ebook img

Constraints on the Star Formation Rate in Active Galaxies PDF

1.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Constraints on the Star Formation Rate in Active Galaxies

TOAPPEARINTheAstrophysicalJournal. PreprinttypesetusingLATEXstyleemulateapjv.26/01/00 CONSTRAINTSONTHESTARFORMATIONRATEINACTIVEGALAXIES MINJINKIM AstronomyProgram,SEES,SeoulNationalUniversity,Seoul151-742,Korea LUISC.HO TheObservatoriesoftheCarnegieInstitutionofWashington,813SantaBarbaraSt.,Pasadena,CA91101 MYUNGSHINIM AstronomyProgram,SEES,SeoulNationalUniversity,Seoul151-742,Korea ToAppearinTheAstrophysicalJournal. 6 ABSTRACT 0 0 The[OII]λ3727emissionlineisoftenusedasanindicatorofstarformationrateinextragalacticsurveys,andit 2 canbeanequallyeffectivetracerofstarformationinsystemscontainingluminousactivegalacticnuclei(AGNs). InordertoinvestigatetheongoingstarformationrateofthehostgalaxiesofAGNs,wemeasuredthestrengthof n a [OII]andotheropticalemissionlinesfromalargesample(∼3600)ofbroad-line(Type1)AGNsselectedfrom J the Sloan Digital Sky Survey. We performeda set of photoionizationcalculations to help evaluate the relative 5 contributionofstellarandnonstellarphotoionizationtotheobservedstrengthof[OII].Consistentwiththerecent 1 studyofHo(2005),wefindthattheobserved[OII]emissioncanbeexplainedentirelybyphotoionizationfrom theAGNitself,withlittleornoadditionalcontributionfromHIIregions. Thisindicatesthatthehostgalaxiesof 1 Type1AGNsexperienceverymodeststarformationconcurrentwiththeopticallyactivephaseofthenucleus.By v contrast, we showthatthesampleof “Type2” quasarsselectedfromtheSloanDigitalSkySurveydoesexhibit 6 substantiallystronger[OII]emission consistentwithan elevatedlevelofstar formation,a resultthatpresentsa 1 challengetothesimplestformoftheAGNunificationmodel. 3 1 Subjectheadings:galaxies:active—galaxies:nuclei—galaxies:Seyfert—galaxies:starburst—quasars: 0 general 6 0 1. INTRODUCTION Additionalhintsforacloseconnectionbetweenstarformation / h andblackholeaccretioncomesfromthehighdegreeofchem- It is now almost universally accepted that massive black p ical enrichment in quasars as deduced from analysis of their holesarecommonandthattheyplayanimportantroleinmany - spectra(Hamannetal. 2004andreferencestherein).Lastly,the o facetsofgalaxyevolution(seereviewsinHo2004).Numerous hostgalaxiesofquasars,atleastinthenearbyUniverse,possess r theoreticalmodelshavebeenproposedtoexplainthestrongob- t a richsupplyofbothmoleculargas(Scovilleet al. 2003)and s servedcorrelationsbetweenblackholemassandbulgeproper- a dust(Haasetal. 2003),andthushavethepotentialforsustain- ties(Magorrianetal. 1998;Gebhardtetal. 2000;Ferrarese& : ingongoingorfuturestarformation. v Merritt2000). Whileeveryoneagreesthatthegrowthofblack While there is little doubt that the above observationsindi- i holes mustbe closely linkedwith galaxyformation(e.g., Silk X cate that AGN activity and star formation do often coincide &Rees1998;Kauffmann&Haehnelt2000;Begelman&Nath r 2005; Robertson et al. 2006), there is no consensus as to ex- withinthesamegalaxy,oneofthemainchallengesininterpret- a ingthisevidenceinaphysicalcontextliesinthedifficultyofes- actlyhowthetwoverydifferentprocessesinvolved—accretion tablishingadirect,causalconnectionbetweenthetwophenom- andstarformation—arereallycoupled.Aretheywellsynchro- ena. An importantstep forward was recently achieved. From nized,ordoesoneprocessprecedetheother,andifso,whatis an analysis of a large sample of narrow-line (Type 2) AGNs thetimelag?Whentheblackholeisactivelygrowing,doesthe selected from the Sloan Digital Sky Survey (SDSS; York et feedbackfromtheactivegalacticnucleus(AGN)actuallytrig- al. 2000), Kauffmann et al. (2003) showed that, unlike low- gerorinhibitstarformationinthehostgalaxy?Theseimportant luminosity sources (Ho et al. 2003), more powerful AGNs issuesareunlikelytobesettledthroughtheoreticalspeculations oftenexhibitstellar absorptionfeaturesindicativeof youngto ornumericalsimulationsalone.Someempiricalguidancefrom intermediate-agestars. Althoughmoredifficulttoascertaindue observationswouldbewelcomed. tothestrongcontaminationfromthebrightnucleus,Kauffmann In recent years, there has been mounting evidence that etal. showthatthespectralsignaturesforyoungstarsseemto AGN activity and starburst activity are often intermixed. The persistevenamongbroad-line(Type1)AGNs.1 Mostcrucially, mostcommonlycitedexampleoccursinultraluminousinfrared they find, for their primary sample of Type 2 objects, that the galaxies, whose dominant energy source has been much de- fractionofyoungstarsinthecentralregionofthehostgalaxies bated(e.g.,Genzeletal. 1998). Detailedstudiesofindividual increases with increasing AGN luminosity, providing, for the activegalaxieshaverevealedasignificantpopulationofyoung first time, tantalizing evidence for a causal link between star starsinanumberofinstances,eitherthroughstellarabsorption formationandaccretion. features(e.g.,Boissonetal. 2000;Canalizo&Stockton2000; It is important to recognize, however, that the SDSS re- CidFernandesetal. 2001)orcolors(e.g.,Jahnkeetal. 2004). sults constrain only the post-starburst population, with ages 1Wewillusetheterms“Type1”and“Type2”AGNstorefertobroad-lineandnarrow-lineobjects,respectively. Wheneverpossible,wewillrefrainfromusing theterms“Seyferts”or“quasars,”which,forhistoricalreasons,carryartificialluminositycriteria. 1 2 KIM,HO&IM ∼ 108- 109 yr. There is no information on the presence of younger,ionizingstars(ages<107 yr). SincetheType2AGN ∼ sample was identified using standard optical emission-line ra- -24 tiosdesignedtoisolateaccretion-dominatedsources,byselec- tion it excludes any sources with a sizable contribution from HIIregions. Ontheotherhand,itisclearlyofsignificanceto constraintheongoingstarformationrate(SFR)inAGNs,inor- -22 dertoassesstheextenttowhichthetwoprocessesarecoeval. AGN lifetimes are uncertain, but current best estimates range g) from106 to108 yr(Martini2004),preciselyintheunexplored a m regimeofinterest. (Mg -20 Estimating SFRs in AGNs presents significant complica- tions, since the AGN, by definition, dominates the integrated output of the source. Nearly all of the standard measures of -18 SFRsemployedforinactivegalaxies(e.g.,Kennicutt1998)are rendered useless by emission from the AGN itself. There is, however, one important exception: the [OII] λ3727 line. As discussed by Ho (2005), [O II], an emission line commonly -16 used in spectroscopic surveys to estimate SFRs in galaxies at redshiftsz > 0.4, shouldbe an equallyeffectivetracer of HII 0.0 0.1 0.2 0.3 ∼ z regionsinSeyfertsandquasars. Insuchhigh-ionizationactive FIG. 1.— Thedistributionofg-bandabsolutemagnitudesasafunctionof galaxies,the[OII]emissionintrinsictothenarrow-lineregion redshiftforthesample. Themagnitudesare“PSF”magnitudes,asdefinedby (NLR) of the AGN is both observed and predicted to be low SDSS,andtheyhavebeencorrectedforGalacticextinction. (e.g., Ferland & Osterbrock 1986; Ho et al. 1993b). If high- ionization AGNs experiencesubstantiallevels of ongoingstar et al. 2002), whose spectra (taken with 3′′-diameter fibers) formation, the integrated contribution from H II regions will cover ∼ 3800- 9200 Å with an instrumental resolution of boost the strength of the [OII] line (comparedto, say, [OIII] λ/∆λ≈1800- 2100. This paper makesuse of data from the λ5007,whichcanbelargelyascribedtotheAGNitself). From Third Data Release (DR3) of SDSS (Abazajian et al. 2005), a survey of the existing literature on [OII] measurements on fromwhichwehaveselectedatotalof4086objectsflaggedby quasars, Ho (2005)concludesthat their SFRs are surprisingly the spectroscopic pipeline as “AGN” that have a redshift con- modest. Moreintriguingly,forasubsetoflow-redshiftquasars fidencelargerthan0.9andaredshiftz<0.3. Theredshiftcut withavailablemoleculargasmeasurements,Hofindsthattheir ensures that the diagnostically important [SII] λλ6716, 6731 starformationefficiencies(SFRperunitgasmass)appeartobe doublet falls comfortably within the bandpass. After inspec- abnormally low compared to either normal or infrared-bright tion of the spectra, we discarded 498 that either had gaps in galaxies.Hesuggeststhatthisunusualbehaviormaybeaman- the spectralcoverageor hadat leastone of themain emission ifestationofAGNfeedbacksuppressingstarformation. linescorrupted,leavingafinalsampleof3588objects.Figure1 The results of Ho (2005) regarding SFRs in quasars were showsthe distributionofabsolute(“PSF”) g-bandmagnitudes based largely on [O II] strengths deduced from composite as a function of redshift. The magnitudes were corrected for spectra (ensemble averages) constructed from quasar surveys. Galactic extinction, using the extinction values of Schlegel et While the conclusions are statistically robust, it would be de- al. (1998) and the extinction curve of Cardelli et al. (1989), sirable to revisit this problem from actual measurements of a butwe did notapplya K-correctionbecause of the ambiguity large, well-defined sample of individual objects. This is ac- introduced by the uncertain amount of galaxy contamination. complished in this paper, where we make use of an extensive Since local field galaxies have an absolute g-band magnitude sampleofType1AGNsselectedfromtheSDSStoinvestigate of M∗ =- 20.44- 5logh≈- 21.2 (Blanton et al. 2003), it is thepropertiesnotonlyof[OII],butalsoanumberofotherdi- clear that some of our objects are significantly contaminated agnosticallyimportantnarrowopticalemission lines. We per- by host galaxy emission. We simulated the expected magni- form a new set of photoionizationcalculationsto demonstrate tude due to K-correctionby addingdifferentrelative fractions that the observed strength of [OII] emission is entirely con- ofquasarandgalaxylight,whichweapproximate,respectively, sistentwithstandardAGNphotoionization. Theseresultssup- usinga compositequasarspectrum(VandenBerketal. 2001) port and strengthen the conclusion of Ho (2005) that Type 1 andanearly-typegalaxytemplate(Colemanetal. 1980). For AGNsexperienceverylimitedongoingstarformation.Bycon- an AGN contributionof 40% or more at 5100Å, we find that trast, weshowthatType2 quasarsexhibitmarkedlyenhanced the expected K-correction is less than 0.4 mag. Since the ex- [OII]emission,andhencepresumablyelevatedSFRs. Thisre- act absolute magnitudesare not critical for our study, we will sultseemstoviolatethebasicorientation-dependentunification neglectithereafter. modelforAGNs. We adopt the following cosmological parameters: H = 100h=71kms- 1Mpc- 1,Ωm=0.27,andΩΛ=0.75(Sperge0let 3. SPECTRALFITTING al. 2003). The spectra of Type 1 AGNs are generally very complex. Figure 2 illustrates some spectra from our sample. While in 2. SAMPLESELECTION this study we are primarilyinterested in the narrow-linespec- Ourgoalistoinvestigatethenarrow-linespectrumofalarge, trum,whichissomewhateasiertomeasure,wewilldescribein homogeneous sample of broad-line (Type 1) AGNs. We uti- greaterdetailourmethodforanalyzingtheentirespectrum.We lize the database from SDSS (Stoughton et al. 2002; Strauss illustrate an example of spectral fitting in Figure 3. After re- STARFORMATIONINAGNs 3 movingtheGalacticextinction,thespectrumistransformedto effectivetemplatetomodel[NII]λλ6548,6583andthenarrow therestframeusingtheredshiftmeasuredbytheSDSSpipeline. componentofHα.Inobjectswithsufficientlystrong[SII](S/N A full decomposition of the continuum spectrum requires fit- >3),wefiteachofthe[SII]lineswithamulti-Gaussianmodel ∼ ting of four components. First, we allow for the presence of (usually just two suffice), holding fixed the known separation a galaxy component. As mentioned in §2, we expect galaxy of the two lines. This [SII] template is then used as a model contaminationto be importantin the lower-luminosityobjects for[NII]andnarrowHα. Theseparationofthe[NII]doublet in our sample. While more sophisticated methods of galaxy is held fixed, as is its flux ratio (2.96). In practice, we often modeling have been attempted (e.g., Ho et al. 1993a, 1997a; find it necessaryto also fix the position of the Hα component Greene & Ho 2004), Greene & Ho (2005b)find thata simple relativeto[NII].Incaseswhere[SII]hasS/N<3,wehaveno ∼ scalingandsubtractionofavelocity-broadenedK-giantstarare alternativebuttouse[OIII]λ5007asatemplate,eventhough usuallysufficientforType1AGNswiththesignal-to-noisera- weknowthatthisisnotentirelyadequatebecause[OIII]often tio (S/N) of SDSS. As in Greene & Ho (2005b), we use the hasablue,asymmetricwingthatisgenerallyabsentfrom[SII] equivalent width (EW) of the Ca II K λ3934 absorption line (Greene & Ho 2005a). As in Greene & Ho (2005a, 2005b), asaguidetothelevelofgalaxycontaminationandhowmuch we model each of the [OIII] λλ4959, 5007 lines with a two- starlight to subtract. These authors find that an EW of 1.5 Å componentGaussian, andweconstrainthenarrowcomponent forCaIIKcorrespondstoagalaxycontributionof∼10%.We of Hβ to the narrowcomponentof Hα, keepingthe flux ratio omittheK-giantcomponentforEW(CaIIK)<1.5Å,andwe fixedtotheCaseB′valueofHα/Hβ =3.1(Osterbrock1989).2 scaleitappropriateforEWslargerthanthisvalue. Second,the The broadcomponentsof Hα and Hβ are fitted with multiple ultravioletandopticalcontinuumcontainsaprominentfeature- Gaussiancomponents. less,nonstellarcomponent,whichpreviousstudies(e.g.,Fran- Thevastmajority(∼95%)ofoursampleyieldedunambigu- cis et al. 1991; Vanden Berk et al. 2001) have approximated ousdetectionofthestrongestemissionlinesconsideredinthis bya doublepowerlaw, witha spectralbreakat∼5000Å.We study ([OII], [OIII], Hα, and [NII]). The success rate, how- ever,waslowerforHβ (66%),anditwasdisappointinglylow find, however, that after accountingfor the galaxycomponent the second, long-wavelengthpower-law componentis usually (44%)for[OI] and[SII],which, inadditiontobeingweaker, alsolieinthereddestportionoftheSDSSbandpass,wherethe unnecessary,andthuswemodelthefeaturelesscontinuumus- effectiveS/Nisdecreasedbysystematicnoiseduetoimperfect ing a single power law. Third, following Grandi (1982), we removalofnight-skyemission,telluricabsorption,anddetector include the contribution from a Balmer continuum, assuming thatit is opticallythick andemitted bya uniformtemperature fringing. Weseta3σ upperlimitforthenondetectionsbyas- sumingthatthelinehasaGaussianprofileequaltothatofthe ofT =15,000K;wedonotattempttomodelthehigher-order e averageofthe detectednarrowlinesandanamplitude3times Balmer lines. Lastly, we modelthe “pseudo-continuum”gen- thelocalrmsofthelocalcontinuum. erated by the plethora of broad and blended Fe II multiplets, which,forourpresentapplication,areparticularlytroublesome fortheregioncontainingtheHβand[OIII]emissionlines.Fol- 4. RESULTS lowingstandardpractice(Boroson&Green1992),weremove the Fe blends by scaling and broadening an Fe template gen- 4.1. [OII]and[OIII]Luminosities erated from the spectrumof I Zw 1, kindlyprovidedby T. A. Figure 4 showsthe distributionsof [OII] λ3727and[OIII] Boroson. (Theregionbetween3082Åand3685Åisnotmod- λ5007 luminosities for our sample. The [O II] luminosities eled because of a gap in the current Fe template.) After sub- range from ∼ 1040 to 3×1042 ergs s- 1, with an average of tractingthegalaxycomponent,wesimultaneouslyfitthequasar hL i=5.2×1040ergss- 1. Forcomparison,weoverplotthe [OII] spectrum with the power-law continuum, Balmer continuum, sample of Type 2 AGNs studied by Kauffmannet al. (2003), andFetemplate.Weperformthefitoverthefollowingregions, which, in terms of narrow-line emission, is approximately a whichare devoidofstrongemissionlines: 3550–3645,4170– factor of 2 less luminous than our sample. As discussed in 4260,4430–4770,5080–5550,6050–6200,and6890–7010Å. Ho (2005), this level of [OII] emission, taking conservative Withapureemission-linespectrumathand,thenexttaskis assumptionsaboutAGNcontaminationandcorrectionsforex- tofitthelines(seebottomofFig. 3). Sincethecontinuumnear tinctionandmetallicity,correspondstoSFRsofonly∼0.5M⊙ ∼3700Åisstillnotcompletelymodeled(weneglectedhigher- yr- 1. Figure 5 shows the luminosity of [OIII] plotted versus orderBalmerlinesintheBalmercontinuummodelandtheFe thelineratio[OII]/[OIII].The[OII]/[OIII]ratiospansawide template is incomplete), we have decided to fit [OII] λ3727 range, in the extreme by nearly 2 orders of magnitude from withasingleGaussianabovealocallydefinedcontinuum.This ∼ 0.06 to ∼ 5, but most cluster around ∼ 0.2- 1. Assum- procedure, although crude, should be adequate for our pur- ingthat[OIII]isproducedentirelybytheAGNandisagood poses. WenotethatGreene&Ho(2005a)findthat[OII],atthe tracerofAGNpower(e.g.,Kauffmannetal. 2003),itisclear S/NofSDSS,isusuallywell-fittedbyasingleGaussian. How- that the [OII]/[OIII] ratio decreases strongly with increasing ever,becauseofthestrongconfusionwiththebroad-lineregion, [OIII]strength.Forcomparison,wealsooverplotthesampleof thelinesaroundHαandHβ—andespeciallythenarrowcom- Kauffmannetal. (2003)toillustratethatthelower-luminosity ponentsoftheselinesthemselves—requiremorecomplextreat- Type2objectsalsoobeyroughlythesamepattern.Thistrendis ment. Previousstudies(Ho et al. 1997b; Greene& Ho 2004, easytoexplaininthecontextofAGNphotoionizationmodels, 2005b)findthatthe[SII]λλ6716,6731doubletservesasavery inwhichthe[OII]/[OIII]ratiovariesstronglyasafunctionof 2NotethatthisconstrainteffectivelyassumesthattheNLRexperiencesnegligibleinternalextinction. Wehaveexperimentedwithleavingfreetheamplitudeof thenarrowcomponentofHβ.TheresultingdistributionofBalmerdecrementissharplypeakedatavalueofHα/Hβ=3.3,suggestingthatanyinternalextinctionis evidentlyquitemodest(AV ≈0.2mag). However,aminorityoftheobjectshaveextremelytiny,unphysicalHα/Hβratios,resultingfromsevereoverestimationof theHβstrength. SincethemajorityoftheobjectsseemtobewellcharacterizedbysmallamountsofinternalextinctionintheirNLR,wehavedecidedthatitwould beprudenttofixtheHα/HβratiototheCaseB′value. Asanaside,itisinteresting,andprobablynotcoincidental,thatGreene&Ho(2005b)findthattheBalmer decrementsofthebroad-lineregionintheirsampleofSDSSType1AGNsalsoindicatelittle,ifany,internalextinctionalongthelineofsight. 4 KIM,HO&IM 150 Ha +[N II] SDSS J152108.92+504006.9 [O III] 100 [O II] fl Hb [O I] [S II] 50 0 60 SDSS J162553.48+363410.9 40 fl 20 0 600 SDSS J021359.79+004226.7 400 fl 200 0 120 SDSS J115234.99−000542.7 80 fl 40 0 105 SDSS J031722.16−065343.0 70 fl 35 0 4000 4500 5000 5500 6000 6500 Rest Wavelength (Å) FIG. 2.— Samplespectraofourobjects,chosentospanarangeinS/Nand[OII]strength. Therestframeflux, fλ= fλ,obs(1+z)3,isinunitsof10- 17ergss- 1 cm- 2Å- 1. STARFORMATIONINAGNs 5 250 (a) 200 150 [O III] Ha +[N II] fl 100 [O II] Hb [O I] [S II] 50 0 50 40 30 Power law fl 20 10 BaC Galaxy 0 Fe −10 20 10 fl 0 −10 3500 4000 4500 5000 5500 6000 6500 Rest Wavelength (Å) 120 120 (b) (c) 100 100 80 80 60 60 fl 40 40 20 20 0 0 10 10 00 00 fl −10 −10 4800 4900 5000 5100 6450 6550 6650 Rest Wavelength (Å) Rest Wavelength (Å) FIG. 3.— Exampleofspectraldecompositionforoneofthesampleobjects(SDSSJ161141.95+495847.9). Therestframeflux, fλ= fλ,obs(1+z)3,isinunitsof 10- 17ergss- 1cm- 2Å- 1.(a)Thetoppanelshowstheoriginalspectruminfullscale.Themiddlepanelgivesamagnifiedviewoftheoriginalspectrum,withsome keyemissionlineslabeled,alongwiththedifferentcontinuumcomponentsincludedinthefit[featurelesspowerlaw,Balmercontinuum(BaC),galaxy(K-giant star),andtheFetemplate]. Thecontinuum-subtracted emission-linespectrumisshowninthebottompanel. NotethattheFetemplatedoesnotcovertheregion between3082and3685Å,andtheBaCcomponentdoesnotproperlymodelthehigher-orderBalmerlinesintheregion3650–3800Å,resultinginstrongresiduals inthecontinuumnear[OII].Toillustratethedetailedfitstotheemissionlines,weshowanexpandedviewoftheregionssurrounding(b)Hβand[OIII]λλ4959, 5007and(c)Hαand[NII]λλ6548,6583. 6 KIM,HO&IM 1.0 (a) (b) 0.8 N d 0.6 e z ali m or N 0.4 0.2 0.0 39 40 41 42 43 39 40 41 42 43 log (L / ergs s−1) log (L / ergs s−1) [O II] [O III] FIG. 4.— Relativedistributionof(a)[OII]and(b)[OIII]luminosity. Thewidthofeachbinis0.25dex. ThesolidlinerepresentstheType1AGNsfromour sample,andthedashedlinerepresentstheType2AGNsfromKauffmannetal.(2003).TheType2objectshavebeencorrectedforinternalextinction,asgivenin Kauffmannetal. [OII]/[OIII]ratiowouldeitherremainconstantorrisewithin- 0.5 creasingL . [OIII] 4.2. PhotoionizationModel Tobetterconstraintheoriginofthenarrow-linespectrumin 0.0 general,andofthe[OII]lineinparticular,weperformedanew set of photoionization calculations using the code CLOUDY O III]) (cvloeursdioonf9a4g.0iv0e;nFdeernlasnitdyeatndale.le1m9e9n8t)a.laFbournadnanocpetiicllaulmlyinthaitcekd O II] / [ −0.5 btiyonasnofinstpautitstiiocnailzainndgtshpeermctraulmeq,uCiliLbOriuUmDYandsoplrvoedsuctheesaesqeulaf-- g ([ consistentmodeloftherunoftemperatureandionizationasa o l functionofdepthintothecloud.Forsimplicity,weassumethat thecloudhasauniformdensity,hasaplane-parallelgeometry, −1.0 and is dust-free. We calculated a grid of models by varying threemainparameters: thehydrogendensity(102 cm- 3 ≤n≤ 106cm- 3),theionizationparameter(10- 4≤U ≤10- 1),andthe shape of the ionizing continuum (α = - 0.5,- 1,- 1.5,- 2, and −1.5 - 2.5). The ionizing continuum has the basic shape described 39 40 41 42 43 byHoetal. (1993b),wherethevariationisparameterizedbya log (L / ergs s−1) [O III] power-lawindexα between 10µm and 50 keV. We adoptthe FIG. 5.— The[OII]/[OIII]ratiovs. [OIII]luminosityforType1AGNs solar abundancesas givenin Grevesse & Anders(1989),with (largeblackdots)andType2AGNs(smallbluedots;fromKauffmannetal. theexceptionofnitrogenwhoseabundanceisincreasedtotwice 2003). Thesolidanddottedlinesgivetheordinaryleast-squaresbisectorre- thesolarvalue,assuggestedbyStorchi-Bergmann(1991). gressionfortheType1andType2objects, respectively. Thelargetriangle Webeginbyexaminingoursampleusingthethreediagrams marks the location of the sample of Type 2 quasars from Zakamska et al. (2003),usingtheaveragevalueofthe[OIII]luminosityandthe[OII]/[OIII] proposedbyVeilleux&Osterbrock(1987),whichhavethead- ratiomeasuredfromtheircompositespectrum.ThevaluesfromKauffmannet vantageofbeinginsensitivetoextinctioncorrections.Ascanbe al.andZakamskaetal.havebeencorrectedforinternalextinction. seenin Figure6, themajorityofthesampleof Type1objects iswellcoveredbyourgridofmodels, spanningthefollowing oftheionizationparameter3(seebelow),butitisdifficultto range of parameters: - 2.0≤ α≤- 1.0, 10- 3.3 ≤U ≤10- 2.0, reconcileinapicturewhereinthestrengthofstarformationin- and102cm- 3≤n≤104cm- 3. Thedensityestimateisnotcon- creases with increasing AGN activity. In such a scenario, the sistent from one diagram to another because the NLR very 3Theionizationparameter,denotedbyU,isdefinedtobetheratiooftheionizingphotondensitytothedensityofhydrogen. STARFORMATIONINAGNs 7 2.0 1.5 10−2 10−2 10−2 ) 10−2.5 10−2.5 10−2.5 b7/H 1.0 10−3 U 10−3 U 10−3 U 0 0 5 lO III] 0.5 10−3.5 10−3.5 10−3.5 log ([ 0.0 −1.5 −1 −1.5−1 −1.5−1 −0.5 −2 a −2 a −2a − − − 2. (a) 2. (b) 2. (c) 5 5 5 −1.0 −2.0 −1.5 −1.0 −0.5 0.0 −1.0 −0.5 0.0 0.5 −1.0 −0.5 0.0 0.5 log ([O I] l 6300/Ha ) log ([N II] l 6583/Ha ) log ([S II] ll 6716, 6731/Ha ) FIG. 6.— Lineratios ofType1AGNs(smalldots)andType2quasars(largetriangle, fromcompositespectrum ofZakamskaetal. 2003)comparedwith photoionizationmodels. Thelargecrossmarksthelocationoftheaveragevalueoftheupperlimitsinoursample,whichareconsistentwiththedetections. The threeVeilleux&Osterbrock(1987)diagramsplot[OIII]λ5007/Hβvs.(a)[OI]λ6300/Hα,(b)[NII]λ6583/Hα,and(c)[SII]λλ6716,6731/Hα. Twogrids areshown,representingn=102cm- 3(solidblackline)andn=104cm- 3(dashedblueline).EachgridshowsmodelsforU=10- 2,10- 2.5,10- 3,and10- 3.5(topto bottom)andα=- 2.5,- 2,- 1.5,and- 1(lefttoright). TheshadedregionrepresentsthelocusofHIIregions,ascalculatedfromthestarburstmodelsofKewleyet al.(2001). 1.5 10−2 10−2.5 (a) 0.0 (b) U 10−3.5 −1 1.0 10−3 007) −0.5 U a ) 5 b007/H lO III] 10−3 −2.5 lO III] 5 0.5 −1 10−3.5 6300/[ −1.0 10−2 10−2.5 g ([ −1.5 lO I] −1.5 lo a g ([ 0.0 −2 lo −2.0 −2.5 −0.5 −2.5 −1.5 −1.0 −0.5 0.0 0.5 1.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 log ([O II] l 3727/[O III] l 5007) log ([O II] l 3727/[O III] l 5007) FIG.7.— LineratiosofType1AGNs(smalldots)andType2quasars(largetriangle,fromcompositespectrumofZakamskaetal.2003,withinternalextinction correctionapplied)comparedwithphotoionizationmodels. Thelargecrossmarksthelocationoftheaveragevalueoftheupperlimitsinoursample,whichare consistentwiththedetections. Diagnosticdiagramsshowing(a)[OIII]λ5007/Hβvs.[OII]λ3727/[OIII]λ5007and(b)[OI]λ6300/[OIII]λ5007vs.[OII] λ3727/[OIII]λ5007.Twogridsareshown,representingn=102cm- 3(solidblackline)andn=104cm- 3(dashedblueline).EachgridshowsmodelsforU=10- 2, 10- 2.5,10- 3,and10- 3.5(lefttoright)andα=- 2.5,- 2,- 1.5,and- 1(bottomtotop).TheshadedregionrepresentsthelocusofHIIregions,ascalculatedfromthe starburstmodelsofKewleyetal.(2001). 8 KIM,HO&IM likely has a wide range of densities, and the various forbid- lines,andwehavegeneratedanewsetofphotoionizationmod- dentransitionshavedifferentcriticaldensities(e.g.,Filippenko els to interpret them. Our analysis indicates that the princi- &Halpern1984). Nonetheless,theaboverangeofparameters palnarrowemission linesof oursample, including[OII], can corresponds well to previous estimates made using the same beentirelyexplainedbyAGNphotoionizationassumingfairly versionofCLOUDY(Nagaoetal. 2001). standardparameters.Thereisnoevidenceforanyexcess[OII] Having established that our sample of Type 1 objects has emission arising from a separate origin, such as HII regions. NLRpropertiesthatcanbe readilyaccommodatedusingstan- Thus, the observed [OII] strengths can be used to set a limit dardAGNphotoionization,wenextturntotwodiagnosticdia- on the ongoingSFR in these systems. However, as discussed gramsthathighlightthe[OII]line. Figure7comparestheline byHo,anumberofuncertaintiescomplicatetheSFRestimates ratio [OII] λ3727/[OIII] λ5007, which is a sensitive indica- basedonthe[OII]line. Theseincludetheunknownmagnitude tor of the ionizationparameter, to [OIII] λ5007/Hβ and [OI] ofdustextinction,thepossibleinfluenceofmetallicitycorrec- λ6300/[OIII] λ5007 (Baldwin et al. 1981; Ferland & Netzer tions,andpreciselyhowmuchoftheobserved[OII]strengthto 1983). These diagramshave the advantageof beingrelatively attribute to star formation. For illustrative purposes, we make insensitive to abundance, although[OII]/[OIII] is affected by threesimpleassumptions(seeHo2005foramoredetaileddis- extinction.Thebasicconclusionfromthisfigureisthattheob- cussion): (1) that the amount of dust extinction in AGN host served line ratios, and in particular the [OII] strength, can be galaxiesiscomparabletothatdeducedformoderatelyactively well reproduced with AGN photoionization with roughly the star-forminggalaxies(A ≈1mag;e.g.,Hopkinsetal. 2003); V same rangeofparameterspreviousdeducedfromtheVeilleux (2)thatthemetallicityistwicesolar(e.g.,Storchi-Bergmannet & Osterbrock diagrams (Fig. 6). In other words, there is no al. 1998);and(3)thatone-thirdoftheobserved[OII]strength needtoinvokeanyadditionalsourceapartfromtheAGN,such comes from H II regions. For a typical [OII] luminosity of as star formation, to account for the observed range of [OII] 5.2×1040ergss- 1 (Fig. 4a),theempiricalcalibrationofKew- emission. ley et al. (2004) yields a SFR of merely 0.5 M yr- 1. This ⊙ Toreinforceourconclusionthatstarformationmakesaneg- estimateisconsistentwith,butevenlowerthan,thanthatgiven ligiblecontributiontothenarrow-linespectrumofourobjects, byHo(2005). Toputthisestimateinperspective,wenotethat wesuperimposeonFigures6and7thetheoreticalphotoioniza- theSFRsofnearbynormalspiralgalaxies,includingtheMilky tionmodelsofHIIregionscalculatedbyKewleyetal. (2001). Way,rangefrom∼1to3M⊙yr- 1(Solomon&Sage1988).The These models explore a range of input parameters meant to situationinAGNsisthustrulyunusual. representrealisticconditionsencounteredinstarburstgalaxies. Unlikethelow-redshiftquasarsconsideredbyHo(2005),our Whilethe[OII]/[OIII]and[OIII]/HβratiosofHIIregionsand current sample of SDSS AGNs has no available information our sample of AGNs overlap substantially (Fig. 7a), the star- on its cold gas content. However, the unbiasedCO surveyby burstmodels, evenunderthe mostextremeconditions, cannot Scovilleetal. (2003)showsthatopticallyselectedquasars,not accountforthestrengthofthelow-ionizationtransitions([NII], unlike those studied here, are quite gas-rich. This is not un- [SII],andespecially[OI])observedintheAGNs. expected,consideringthatthenuclei,byselection,arequiteac- tive,andthereforeaccretingatafairlyhighrate.Thus,although 5. DISCUSSION theevidenceiscertainlylessdirect,wecanreasonablysurmise thattheobjectsstudiedherealsomayalsopossessabnormally 5.1. AGNFeedback lowstarformationefficiencies. Ho(2005;seealsoHo2006)recentlyproposedthatthe[OII] How can this finding be reconciledwith Kauffmannet al.’s λ3727 emission line can effectivelytrace ongoingstar forma- (2003) result that luminous AGNs show a preponderance of tion in the host galaxies of luminous, high-ionization AGNs post-starburstactivity? Apossiblesolutionistoinvokeanevo- suchasSeyfertsandquasars.The[OII]linehaslongbeenused lutionary scenario, not unlike that proposed by Sanders et al. asaSFRindicatorinspectroscopicsurveysofdistantgalaxies, (1988), in which a starburst phase precedes the optically re- butpreviouslyithadnotbeenappliedtosystemscontainingac- vealed quasar phase. From the age estimates given in Kauff- tivenuclei.Fromareviewoftheextantliteratureon[OII]mea- mannetal.,thetimelagseemstobeapproximately108 to109 surementsinquasars,HocametotheconclusionthattheSFRs years. The starburst phase terminates not because all of the in their host galaxies are quite modest, being no greater than gas has been transformed into stars, nor because it has been ∼1- 10M⊙ yr- 1. Thisresultwassomewhatunexpectedcon- completelyexpelledbyAGNorsupernovafeedback,sinceev- sideringtherecentevidencefortherebeingasubstantialpost- identlyplentyofgascoexistsduringthequasarphase, butbe- starburstpopulationinAGNs(Kauffmannetal. 2003).Perhaps causetheactivenucleussomehowpreventsthegasfromform- evenmoresurprising,Hofound,fromamorelimitedsampleof ing stars. Througha combinationof radiative heating and ki- low-redshiftquasarswithavailableCOmeasurements,thatnot neticenergyinjection,anAGNisexpectedtosignificantlyalter only are the SFRs low but that the star formation efficiencies the thermodynamicalstate of the gas in the circumnuclearre- (SFRperunitgasmass)arealsolow,suggestingthattheAGN gionsofgalaxies(Begelman1993;DiMatteoetal. 2005),but somehowinhibitsstarformation. precisely how this results in suppression of star formation re- Apartfromthesmallsampleoflow-redshiftobjectsthathad mainstobeelucidated. individual spectroscopic data, Ho’s more general conclusions regardingthequasarpopulationasawholewasbasedonpub- 5.2. PossibleEvidenceforStarburstActivityinType2 lishedmeasurementsof[OII]strengthsderivedfromcompos- Quasars ite,orstatisticallyaveraged,spectra.Toplacetheseresultsona moresecurefooting,wehaveundertakenamajortasktohomo- Zakamska et al. (2003) have drawn attention to a class of geneouslymeasure the [OII] line in a largesample of Type 1 narrow-lineAGNsfromtheSDSS whose[OIII] linestrength, AGNs. Apart from [O II], we also simultaneously measured when translated into continuum luminosities, place them in a number of other diagnostically important narrow emission the league of quasars. This, along with the detection in STARFORMATIONINAGNs 9 Table 1. Narrow Emission-line Ratios of Type 1 AGNs and Type 2 Quasars Group Hα/Hβ [OII]/[OIII] [OIII]/Hβ [OI]/Hα [NII]/Hα [SII]/Hα Type1AGNs 3.3a 0.27 6.06 0.16 0.71 0.44 Type2Quasars 4.1 0.75 5.29 0.14 1.06 0.58 aThe median value obtained from our spectral fit when the amplitude of Hα and Hβ were left unconstrained;see§3. Note. —ThelineratiosfortheType1AGNsarethemedianvaluesofthedetectedobjects. The upperlimitsareconsistentwiththesevalues. ThelineratiosfortheType2quasarsweremeasured by Zakamska et al. (2003) from the composite spectrum; they have been corrected for internal extinction. some sources of polarized broad-line emission through spec- moderatelyhealthystarburst.Incidentally,wenotethatadusty, tropolarimetry (Zakamska et al. 2005) and heavy photo- gas-richenvironmentcharacteristicofstarburstsmaynaturally electric absorption through X-ray observations (Ptak et al. accountforthehigherinternalextinctionmentionedabove. 2006), has prompted the identification of these objects with Thepossibleexistenceofsignificantongoingstarformation the long-sought“Type2 quasars”anticipatedfromthe the ba- in Type2 quasars, in contrastto their stark absencein normal sic orientation-dependent unification model of AGNs. If the (Type1)quasars,presentsanobviouschallengetotheconven- Zakamskaetal. objectstrulyareintrinsicallyidenticaltonor- tional orientation-dependent model of AGN unification (An- mal,high-luminosityType1AGNs,butsimplyviewedfroma tonucci 1993). Type 2 objects are not intrinsically the same line of sight obscured from the nucleus, then the narrow-line as Type 1 objects, but instead may represent an earlier evolu- spectrum of the two groups, assumed to be isotropic, should tionaryphase,perhapssimilartothescenariodiscussedin§5.1, besimilar. Weweresurprisedtodiscoverthatthisappearsnot whereinthe centralengineis eithernotyet fullydevelopedor to be the case. Comparison of the line strengthsfor our Type elseliesburiedbyextended,dustyregionsofstarformation.In 1 objects with those tabulated for the composite SDSS spec- this context, the optically selected Type 2 quasars closely re- trum of Zakamskaet al. (2003)revealsthat both groupshave semble those ultraluminous infrared galaxies that host both a similarlineintensityratios,withtwonoticeableexceptions(see strongstarburstandahighlyobscuredAGN(e.g.,Genzeletal. Table1). First,theType2sourceshaveahigherBalmerdecre- 1998;Gerssenetal. 2004). ment, and hence a higher inferredinternal extinction for their Observations of radio-loud AGNs have suggested that the NLR, comparedto the Type 1 sources. Recall fromour spec- [OIII]-emittingregion,unlikethatproducing[OII],maynotbe tralfitting (§3)that, when allowedto varyfreely, the majority entirely isotropic (Jackson & Browne 1990; Hes et al. 1996). ofoursourcesyieldedan Hα/Hβ ratioof3.3, tobe compared IfthisisgenericallytrueofallAGNs,thenthe[OII]/[OIII]ra- with Hα/Hβ = 4.1 forthe Type2 composite. If interpretedin tioisorientation-dependent,anditmayaccountforthehigher terms of dust extinction assuming an intrinsic Balmer decre- ratiosinType2quasarscomparedtoType1quasars. Thisex- mentof3.1andaGalacticextinctioncurve,thistranslatesinto planation,however,isunsatisfactorybecauseFigure5showsno aninternalextinctionofA =0.2magversusA =0.9mag,re- evidencethatthispatternholdsforlower-luminositysources. V V spectively. Second,andmorepertinenttothecentralthemeof this study, we find that the Type 2 quasars exhibit an anoma- louslyenhanced(extinctioncorrected)[OII]/[OIII]ratio. This 6. SUMMARY point is illustrated in Figures6 and 7, where we highlightthe locationoftheZakamskacompositeinrelationtothelocusof We present a detailed analysis of the narrow-line spectrum theType1sources. Whiletherelativelyhigh[OII]/[OIII]ratio ofalarge,homogeneoussampleofbroad-line(Type1)AGNs cannormallybeattributedtoasomewhatlowerionizationpa- selectedfromSDSS,withtheprimaryaimofusingthestrength rameter,wenotethatthisexplanationisinseriousconflictwith of the [OII] λ3727 line to constrain the ongoing star forma- thehighluminosityofthesesources. Asdiscussedin§4.2,the tion rate in the host galaxies. Comparing the measurements [OII]/[OIII] ratio varies strongly with [OIII] luminosity. For with a new set of photoionization models calculated using L ≈3×1042 ergss- 1,theaveragefortheZakamskaetal. the code CLOUDY, we find that the principal narrow optical [OIII] sample,Figure5predictsthatthe[OII]/[OIII]ratioshouldbe lines, including [O II], can be readily reproduced using con- ∼0.06- 0.1. By contrast, the Type 2 quasar composite gives ventionalAGNphotoionizationparameters. Thisplacesstrong [OII]/[OIII] = 0.75, nearly an orderof magnitudelarger than constraintsonanyadditionalstarburstcontributiontothe[OII] thepredictedvalue.Wespeculatethattheenhanced[OII]emis- strength, with resulting limits on the inferred star formation sion in the Type 2 quasars comes from star formation. If the rate. Consistent with the recent study of Ho (2005), the host observed [O II]/[O III] ratio in Type 2 quasars is ∼10 times galaxiesofType1AGNsevidentlyexperienceverymodeston- larger than expected for their [OIII] luminosity, then the ex- goingstarformation. On theotherhand,thesample“Type2” cess [OII] luminosityof ∼2×1042 ergss- 1, adoptingthe as- quasarsidentifiedfromSDSS(Zakamskaetal. 2003)exhibits sumptionsspecified in §5.1, correspondsto an estimated SFR enhanced [OII] emission, which we argue arises from signif- of ∼20 M⊙ yr- 1. This level of star formation qualifies as a icant ongoing starburst activity. We propose an evolutionary scenariothatcanaccountfortheseobservations. 10 KIM,HO&IM We would like to thank T. A. Boroson for sending us the I M.I. acknowledge the support from the grant No. R01-2005- Zw1irontemplate,G.J.Ferlandformakingavailablethecode 000-10610-0provided by the Basic Research Program of the CLOUDY,L.J.Kewleyformakingavailablehermodelcalcu- KoreaScience&EngineeringFoundation.TheworkofL.C.H. lationsofHIIregions,andananonymousrefereeforahelpful was supported by the Carnegie Institution of Washington and critiqueofourwork.WearegratefultotheentireSDSScollab- byNASAthroughgrantsfromtheSpaceTelescopeScienceIn- orationforprovidingaccesstotheirinvaluabledatabase. M.K. stitute(operatedbyAURA,Inc.,underNASAcontractNAS5- has been supported in part by the BK 21 program. M.K. and 26555). REFERENCES Abazajian,K.,etal. 2005,AJ,129,1755 ——.2006(astro-ph/0511157) Antonucci,R.1993,ARA&A,31,473 Ho,L.C.,Filippenko,A.V.,&Sargent,W.L.W.1993a,ApJ,417,63 Baldwin,J.A.,Phillips,M.M.,&Terlevich,R.1981,PASP,93,5 ——.1997a,ApJS,112,315 Begelman,M.C.1993,inTheEnvironmentandEvolutionofGalaxies,ed.J. ——.2003,ApJ,583,159 M.Shull&H.A.ThronsonJr.(Dordrecht:Kluwer),369 Ho,L.C.,Filippenko,A.V.,Sargent,W.L.W.,&Peng,C.Y.1997b,ApJS, Begelman,M.C.,&Nath,B.B.2005,MNRAS,361,1387 112,391 Blanton,M.R.,etal.2003,ApJ,592,819 Ho,L.C.,Shields,J.C.,&Filippenko,A.V.1993b,ApJ,410,567 Boisson,C.,Joly,M.,Moultaka,J.,Pelat,D.,&SeroteRoos,M.2000,A&A, Hopkins,A.M.,etal.2003,ApJ,599,971 357,850 Jackson,N.,&Browne,I.W.A.1990,Nature,343,43 Boroson,T.A.,&Green,R.F.1992,ApJS,80,109 Jahnke,K.,etal.2004,ApJ,614,568 Canalizo,G.,&Stockton,A.2000,ApJ,528,201 Kauffmann,G.,etal.2003,MNRAS,346,1055 Cardelli,J.A.,Clayton,G.C.,&Mathis,J.S.1989,ApJ,345,245 Kauffmann,G.,&Haehnelt,M.G.2000,MNRAS,311,576 Cid Fernandes, R., Jr., Heckman, T. M., Schmitt, H. R., Golzález Delgado, Kennicutt,R.C.1998,ARA&A,36,189 R.M.,&Storchi-Bergmann,T.2001,ApJ,558,81 Kewley,L.J.,Dopita,M.A.,Sutherland.R.S.,Heisler,C.A.,&Trevena,J. Coleman,G.D.,Wu,C.-C.,&Weedman,D.W.1980,ApJS,43,393 2001,ApJ,556,121 DiMatteo,T.,Springel,V.,&Hernquist,L.2005,Nature,433,604 Kewley,L.J.,Geller,M.J.,&Jansen,R.A.2004,AJ,127,2002 Ferland,G.J.,Korista,K.T.,Verner,D.A.,Ferguson,J.W.,Kingdon,J.B.,& Magorrian,J.,etal.1998,AJ,115,2285 Verner,E.M.1998,PASP,110,761 Martini, P. 2004, in Carnegie Observatories Astrophysics Series, Vol. 1: Ferland,G.J.,&Netzer,H.1983,ApJ,264,105 Coevolution of Black Holes and Galaxies, ed. L. C. Ho (Cambridge: Ferland,G.J.,&Osterbrock,D.E.1986,ApJ,300,658 CambridgeUniv.Press),170 Ferrarese,L.,&Merritt,D.2000,ApJ,539,L9 Nagao,T.,Murayama,T.,&Taniguchi,Y.2001,ApJ,546,744 FilippenkoA.V.,&Halpern,J.P.1984,ApJ,285,458 Osterbrock,D.E.1989,AstrophysicsofGaseousNebulaeandActiveGalactic Francis,P.J.,Hewett, P.C.,Foltz,C.B.,Chaffee, F.H.,Weymann,R.J.,& Nuclei(MillValley,CA:Univ.ScienceBooks) Morris,S.L.1991,ApJ,373,465 Ptak, A., Zakamska, N. L., Strauss, M. A., Krolik, J. H., Heckman, T. M., Gebhardt,K.,etal.2000,ApJ,539,L13 Schneider,D.P.,&Brinkmann,J.2006,ApJ,inpress(astro-ph/0510204) Genzel,R.,etal.1998,ApJ,498,579 Robertson,B.,Hernquist,L.,Cox,T.J.,DiMatteo,T.,Hopkins,P.F.,Martini, Gerssen, J., van der Marel, R. P., Axon, D., Mihos, J. C., Hernquist, L., & P.,&Springel,V.2006,ApJ,submitted(astro-ph/0506038) Barnes,J.E.2004,AJ,127,75 Sanders, D. B., Soifer, B. T., Elias, J. H., Madore, B. F., Matthews, K., Grandi,S.A.1982,ApJ,255,25 Neugebauer,G.,&Scoville,N.Z.1988,ApJ,325,74 Greene,J.E.,&Ho,L.C.2004,ApJ,610,722 Schlegel,D.J.,Finkbeiner,D.P.,&Davis,M.1998,ApJ,500,525 ——.2005a,ApJ,627,721 Scoville,N.Z.,Frayer,D.T.,Schinnerer,E.,&Christopher,M.2003,ApJ,585, ——.2005b,ApJ,630,122 L105 Grevesse,N.,&Anders,E.1989,inAIPConf.Proc.183,CosmicAbundances Silk,J.,&Rees,M.J.1998,A&A,331,L1 ofMatter,ed.C.J.Washington(NewYork:AIP),1 Solomon,P.M.,&Sage,L.J.1988,ApJ,334,613 Haas,M.,etal.2003,A&A,402,87 Spergel,D.N.,etal.2003,ApJS,148,175 Haehnelt,M.G.,&Rees,M.J.1993,MNRAS,263,168 Storchi-Bergmann,T.1991,MNRAS,249,404 Hamann, F., Dietrich, M., Sabra, B. M., & Warner, C. 2004, in Carnegie Storchi-Bergmann,T.,Schmitt,H.R.,Calzetti,D.,&Kinney,A.L.1998,AJ, Observatories Astrophysics Series, Vol. 4: Origin and Evolution of the 115,909 Elements, ed. A. McWilliam & M. Rauch (Cambridge: Cambridge Univ. Stoughton,C.,etal. 2002,AJ,123,485 Press),443 Strauss,M.A.,etal.2002,AJ,124,1810 Hes,R.,Barthel,P.D.,&Fosbury,R.A.E.1996,A&A,313,423 VandenBerk,D.E.,etal.2001,AJ,122,549 Ho, L. C. 2004, ed., Carnegie Observatories Astrophysics Series, Vol. 1: Veilleux,S.,&Osterbrock,D.E.1987,ApJS,63,295 Coevolution of Black Holes and Galaxies (Cambridge: Cambridge Univ. York,D.G.,etal.2000,AJ,120,1579 Press) Zakamska,N.L.,etal.2003,AJ,126,2125 ——.2005,ApJ,629,680 ——.2005,AJ,129,1212

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.