝐴rceas[ne3n8bt]es. 𝐶...1 𝑒1...2 [[[[[[ ]]]]]] [ ] determinedusing (𝐴−𝜆max𝐼)𝑋=0. (2) 𝑒𝑒211𝑗 [[[[[[𝑤21 𝑤22 ⋅⋅⋅ 𝑤2𝑗]]]]]] Saaty[38]proposedadoptingtheconsistencyindex(CI) 𝑊= 𝐶2 𝑒22 [[[ ]]] . (4) and consistency ratio (CR) to verify the consistency of the ... [[ ]] [ ] comparisonmatrix.TheCIandRIaredefinedasfollows: 𝑒 [[ ]] . 2𝑗 [ ] CI= (𝜆(m𝑛a−x−1)𝑛), .. ... [[[[[ ... ... d ... ]]]]] (3) 𝑒 [ ] 𝐶 𝑖1 [ ] CR= CI, 𝑖 𝑒 [[ ]] RI ..𝑖2 [[[ ]]] whereRIdenotestheaverageconsistencyindexfornumerous . [ ] randomentriesofthesameorderreciprocalmatrices.IfCR 𝑒𝑖𝑗 [ 𝑤𝑖1 𝑤𝑖2 ⋅⋅⋅ 𝑤𝑖𝑗 ] 4 AdvancesinOperationsResearch As an example, the supermatrix representation in a hierarchywiththreelevelsisshownas Goal 0 0 0 [ ] 𝑊ℎ =[𝑤21 0 0], (5) [ 0 𝑤32 𝐼] Criteria where𝑤21isavectorthatrepresentstheeffectofthegoalon thecriteria,𝑤32 isamatrixdenotingtheeffectofcriteriaon eachofthealternatives,𝐼istheidentitymatrix,andentriesof Subcriteria zerosindicateelementsthathavenoinfluence.Fortheabove example,ifthecriteriaareinterrelated,the(2,2)entryof𝑊𝑛 given by 𝑤22 would indicate the interdependency, and the supermatrixwouldbe[35] Alternatives 0 0 0 [ ] 𝑊𝑛 =[𝑤21 𝑤22 0]. (6) Figure2:Networkformforthispaper. 0 𝑤 𝐼 [ 32 ] supermatrix,butallthecolumnsofthelimitsupermatrixare Note that any zero in the supermatrix can be replaced thesame.Normalisingeachblockofthesupermatrixresults by a matrix if there is an interrelationship of the elements inthefinalprioritiesofalltheelementsbeingobtained. in a component or between two components. Since inter- dependence generally exists among clusters in a network, a Step4(selectionofthebestalternatives). Ifthesupermatrix supermatrixusuallyhasmultiplecolumns.Thesupermatrix formed in Step 3 covers the whole network, the priority must be transformed first to make it stochastic; after being weightsofalternativescanbefoundinthecolumnofalter- restated, each column of the matrix adds up to unity. This nativesinthenormalisedsupermatrix.Ontheotherhand,if studyusedtheANPtoweighthecriteriaandsubcriteria,and asupermatrixonlycomprisesinterrelatedcomponents,addi- ttohu𝑊st󸀠h𝑛:eequationsupermatrix𝑊𝑛 mustbemodifiedslightly tpiroinoarilticeaslcouflathtieonalstemrnuasttivbees.pTherfeoramlteerdnatotivoebwtaiitnhtthheeolavregreasltl 0 0 0 overallpriorityshouldbetheoneselected.Thisstudyapplies 𝑊󸀠𝑛 =[[𝑤21 𝑤22 0 ]], (7) the first method, and a supermatrix that covers the whole network,asshownbythebracketinFigure2,isthenformed. 0 𝑤 𝑤 [ 32 33] where the criteria and subcriteria are interrelated, 𝑤22 and 3.ConstructingtheTravelRisks 𝑤33indicatetheinterdependency,andanetworkreplacesthe EvaluationModel hierarchy. ArecommendedapproachbySaaty[35]istodetermine The research problems were determined by a literature the relative importance of the clusters in the supermatrix, review.Inordertoacquiremorecomprehensiveassessments, withthecolumncluster(block)asthecontrollingcomponent we established an expert group to assign the evaluation [37]. That is, the row components with nonzero entries for criteriaandsubcriteria. their blocks in that column block are compared according to their impact on the component of that column block 3.1.DesignationoftheGroupofExperts. Expertswereinvited [35]. An eigenvector can be obtained from the pairwise to assess the content and relevance among the criteria and comparisonmatricesoftherowcomponentswithrespectto subcriteria. To avoid biases occurring, an expert group thecolumncomponent.Thisprocessproducesaneigenvector comprisingsevenprofessionalexpertsfromtourism-related for each column block. For each column block, the first industrieswasformed.Wespenttwomoremonthsbetween entry of the respective eigenvector is multiplied by all the August and October 2015 gathering sufficient information. elements in the first block of that column and the second AlloftheexpertswereinvolvedintheGPTtravelriskeval- ismultipliedbyalltheelementsinthesecondblockofthat uation model of the criteria selecting process. The tourism column, and so on. In this way, the block in each column expertsselectedinthisstudycomprisedonedoctorateholder of the supermatrix is weighted, and the result is known as whousedanemployedtourleaderinatravelagencyforten the weighted supermatrix, which is stochastic. Increasing a years, one route control (RC) department manager from a matrix to powers gives the long-term relative influence of wholesale travel agency, two scholars working in a tourism theelementsononeanother.Toachieveconvergenceofthe management department, and three senior freelancers who importance weights, the weighted supermatrix is increased hadbeenworkingforatravelagencyfor22,16,and14years, tothepowerof2𝑘+1,where𝑘isanarbitrarilylargenumber, respectively. Therefore, the experts were able to consider andthisnewmatrixistermedthelimitsupermatrix[35].The variousissuesandthenevaluatewhichonewasthebestbased limit supermatrix possesses the same form as the weighted ontheirpracticalexperience. AdvancesinOperationsResearch 5 Goal Criteria Subcriteria Alternative Financial risk (C1) Travel Paogceknecty- pgiocekse rb a(Cnk12ru)pt (C11) Safety of transportation (C21) Transportation risk (C2) Safety of driving (C22) Convenient telecommunication facilities (C23) TYO GPT ct the Public transit delayed or canceled (C24) (A1) ele Political and economic instability (C31) ers evaluate and sbest travel risk HSyogciieanl er irsiksk ( C(C3)4) PAPHoosyssssgisisiibetbainilnlieitct yoye f ooa cfvf a iatnteielfrraeribcontlrgeiio socutof s ana cdcdticiisvtiediioateisnneessts ((((CCCC43341232)))) HK(GA 2G)PT c Freelan Sightseeing spot risk (C5) CPShraeefacerktry ai tonifng reeedrca mrreyae ateintoidnn gafl lip gfoahcitni lstit/tatiietmus s(e C( (CC5165)12)) KW(AL 3G)PT Ensure meeting point and times (C62) General risk (C6) Customer complaints (C63) Image of the country/destination (C64) Hotel security system (C65) Figure3:Hierarchicalstructureoftravelriskevaluationmodelforfreelancers. Sightseeing Financial Transportation Social risk Hygiene risk General risk risk (C1) risk (C2) (C3) (C4) spo(Ct r5i)sk (C6) Figure4:Interdependencecriteriaofresearchmodel. 3.2. Determining the Evaluation Criteria Set and Travel Risk criteria 𝐶11 and 𝐶12, 𝐶12 and 𝐶21,..., and 𝐶62 and 𝐶63 are Model. This study seeks to assess GPT travel risk, which independent. usually consists of multiple dimensions and criteria, and to determinetheinfluentialweightsofthosecriteria.Basedon 4.EmpiricalStudyandDiscussion the experts’ opinions, we constructed a GPT travel risks’ evaluation model for freelancers in this study. Figure 3 Duetotheinterdependenceexistingamongthecriteriaset, illustrates the hierarchical model of the GPT travel risk the ANP approach was adapted to compute the relative evaluationcriteria(i.e.,sixcriteriaand18subcriteria). weightsofthecriteria.SuperDecisionsoftwareisusedtorank According to the experts’ suggestions, Figures 4 and 5 thealternativesandselectthebesttravelrisks.Afterentering show the interdependence among the criteria set based on thenormalisedvaluesintothesupermatrixandcompleting the hierarchical structure. The slender arrows imply a one- thestochasticcolumn,thepowerofthesupermatrixisraised or two-way relationship. For example, the arrow that goes untilconvergenceoccurs[35,36]. from financial risk and feeds into transportation risk infers that the criterion “financial risk” influences the criterion “transportation risk.” Figure 4 shows that all of the criteria 4.1. Demonstrating the Empirical Study. In this study, we have an inner dependence relationship, except for hygiene assumed that the group size, tour duration, and earnings risk and sightseeing spot risk. Similarly, Figure 5 shows were the same among the various GPTs. The criteria were theinnerdependencebetweenthesubcriteria.Forexample, setforfreelancersdecidingonthebestgrouptouritinerary. 6 AdvancesinOperationsResearch Table2:Pairwisecomparisonmatricesforcriteriaoflevel2. Criteria Financial(C1) Transportation(C2) Social(C3) Hygiene(C4) ScenicSpot(C5) General(C6) Weights Financial(C1) 1 0.796 1.171 1.186 1.472 3.630 0.203 Transportation(C2) 1.256 1 1.483 1.515 1.863 4.601 0.257 Social(C3) 0.854 0.674 1 1.012 1.276 3.104 0.174 Hygiene(C4) 0.843 0.660 0.988 1 1.252 3.077 0.172 Scenicspot(C5) 0.679 0.537 0.784 0.799 1 2.469 0.138 General(C6) 0.275 0.217 0.322 0.325 0.405 1 0.056 𝜆max=6.000;CI=0;andCR=0.000≤0.1consistency. C C C C C C C C C C C C C C C C C C 11 12 21 22 23 24 31 32 33 41 42 51 52 61 62 63 64 65 Figure5:Interdependencesubcriteriaofresearchmodel. Consequently, the empirical study represents three famous Table3:Pairwisecomparisonmatricesforcriteriaoflevel3. GPTsasalternativecaseswhichisdependentontheexperts’ suggestions, comprising 𝐴1: a five-day itinerary of Tokyo Travelagency Pocket-picker M(TaYcOau),(JHapKaGn,),𝐴H2:onagfivKeo-ndgay, aitninder𝐴ar3y: aoffiHveo-ndgayKiotningeraanrdy Subcriteria goes(bCa1n1k)rupt (C12) Weights Travelagency ofGuangxiGuilin(KWL),China.Theresearchersgathered goesbankrupt 1 0.690 0.408 data from October to December 2015. In total, research (C11) on 35 freelancer tour leaders was conducted. The results Pocket-picker present the overall scores and the order of alternatives. 1.449 1 0.592 The ranking was obtained and validated though the above- (C12) describedanalyticalprocess,whichconsidersthatfreelancers 𝜆max=2.000;CI=0;andCR=0.000≤0.1consistency. evaluateGPTtravelrisksintravelagenciesaccordingtothe methodandsummarisedthecomputationalprocedurewith the related importance of the subcriteria in terms of their thefollowingsteps. upperlevelcriteria.Thepairwisecomparisonmatricesforthe criteriaandsubcriteriaareshowninTables2and3. Step 1 (establish the pairwise comparison matrices and determine weights). This study uses six evaluation criteria Theweightsforlevel2to level3 listsinTable 4include and18subcriteriaasthemodelforestablishingatravelrisks’ the respective weights of the six evaluative criteria (𝑤21) evaluationcriteriaset.Firstly,theimportanceoftheweights and the respective weights of the 18 evaluative subcriteria of the criteria and subcriteria had to be obtained. For this (𝑤32).Assumingthatthereisnointerdependenceamongthe reason,theexpertswereaskedtoassessallproposedcriteria criteriaandsubcriteria,whichcriteriaandsubcriteriashould and subcriteria in a pairwise fashion while assuming that be emphasised more in determining their respective upper no interdependence existed. The normalised weights were level criterion?As indicatedin Table 4, thecriticalorderof calculatedasauniquesolutionasrepresentedby𝑤21,which thesixevaluationcriteriaforthetravelriskevaluationmodel showstherelatedlocalpriorityofthecriteria.𝑤32represents isfinancialrisk(0.203),transportationrisk(0.257),socialrisk AdvancesinOperationsResearch 7 Table4:Weightsforlevel2andlevel3. (0.174),hygienerisk(0.172),sightseeingspotrisk(0.138),and generalrisk(0.056). Weightsof Weightsof Criteria criteria(𝑤21) Subcriteria subcriteria(𝑤32) Step2(establishthesupermatrixandthelimitmatrix,which C1 0.203 C11 0.408 are listed as columns in Tables 5–7). The supermatrix con- C12 0.592 sideringinterdependencecanthenbeobtainedbycombining C2 0.257 CC2212 00..226884 tThaeblrees5u.lTtsabolbet5ainpreedsebnyts𝑤t2h1e, 𝑤su2p2,er𝑤m32a,trainxd,i𝑤n3a3d,daistisohnowtonthine C23 0.176 respective vectors and matrices previously obtained. Since C24 0.272 C3 0.174 C31 0.340 the supermatrix includes interactions between clusters, for C32 0.282 example, inner dependence exists between criteria, not all C33 0.378 ofthecolumnsadduptoone.Additionally,thedependence C4 0.172 C41 0.534 betweentheselectioncriteriaandsubcriteriawasconsidered C42 0.466 andanalysed,whileANPisintroducedwithinthisframework C51 0.510 to obtain the weights of the criteria. The experts separately C5 0.138 C52 0.490 examined the impact of all the criteria using a pairwise C61 0.240 comparison. The normalised weights for these matrices are C6 0.056 CC6623 00..223240 calculated and presented as 𝑤22 and 𝑤33, where zeros are assigned to the weights of the criteria and subcriteria on C64 0.088 whichagivencriterionisbased: C65 0.218 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 1 2 3 4 5 6 𝐶 0 0 0.260 0 0 0.294 1 [ ] 𝐶 [0.420 0 0.300 0 0 0.376] 2 [ ] [ ] 𝑤 = 𝐶 [ 0 0.460 0 0.463 0.446 0.331], 22 3 [ ] [ ] 𝐶 [0.257 0 0.207 0 0 0 ] 4 [ ] 𝐶5 [[0.322 0 0 0 0 0 ]] 𝐶6 [ 0 0.540 0.233 0.537 0.554 0 ] 𝑤 33 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 𝐶 11 12 21 22 23 24 31 32 33 41 42 51 52 61 62 63 64 65 𝐶11 0 0 0 0 0 0 0 0 0.141 0 0 0 0 0 0 0.117 0 0 𝐶12 [[[ 0 0 0 0 0 0 0 0 0.122 0 0 0 0 0 0 0 0.104 0.211]]] 𝐶21 [[0.122 0 0 0.373 0 0.415 0 0 0.151 0 0 0 0 0 0 0 0.079 0 ]] [ ] 𝐶22 [[0.141 0 1 0 0 0.369 0 0 0 0 0 0 0 0 0 0.082 0.088 0 ]] 𝐶23 [[[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.075 0 0.082]]] (8) 𝐶24 [[ 0 0 0 0 0 0 0 0 0.160 0 0 0 0 0.416 0.294 0.121 0 0 ]] [ ] 𝐶31 [[0.297 0.484 0 0 0 0 0 0.469 0.127 0 0 0 0 0.289 0 0 0.097 0.135]] 𝐶32 [[[ 0 0 0 0.292 0 0.217 0.504 0 0.153 0 0 1 0.430 0.294 0.193 0 0.093 0.161]]] = 𝐶33 [[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.121 0.108 0 ]]. [ ] 𝐶41 [[ 0 0 0 0 0 0 0 0 0 0 0.613 0 0 0 0 0.139 0.139 0.103]] 𝐶42 [[[ 0 0 0 0 0 0 0.496 0 0 0.654 0 0 0 0 0 0 0.101 0.103]]] 𝐶51 [[0.235 0 0 0 0 0 0 0 0 0 0 0 0.361 0 0 0.094 0 0 ]] [ ] 𝐶52 [[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.243 0.072 0 0 ]] 𝐶61 [[[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.270 0.066 0 0 ]]] 𝐶62 [[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]] [ ] 𝐶63 [[ 0 0 0 0.335 1 0 0 0 0 0.346 0 0 0 0 0 0 0.088 0.129]] 𝐶64 [[0.205 0 0 0 0 0 0 0.269 0 0 0 0 0 0 0 0.049 0 0.078]] 𝐶65 [ 0 0.516 0 0 0 0 0 0.263 0.146 0 0.387 0 0.209 0 0 0.063 0.103 0 ] Ifweintroducedasupermatrixforthecriteriabysimply components, and, hence, our entries became 0.5 for the connecting each criterion to itself, our entries would nor- elements in the supermatrix [39]. A weighted supermatrix mally be equal to one. However, our supermatrix needed is transformed first into a stochastic value, as presented in to be stochastic to ensure convergence. To do that in Table 6. The current supermatrix reached convergence and this case, we had to assign equal weights to the two obtaineduniqueweights.Table7showsthefinallimitmatrix, 8 AdvancesinOperationsResearch C65000000000.211000.08200.1350.16100.1030.10300000.1290.0780 C64000000000.1040.0790.088000.0970.0930.1080.1390.10100000.08800.103 C6300000000.117000.0820.0750.121000.1210.13900.0940.0720.066000.0490.063 4 3 30 C620000000000000.2900.1900000.240.270000 694 C610000000000000.410.280.290000000000 C52000000000000000.4300000.361000000.209 C510000000000000010000000000 3 7 C4200000000000000000.6100000000.38 a ri 4 6 criteC41000000000000000000.6500000.3400 b IIIsuC3300000000.1410.1220.151000.1600.1270.1530000000000.146 9 93 x. C3200000000000000.460000000000.260.26 ri ermat C31000000000000000.504000.4960000000 p htedsu C240000000000.4150.3690000.2170000000000 eig C230000000000000000000000100 w n Theu C220000000000.37300000.29200000000.33500 e5: C210000000000100000000000000 l b a 4 6 T C1200000000000000.4800000000000.51 C110000000000.1220.141000.29700000.23500000.2050 C600.2940.3760.33100000000000000000.2040.2300.2560.1100.200 6 4 73 C500044005500000000000495000000 0. 0. 0.0. 3 7 37 eriaC40000.46000.530000000000.530.460000000 IIcritC30.2600.2600.30000.20700.2330000000.3800.2470.373000000000 0 0 4753 C20004600540021262427000000000000 0. 0. 0.0.0.0. 0 72 82 C1004202532039600000000000000000 0. 0.0. 0.0. IGoal00.2030.2570.1740.1720.1380.056000000000000000000 LevelItemGoalC1C2C3C4C5C6C11C12C21C22C23C24C31C32C33C41C42C51C52C61C62C63C64C65 el v LeIII III AdvancesinOperationsResearch 9 C65000000000.105000.04100.0670.08000.0510.05100000.0640.0390 C64000000000.0520.0400.044000.0480.0460.0540.0700.05100000.04400.052 C6300000000.059000.0410.0380.061000.06050.06900.0470.0360.033000.0240.032 C620000000000000.14700.09700000.1210.1350000 857 C610000000000000.200.140.140000000000 C52000000000000000.2150000.181000000.105 0 C51000000000000000.500000000000 6 4 riaC4200000000000000000.3000000000.19 bcriteC41000000000000000000.32700000.17300 u IIIsC3300000000.0700.0610.076000.0800.0640.0760000000000.073 rix. C3200000000000000.2340000000000.1340.131 mat 2 8 per C31000000000000000.25000.240000000 u s 74 8 hted C240000000000.200.180000.100000000000 g wei C2300000000000000000000000.500 e Th 6 6 8 6: C220000000000.1800000.1400000000.1600 e abl C2100000000000.500000000000000 T 2 8 C1200000000000000.2400000000000.25 C110000000000.0610.070000.14900000.11700000.1030 C600.1470.1880.16500000000000000000.1020.1150.1280.0550.100 C5000223002770000000000024925100000 0. 0. 0.0. 2 8 64 eriaC40000.23000.260000000000.260.230000000 crit 00 4 7 047 IIC300.130.1500.1000.110000000.190.120.18000000000 0 0 7437 C20000.23000.27000.100.130.120.13000000000000 C1000.21000.1290.16100.1990.3010000000000000000 IGoal00.2030.2570.1740.1720.1380.056000000000000000000 LevelItemGoalC1C2C3C4C5C6C11C12C21C22C23C24C31C32C33C41C42C51C52C61C62C63C64C65 el v LeIII III 10 AdvancesinOperationsResearch C6500000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 C6400000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 C6300000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 C6200000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 C6100000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 C5200000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 C5100000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 C4200000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 riteriaC4100000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 c IIsubC3300000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 I C3200000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 atrix. C3100000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 m super C2400000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 elimit C2300000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 Th e7: C2200000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 l Tab C2100000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 C1200000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 C1100000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1510.0160.0070.0070.0000.1010.0500.123 C600000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1500.0160.0070.0070.0000.1010.0500.123 C500000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1500.0160.0070.0070.0000.1010.0500.123 eriaC400000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1500.0160.0070.0070.0000.1010.0500.123 IIcritC300000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1500.0160.0070.0070.0000.1010.0500.123 C200000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1500.0160.0070.0070.0000.1010.0500.123 C100000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1500.0164.0000.0070.0000.1010.0500.123 IGoal00000000.0140.0330.0380.0590.0180.0180.1020.1200.0180.1260.1500.0160.0070.0070.0000.1010.0500.123 LevelItemGoalC1C2C3C4C5C6C11C12C21C22C23C24C31C32C33C41C42C51C52C61C62C63C64C65 el v LeIII III

Description:
Freelancer GPT travel risk evaluation involves multicriteria decision-making panel of tourism experts to determine the hierarchical criteria set.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.