ebook img

Constraints on the shapes of galaxy dark matter haloes from weak gravitational lensing PDF

25 Pages·2012·1.58 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Constraints on the shapes of galaxy dark matter haloes from weak gravitational lensing

A&A545,A71(2012) Astronomy DOI:10.1051/0004-6361/201219295 & (cid:2)c ESO2012 Astrophysics Constraints on the shapes of galaxy dark matter haloes from weak gravitational lensing E.vanUitert1,3,H.Hoekstra1,T.Schrabback2,3,D.G.Gilbank4,M.D.Gladders5,andH.K.C.Yee6 1 LeidenObservatory,LeidenUniversity,NielsBohrweg2,2333CALeiden,TheNetherlands e-mail:[email protected] 2 KavliInstituteforParticleAstrophysicsandCosmology,StanfordUniversity,382viaPuebloMall,Stanford,CA94305-4060,USA 3 Argelander-InstitutfürAstronomie,AufdemHügel71,53121Bonn,Germany 4 SouthAfricanAstronomicalObservatory,POBox9,Observatory7935,SouthAfrica 5 DepartmentofAstronomyandAstrophysics,UniversityofChicago,5640S.EllisAve.,Chicago,IL60637,USA 6 DepartmentofAstronomyandAstrophysics,UniversityofToronto,50St.GeorgeStreet,Toronto,Ontario,M5S3H4,Canada Received28March2012/Accepted17June2012 ABSTRACT Westudytheshapesofgalaxydarkmatterhaloesbymeasuringtheanisotropyoftheweakgravitationallensingsignalaroundgalaxies inthesecondRed-sequenceClusterSurvey(RCS2).Wedeterminetheaverageshearanisotropywithinthevirialradiusforthreelens samples: the “all” sample, which contains all galaxies with 19 < mr(cid:3) < 21.5, and the “red” and “blue” samples, whose lensing signalsaredominatedbymassivelow-redshiftearly-typeandlate-typegalaxies,respectively.Tostudytheenvironmentaldependence ofthelensingsignal,weseparateeachlenssampleintoanisolatedandclusteredpartandanalysethemseparately.Weaddressthe impact of several complications on the halo ellipticity measurement, including PSF residual systematics in the shape catalogues, multipledeflections,andtheclusteringoflenses.Weestimatethattheimpactoftheseissmallforourlensselections.Furthermore, wemeasuretheazimuthaldependenceofthedistributionofphysicallyassociatedgalaxiesaroundthelenssamples.Wefindthatthese satellitespreferentiallyresidenearthemajoraxisofthelenses,andconstraintheanglebetweenthemajoraxisofthelensandthe averagelocationofthesatellitesto(cid:4)θ(cid:5)=43.7◦±0.3◦forthe“all”lenses,(cid:4)θ(cid:5)=41.7◦±0.5◦forthe“red”lensesand(cid:4)θ(cid:5)=42.0◦±1.4◦ forthe“blue”lenses.Wedonotdetectasignificantshearanisotropyfortheaverage“red”and“blue”lenses,althoughforthemost elliptical“red”and“blue”galaxiesitismarginallypositiveandnegative,respectively.Forthe“all”sample,wefindthattheanisotropy ofthegalaxy-masscross-correlationfunction(cid:4)f − f (cid:5) = 0.23±0.12,providingweaksupportfortheviewthattheaveragegalaxy 45 isembeddedin,andpreferentiallyalignedwith,atriaxialdarkmatterhalo.AssuminganellipticalNavarro-Frenk-Whiteprofile,we findthattheratioofthedarkmatterhaloellipticityandthegalaxyellipticity f =e /e =1.50+1.03,whichforameanlensellipticity h h g −1.01 of0.25correspondstoaprojectedhaloellipticityofe =0.38+0.26ifthehaloandthelensareperfectlyaligned.Forisolatedgalaxies h −0.25 ofthe“all”sample,theaverageshearanisotropyincreasesto(cid:4)f − f (cid:5) = 0.51+0.26 and f = 4.73+2.17,whilstforclusteredgalaxies 45 −0.25 h −2.05 thesignalisconsistentwithzero.Theseconstraintsprovidelowerlimitsontheaveragedarkmatterhaloellipticity,asscatterinthe relativepositionanglebetweenthegalaxiesandthedarkmatterhaloesisexpectedtoreducetheshearanisotropybyafactor∼2. Keywords.gravitationallensing:weak–galaxies:halos 1. Introduction thegravitationalpotential.Onsmallscales(∼fewkpc),haloel- lipticity estimates have been obtained throughthe combination Overthelastfewdecadesacoherentcosmologicalparadigmhas of strong lensing and stellar dynamics (e.g. van de Ven et al. developed,ΛCDM,whichprovidesaframeworkforthestudyof 2010; Dutton et al. 2011; Suyu et al. 2012), planetary nebulae theformationandevolutionofstructureintheUniverse.N-body (e.g. Napolitano et al. 2011) and HI observations in late-type simulationsthatarebasedonΛCDM predictthat(dark)matter galaxies (e.g. Banerjee & Jog 2008; O’Brien et al. 2010). On haloescollapse such that their density profilesclosely followa largerscales,thedistributionofsatellitegalaxiesaroundcentrals Navarro-Frenk-Whiteprofile(NFW;Navarroetal.1996),which hasbeenused(e.g.Bailinetal.2008),butsuchstudieshaveonly isinexcellentagreementwithobservations.Anotherfundamen- providedconstraintsforrichsystemsthatmaynotberepresen- talpredictionfromsimulationsisthatthehaloesaretriaxial(e.g. tativeforthetypicalgalaxyintheUniverse. Dubinski& Carlberg1991;Allgoodetal. 2006),whichappear Weakgravitationallensingdoesnotdependonthepresence elliptical in projection. This prediction of dark matter haloes, ofopticaltracersandiscapableofprovidingellipticityestimates aswellasmanyothersconcerningtheevolutionoftheirshapes on a large range of scales (between a few kpc to a few Mpc). (e.g. Vera-Ciro et al. 2011), the effect of the central galaxy on Therefore it is a powerfulobservationaltechnique to study the the darkmatter halo shape (e.g.Kazantzidiset al. 2010;Abadi ellipticity of dark matter haloes. In weak lensing the distortion et al. 2010; Machado & Athanassoula 2010) and their depen- oftheimagesoffaintbackgroundgalaxiesduetothedarkmat- dence on environment (e.g. Wang et al. 2011), remain largely ter potentialsof interveningstructures,the lenses, ismeasured. untestedobservationally. This has been used to determine halo masses (e.g. van Uitert Directobservationalconstraintsonthehaloellipticitieshave et al. 2011) as well as the extent of haloes. If galaxies pref- proventobedifficult,mainlyduetothelackofusefultracersof erentially align (or anti-align) with respect to the dark matter ArticlepublishedbyEDPSciences A71,page1of25 A&A545,A71(2012) haloesinwhichtheyareembedded,thelensingsignalbecomes that might have altered the observed shear anisotropy, and in anisotropic.Thissignaturecanbeusedtoconstraintheelliptic- Sect. 4 we study the impact of two of them: multiple deflec- ityofdarkmatterhaloesofgalaxies(Brainerd&Wright2000; tionandtheclusteringofthelenses.Theshearanisotropymea- Natarajan&Refregier2000). surementsareshownandinterpretedinSect.5.Weconcludein The core assumption in the weak-lensing-based halo ellip- Sect.6.ThroughoutthepaperweassumeaWMAP7cosmology ticity studiesis thatthe orientationof galaxiesand darkmatter (Komatsu et al. 2011) with σ8 = 0.8, ΩΛ = 0.73, ΩM = 0.27, haloesarecorrelated;iftheyarenot,theshearsignalisisotropic Ω = 0.046 and the dimensionlessHubble parameter h = 0.7. b andcannotbeusedtoconstraintheellipticityofthehaloes.The The errorsonthe measuredandderivedquantitiesin this work relativealignmentbetweenthebaryonsandthedarkmatterhas generally show the 68% confidence interval, unless explicitly been addressed in a large number of studies based on numer- statedotherwise. ical simulations (e.g. van den Bosch et al. 2002, 2003; Bailin etal.2005;Kangetal.2007;Bettetal.2010;Hahnetal.2010; 2. Lensinganalysis Deasonetal.2011),instudiesbasedonthedistributionofsatel- lite galaxies around centrals (Wang et al. 2008; Agustsson & ForourlensinganalysisweusetheimagingdatafromtheRCS2 Brainerd 2010) and in studies based on the ellipticity correla- (Gilbanket al. 2011).The RCS2 is a nearly900 squaredegree tion function (Faltenbacher et al. 2009; Okumura et al. 2009). imaging survey in three bands (g(cid:3), r(cid:3) and z(cid:3)) carried out with Thegeneralconsensusisthatalthoughthegalaxyanddarkmat- theCanada-France-HawaiiTelescope(CFHT)usingthe1square terarealignedonaverage,thescatterinthedifferentialposition degreecameraMegaCam.Inthiswork,weusethe∼700square angledistributionis large.Bett (2012)examineda broadrange degrees of the primary survey area. The remainder constitutes of galaxy-halo alignment models by combining N-body simu- the“Wide”componentoftheCFHTLegacySurvey(CFHTLS) lations with semi-analyticgalaxy formationmodels, and found whichwedonotconsiderhere.Weperformthelensinganalysis thatformostofthemodelsunderconsideration,thestackedpro- onthe8minexposuresofther(cid:3)-band(r(cid:3) ∼24.3),whichisbest jected axis ratio becomes close to unity. Consequently, the el- suitedforlensingwithamedianseeingliomf0.71(cid:3)(cid:3). lipticity of darkmatter haloesmay be difficultto measure with weaklensinginpractice. 2.1.Datareduction Knowledgeoftherelativealignmentdistributionisnotonly crucial for halo ellipticity studies, but also for studies of the The photometric calibration of the RCS2 is described in detail intrinsic alignmentsof galaxies. Numericalsimulations predict in Gilbank et al. (2011). The magnitudes are calibrated using that the shapes of neighbouring dark matter haloes are corre- thecoloursofthestellarlocusandtheoverlappingTwo-Micron lated(e.g.Splinteretal. 1997;Croft& Metzler2000;Heavens All-Sky Survey (2MASS), and have an accuracy better than etal.2000;Leeetal.2008).Theshapesofgalaxiesthatformin- 0.03magin eachbandcomparedto theSDSS. Thecreationof sidethesehaloesmaythereforebeintrinsicallyalignedaswell. the galaxyshape cataloguesis describedin detail in van Uitert Measuringthiseffectisinterestingasitprovidesconstraintson etal.(2011).Wereferreaderstothatpaperformoredetail,and structure formation. Also, the lensing properties of the large- presenthereashortsummaryofthemostimportantsteps. scale structure in the Universe, known as cosmic shear, are WeretrievetheElixir1 processedimagesfromtheCanadian affectedbyintrinsicalignments,andbenefitfromacarefulchar- Astronomy Data Centre (CADC) archive2. We use the THELI acterizationoftheeffect.Intrinsicalignmentsarestudiedobser- pipeline (Erben et al. 2005, 2009) to subtract the image back- vationally by correlating the ellipticities of galaxies as a func- grounds, create weight maps that we use in the object detec- tionofseparation;misalignmentscansignificantlyreducethese tion phase, and to identify satellite and asteroid trails. To de- ellipticitycorrelationfunctions(e.g.Heymansetal.2004). tect the objects in the images, we use SExtractor (Bertin & Todate,onlythreeobservationalweaklensingstudieshave Arnouts 1996). The stars that are used to model the PSF vari- detected the anisotropy of the lensing signal (Hoekstra et al. ation across the image are selected using size-magnitude dia- 2004;Mandelbaumetal.2006a;Parkeretal.2007).Thesestud- grams. All objects larger than 1.2 times the local size of the ieshaveprovidedonlytentativesupportfortheexistenceofel- PSF are identified as galaxies. We measure the shapes of the liptical dark matter haloes, as they were limited by either their galaxies with the KSB method (Kaiser et al. 1995;Luppino & surveysizeandlackofcolourinformation(Hoekstraetal.2004; Kaiser 1997; Hoekstra et al. 1998), using the implementation Parkeretal.2007)ortheirdepth(Mandelbaumetal.2006a).To describedbyHoekstraetal.(1998,2000).Thisimplementation improveonthese constraints,weuse the Red-sequenceCluster hasbeentestedonsimulatedimagesaspartoftheShearTesting Survey2(RCS2; Gilbanketal.2011).Covering900squarede- Programmes(STEP)(the“HH”methodinHeymansetal.2006; greeintheg(cid:3)r(cid:3)z(cid:3)-bands,alimitingmagnitudeofr(cid:3) ∼24.3and andMasseyetal.2007),andthesetestshaveshownthatitreli- amedianseeingof0.7(cid:3)(cid:3),thissurveyisverywellsluimitedforlens- ablymeasuresthe unconvolvedshapesofgalaxiesfora variety ing studies (see van Uitert et al. 2011). Using the colours we ofPSFs.Finally,thesourceellipticitiesarecorrectedforcamera selectmassiveluminousforegroundgalaxiesatlowredshifts.To shear,whichoriginatesfromslightnon-linearitiesinthecamera investigatewhethertheformationhistoriesandenvironmentaf- optics. Theresultingshape catalogueof the RCS2 containsthe fecttheaveragehaloellipticityofgalaxies,thelensesaresepa- ellipticitiesof2.2×107galaxies.Amoredetaileddiscussionof ratedbygalaxytypeandenvironment,andthesignalsarestudied theanalysiscanbefoundinvanUitertetal.(2011). separately. The structure of this paper is as follows. We describe the lensinganalysis, includingthe data reductionofthe RCS2 sur- 2.2.Lenses vey,thelensselectionandthedefinitionoftheshearanisotropy To study the halo ellipticity of galaxies, we measure the shear estimators, in Sect. 2. We present measurements using a sim- anisotropy of three lens samples. The first sample contains all ple shear anisotropy estimator in Sect. 3, and use it to study thepotentialimpactofpointspreadfunction(PSF)residualsys- 1 http://www.cfht.hawaii.edu/Instruments/Elixir/ tematics in the shape catalogues. Various complications exist 2 http://www1.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/cadc/ A71,page2of25 E.vanUitertetal.:Constraintsontheshapesofdarkmatterhaloes Table1.Propertiesofthelenssamples. Sample Nlens (cid:4)z(cid:5) (cid:4)Lr(cid:3)(cid:5) (cid:4)|eg|(cid:5) fiso M200 r200 rs [1010h7−02 L(cid:8)] [1010h−701M(cid:8)] [h−701kpc] [h−701kpc] All 1681826 0.31 2.86 0.25 0.20 21.1+0.5 150+1 23.9+0.2 −1.4 −3 −0.5 Red 136196 0.43 8.91 0.20 0.41 138±8 280±5 54.6+1.1 −1.0 Blue 147079 0.31 4.68 0.26 0.55 44.4+3.3 192±5 32.7+0.8 −3.8 −0.9 Notes.Columns:numberoflenses,meanredshift,meanluminosity,meanellipticity,fractionoflensesthatareisolated,virialmass,virialradius, andscaleradius. galaxieswith19<mr(cid:3) <21.5,andisreferredtoasthe“all”sam- of massive late-type lenses. Finally, we note that ∼70% of the ple.Thissampleconsistsofdifferenttypesofgalaxiesthatcover “all”sampleareconsideredbluebasedontheiru(cid:3)−r(cid:3)colours. a broad range in luminosity and redshift. The shear anisotropy Tostudythesecondobjectiveofthelensselection,i.e.tose- measurement of this sample enables us to determine whether lectmassiveandbrightlow-redshiftlenses,weapplythecolour galaxiesareonaveragealignedwiththeirdarkmatterhaloes. cuts to the CFHTLS W1 photometric catalogue, and show the The formation history of galaxies differs between galaxy distribution of absolute magnitudes and photometric redshifts types, and consequentlythe relation betweenbaryonsand dark of the lens samples in Fig. 1. We find that the “red” lens sam- matter may differ too. Therefore, the average dark matter halo ple consists of galaxies with absolute magnitudes in the range shapes,andtheorientationofgalaxieswithinthesehaloes,might −24 < M < −22,andmostwithredshiftsbetween0.3and0.6. r dependongalaxytype.Toexaminethis,weseparatethelenses Thegalaxiesfromthe“blue”samplehaveabsolutemagnitudes asafunctionoftheirtype. in the range −24 < M < −20, and are located at redshifts r Various selection criteria have been employed to separate between 0.1 and 0.6. For the blue galaxies, we cannot define early-type from late-type galaxies. In most cases, galaxies are a criterion that exclusively selects luminouslenses in a narrow either selected based on the slope of their brightness profiles redshiftrange,basedontheg(cid:3)r(cid:3)z(cid:3)magnitudesalone.Finally,the (Mandelbaum et al. 2006b; van Uitert et al. 2011), or on their “all” sample has the broadest luminosity and redshift distribu- colours (Mandelbaum et al. 2006a; Hoekstra et al. 2005). To tion. It is possible to narrow down the redshift range by dis- study how these selection criteria relate, Mandelbaum et al. carding the lenses with the largest apparent magnitudes from (2006a)comparetheselectionbasedontheirSDSSu−rmodel eachsample.Wechoosenotto,however,becausethislowersthe colour to the selection based on the frac_dev parameter3, and signal-to-noiseofthelensingmeasurement,whichconsequently findthattheassignedgalaxytypesagreefor90%ofthegalaxies. broadenstheconstraintsontheaveragehaloellipticity. We choose to separate the galaxy types based on their Note that due to the lack of a very blue observing band in colours, as the g(cid:3)-, r(cid:3)- and z(cid:3)-band colours are readily avail- the CFHTLS, the photometric redshifts below 0.2 are biased able for all galaxies in the RCS2. The aim of the separation high(Hildebrandtet al. 2012).As a consequence,a fractionof is two-fold: to make a clean separation between the red qui- the galaxies of the “blue” lens sample may have been shifted escent galaxies which typically exhibit early-type morpholo- tohigherredshifts,andthuslargerluminosities.Themeanred- giesandbluestar-forminggalaxiesthattypicallyhavelate-type shift and luminosityof the sample may thereforebe somewhat morphologies,andtoselectmassivelensesatlowredshiftstoop- smaller thanthe valuesquotedin Table 1, andthe distributions timize the lensing signal-to-noise,and minimize potential con- showninFig.1areonlyindicative. tributions from multiple deflections (see Sect. 4.1). To deter- Sincethedarkmatterhaloellipticityismeasuredrelativeto mine where these massive low-redshift galaxies reside in the theellipticity ofthegalaxy,itis interestingtoexaminethe dis- colour-magnitude plane, we use the photometric redshift cata- tribution of the latter. In Fig. 2, we show the ellipticity distri- loguesoftheCFHTLSWidefromtheCFHTLenScollaboration bution of the lens samples; the mean galaxy ellipticity of each (Hildebrandtetal.2012),anddefineourboxesaccordingly;de- sample is given in Table 1. The ellipticity distributions of the tails of the selection of the “red” and “blue” lens sample are “all” and “blue” sample are comparable, and are broader than describedin AppendixA. Note thatthese lenssamplesoverlap the“red”sampleone,becausethe“all”and“blue”samplehave with the “all” sample, but not with each other. Details of the aconsiderablefractionofdiscgalaxies.Thedifferencesbetween samplesaregiveninTable1. the ellipticity distributions have consequences for the weight- To study how well we can separate early-types from late- ingschemeofthelensinganisotropymeasurements,aswewill types, we compare our selection to previously employed sep- discuss in Sect. 2.3. In the analysis, we only use galaxies with aration criteria. Details of the comparison can be found in 0.05 < e < 0.8, which excludes round lenses that do not Appendix A. We find that the “red” sample is very similar to g have a well-defined position angle, and very elliptical galaxies the selection based on the u(cid:3) − r(cid:3) colour, whilst ∼58% of the whoseshapesarepotentiallyaffectedbyneighboursand/orcos- “blue”sampleareactuallyredaccordingtotheiru(cid:3)−r(cid:3) colour. micrays. Most of these contaminants of the “blue” sample are not mas- Theellipticityofdarkmatterhaloesmaydependontheen- sive, and actually dilute the lensing signal. The purity of the vironmentofagalaxy.Wethereforedividethelenssamplesfur- “blue”samplecouldbeimprovedbyshiftingtheselectionboxes therintoisolatedandclusteredones,andstudythelensingsig- tobluercolours,butthisattheexpenseofremovingthemajority nalseparately.Aswelackredshiftsforallthegalaxies,wehave 3 The frac_dev parameter is determined by simultaneously fit- to use an isolation criterionbased on projectedangularsepara- ting frac_deV times the best-fitting de Vaucouleur profile plus tions: if the lens has a neighbouringgalaxywithin a fixed pro- (1-frac_deV) times the best-fitting exponential profile to an object’s jected separation that is brighter (in apparent magnitude) than brightnessprofile. thelens,itisselectedfortheclusteredsample.Ifthelensisthe A71,page3of25 A&A545,A71(2012) Fig.1.Numberoflensesasafunctionofabsolutemagnitudea)andredshiftb)forthethreelenssamples,obtainedbyapplyingidenticalcutsto theCFHTLSW1photometricredshiftcataloguefromtheCFHTLenScollaboration(Hildebrandtetal.2012).The“all”sample(blacksolidlines) hasthebroadestdistributions,andcoversabsoluter(cid:3)-bandmagnitudesbetween−18and−24,andredshiftsbetween0and0.6.Theluminosities ofthe“blue”sample(bluedottedlines)areintherange−24 < M < −20,withredshifts0.15 < z < 0.6.The“red”sample(purpledot-dashed r lines)hasthenarrowestdistributions,withluminosities−24< M <−22andredshifts0.3<z<0.6. r environmentselectionbasedonapparentmagnitudescannotbe verypure;afractionofthelensesfromtheisolatedsamplemay still be the brightest galaxy in a cluster. Some of the lenses of the clustered sample may in reality be isolated, but have been selected for the clustered sample due to the presence of bright foregroundgalaxies.However,thedifferencebetweenthelarge- scalelensingsignaloftheisolatedandtheclusteredsamplein- dicates that our selection criterion works reasonably well. The fraction of the lens sample that is isolated, f , is indicated in iso Table1. 2.3.Shearanisotropy The lensing signal is quantified by the tangential shear, γ, t around the lenses as a function of projected separation. As the distortionsaresmallcomparedtotheshapenoise,thetangential shear needsto be azimuthallyaveragedovera large numberof lens-sourcepairs: ΔΣ(r) (cid:4)γ(cid:5)(r)= , (1) t Σ crit whereΔΣ(r) = Σ¯(<r)−Σ¯(r)isthedifferencebetweenthemean projectedsurfacedensityenclosedbyr andthemeanprojected Fig.2.Ellipticitydistributionoftheg(cid:3)r(cid:3)z(cid:3)-colourselectedlenssamples. surface density at a radius r, and Σ is the critical surface crit The dashed lines indicate the ellipticity cuts we apply to exclude the density: roundest andmost ellipticallenses. Theellipticitydistributionsof the “all”andthe“blue”samplearesimilar,butthe“red”samplecontains c2 D relativelymoreroundgalaxies. Σ = s , (2) crit 4πGDD l ls withD,D andD theangulardiameterdistancetothelens,the l s ls brightestobject,itisselectedfortheisolatedsample.Wetestvar- source,andbetweenthelensandthesourcerespectively.Since iousvaluesforthefixedminimumseparation,andcomparethe we lack redshifts, we select galaxies with 22 < mr(cid:3) < 24 and tangential shear at large scales in Appendix B. Based on these areliableshapeestimateassources.Weobtaintheapproximate results,weuseaminimumseparationof1arcmin.Notethatan sourceredshiftdistributionbyapplyingidenticalmagnitudecuts A71,page4of25 E.vanUitertetal.:Constraintsontheshapesofdarkmatterhaloes A value of f that is significantly larger (smaller) than mm unity at small scales indicates that the dark matter haloes are (anti-)alignedwiththegalaxies.Systematiccontributionstothe shear,however,maybiastheanisotropyofthelensingsignal.If the systematic shear is fairly constant on the scales where we measure the signal, it can be removed following Mandelbaum etal.(2006a).Inthisapproach,thecrossshearcomponentcom- puted in the regionsthat are rotated by 45◦ with respect to the major/minoraxes (region C and D in Fig. 3), γ×,C−D ≡ (γ×,C − γ×,D)/2,is subtracted fromthe tangentialshear. Spuriousshear Fig.3.Schematicofalensgalaxy.Thetangentialshearismeasuredin signalscontributeequallytoγt,A,γt,B andγ×,C−D,andarethere- regions A and B, the cross shear ismeasured in regions C and D. The foreremoved.Thecorrectedratiothenbecomes: crossshearissubtractedfromthetangentialsheartocorrectforsystem- aticcontributionstotheshear. fcorr(r)= γt,B(r)+γ×,C−D(r)· (5) mm γt,A(r)−γ×,C−D(r) tSourtvheeyp”hfioetoldmse(trIilcberretdesthiaftl.c2a0ta0l6o)g,uaensdoffinthdeaCFmHedTiLanS s“oDuerecpe Ifγ×,C−(cid:3)D iszero√,theerrorson fmcomrr approximatelyincreasebya redshift of zs = 0.74. This redshift distribution is not exactly factor 1+1/ 2;ifγ×,C−D isnon-zero,however,theerrorsof identical to the one of the sources due to the additional shape fcorr caneitherbecomelargerorsmallerthanthoseof f . mm mm parametercuts appliedto the sourcesample, which are weakly Alternatively, we can assume that the differential surface dependenton apparentmagnitude,but the difference is neglig- density distribution can be described by an isotropic part plus ble. To convert the tangential shear to ΔΣ, we use the average anazimuthallyvaryingpart(Mandelbaumetal.2006a): criticalsurfacedensitythatisdeterminedbyintegratingoverthe ΔΣ (r)=ΔΣ (r)[1+2fe cos(2Δθ)], (6) sourceredshiftdistribution: model iso g (cid:2) c2 1 ∞ D where e is the observedellipticity of the lens, Δθ is the angle (cid:4)Σ (cid:5) = dz p(z ) s ; g crit 4πGA s s DD from the major axis, and f is the ratio of the amplitude of the (cid:2) ∞ norm zl l ls anisotropyofthelensingsignalandtheellipticityofthegalaxy, A = dz p(z ), (3) whichistheparameterwewanttodetermine.Mandelbaumetal. norm s s 0 (2006a)showthattheazimuthallyvaryingpartisgivenby: (cid:4) withp(zs)theredshiftdistributionofthesources,andzlthemean wΔΣe cos(2Δθ) rmeedashsuifrteotfhtehecrloensssssahmeapr,leγu×s,etdhetocdoemtepromniennetDolfatnhdeDshlse.aWr ienatlhsoe fΔΣiso(r)= 2i(cid:4)iiwiei2g,igc,ios2(2Δθii) , (7) directionof45◦ fromthelens-sourceseparationvector.Theaz- withitheindexofthelens-sourcepairs,w theweightappliedto imuthallyaveragedcrossshearsignalshouldvanishsincegrav- i theellipticityestimateofeachsourcegalaxy,whichiscalculated itational lensing does not produce it. If this signal is non-zero, from the shape noise, and e the ellipticity of the lens. This however, it indicates the presence of systematics in the shape g,i ellipticityisalsodeterminedusingtheKSBmethod,anditisa catalogues.Asthe lensesarelargeandtheirlightmaycontam- measure of (1−R2)/(1+R2) with R the axis ratio (R ≤ 1) if inate the lensing signal near the lenses, we only consider the the lens has elliptical isophotes. To remove contributionsfrom signalonscaleslargerthan0.1arcminforlenseswithmr(cid:3) > 19, systematicshear,wealsomeasure andscaleslargerthan0.2arcminforlenseswithmr(cid:3) <19.These (cid:4) criteriaarebasedonthereductionofthesourcenumberdensity wΔΣ e cos(2Δθ +π/2) near the lenses, as discussed in Appendix D. Hence the small- f ΔΣ (r)= i (cid:4)i i,45 g,i i , (8) 45 iso 2 we2 cos2(2Δθ +π/2) est scales we probe is 28 kpc for the “all” and “blue” sample, i i g,i i and 34 kpc for the “red” sample at the mean lens redshift. To whereΣ istheprojectedsurfacedensitymeasuredbyrotating removecontributionsofsystematicshear(from,e.g.,theimage thesourci,4e5galaxiesby45◦.Thesystematicshearcorrectedhalo masks),wesubtractthesignalcomputedaroundrandompoints ellipticityestimatoristhengivenby(f − f )ΔΣ (r).Theaver- fromthesignalcomputedaroundthereallenses(seevanUitert 45 iso agevaluesof f , fcorrand(f−f )withinacertainrangeofpro- etal.2011). mm mm 45 jectedseparationsaredeterminedbycalculatingtheratiooftwo Thelensingsignalaroundtriaxialdarkmatterhaloeshasan measurements for each radial bin, and subsequently averaging azimuthal dependence.If galaxies are preferentially aligned or oriented at a 90◦ angle (anti-aligned) with respect to the dark thatratiowithintherangeofinterest.Weassumethattheerrors ofeachmeasurementareGaussian.Consequently,theprobabil- matterdistribution,thelensingsignalalongthegalaxies’major itydistributionoftheratioisasymmetric,whichwehavetoac- axisisrespectivelylargerorsmallerthanalongthe minoraxis, countfor.Wedescribehowtocalculatethemeanandtheerrors andthisdependencecanbedetermined. oftheratioforaradialbin,andhowtoaveragethatratiowithina To measurethe anisotropyin the signal, we first follow the certainrangeofprojectedseparations,inAppendixC.Notethat approach used by Parker et al. (2007). For each lens, the tan- to convert f, the anisotropy in the shear field, to f = e /e , gential shear is measured separately using the sources that lie h h g within45◦ofthesemi-majoraxis(γ ),andusingthosethatlie the ratio of the ellipticity of the dark matter halo and the el- within 45◦ of the semi-minor axis (tγ,B ) (indicated by B and A lipticity of the galaxy, we have to adopt a density profile (e.g. t,A f/f =0.25forasingularisothermalellipsoid,seeMandelbaum in Fig. 3, respectively). The ratio of the shears captures the h etal.2006a). anisotropyofthesignal: ItisclearfromFig.2thattheellipticitydistributionsofthe γ (r) red and blue lens samples are different. It is unclear, however, f (r)= t,B · (4) mm γ (r) whethertheunderlyingellipticitydistributionofthedarkmatter t,A A71,page5of25 A&A545,A71(2012) haloesdiffersaswell.Iftheunderlyingdistributionissimilarfor and is only larger than the SIE signal on very small scales. If both samples, the projected dark matter halo ellipticity cannot noredshiftinformationisavailableforthelenses,therapidde- depend linearly on the galaxy ellipticity. Hence Eq. (6) might cline of the shear anisotropy is particularlydisadvantageousas notbeoptimal,andcoulddependdifferentlyone .Wetherefore thesignalcanonlybeaveragedasafunctionofangularsepara- g generaliseEq.(7)to tion.Consequently,theanisotropysignalissmearedout,making (cid:4) it harder to detect. Finally, if the galaxy and the halo are mis- wΔΣeα cos(2Δθ) fΔΣ (r)= A i(cid:4)i i g,i i ; (9) aligned,thesignaldecreasesevenfurther.Theseconsiderations iso 2 we2αcos2(2Δθ) showthatweneedverylargelenssamplestoachievesufficient i i g,i i signal-to-noisetoenableadetection,anditmotivatesourchoice A= Σie2gα,i Σieg,i, (10) toselectbroadlenssamples. Σeα Σe2 i g,i i g,i 2.4.Contaminationcorrection and calculate it for differentvalues of α. Equation (8) changes Afractionofoursourcegalaxiesarephysicallyassociatedwith similarly.ThefactorAinEq.(9)scaleseachmeasurementof f to the “standard” of α = 1 as used in Mandelbaum et al. thelenses.Theycannotberemovedfromthesourcesamplebe- (2006a), which eases a comparison of f for different values causewelackredshifts.Sincethesegalaxiesarenotlensed,but are included in calculating the average lensing signal, they di- of α. The optimal weight results in the best signal-to-noise of lutethesignal.Tocorrectforthisdilution,weboostthelensing themeasurement. The different halo ellipticity estimators can in principle be signalwith a boostfactor,i.e. the excesssourcegalaxydensity ratio aroundthe lenses, 1+ f (r). Thisis the ratio of the local used to study the relation between the ellipticity of the galaxy cg total(satellites+sourcegalaxies)numberdensityandtheaver- andtheellipticityoftheirdarkmatterhosts.Inparticular,Eq.(5) agesourcegalaxynumberdensity.Thiscorrectionassumesthat is defined such that it dependson the average darkmatter halo the satellite galaxiesare randomlyoriented.If the satellites are ellipticity,whilstEq.(9)issensitivetotherelationbetweenthe preferentiallyradiallyalignedtothelens,thecontaminationcor- galaxyellipticityandthedarkmatterellipticity.Hencebycom- paring the fΔΣ (r) for different values of α, we gain insight rectionfortheazimuthallyaveragedtangentialshearwillbetoo iso low.Iftheradialalignmentofthephysicallyassociatedgalaxies in the relation between the ellipticity of the galaxies and their hasanazimuthaldependence,theshearanisotropycaneitherbe darkmatterhaloes.Notethatasanalternative,wecouldweight biasedhighorlow. Eq.(5)withthelensellipticity. This type of intrinsic alignment has been studied with Itisusefultoassessthesignal-to-noiseweexpecttoobtain seemingly different results; some authors (e.g. Agustsson & for the shear anisotropy measurement compared to the signal- Brainerd 2006; Faltenbacher et al. 2007) who determined the to-noiseofthetangentialshearitself.Forthispurpose,wewrite galaxyorientationusingtheisophotalpositionangles,haveob- Eq.(6)initsmostbasicform: servedastrongeralignmentthanothers(e.g.Hirataetal.2004; ΔΣ (r)=ΔΣ (r)[1+ f¯cos(2Δθ)], (11) Mandelbaumetal.2005a)whousedgalaxymoments.Thisdis- model iso crepancy was attributed by Siverd et al. (2009) and Hao et al. whichhasthefollowingsolutionfortheanisotropicpart: (2011) to the different definitions of the position angle of a (cid:4) wΔΣ cos(2Δθ) galaxy; the favoured explanation is that light from the central f¯ΔΣ = (cid:4)i i i i · (12) galaxy contaminatesthe light from the satellites, which affects iso w cos2(2Δθ) i i i theisophotalpositionanglemorethanthegalaxymomentsone. Aswe measuretheshapesofsourcegalaxiesusinggalaxymo- Ifthedarkmatterhaloisdescribedbyasingularisothermalel- ments,weexpectthatintrinsicalignmenthasaminorimpactat lipsoid (SIE; see Mandelbaum et al. 2006a), and if the galaxy isperfectlyalignedwiththehalo,we find f¯ = e /2.Hencethe mostandcanbeignored. h To study whetherthe distribution of source galaxieshas an anisotropic signal is a factor e /2 lower than the isotropic sig- h nal. To assess the relative size of the errorof f¯ΔΣ compared azimuthaldependence,weperformtheanalysisseparatelyusing iso toΣiso,weinsertEq.(11)intoEq.(12),defineanewweig(cid:6)h(cid:4)tw(cid:5)i ≡ the galaxies residing within 45 degrees of the major axis, and within 45 degrees of the minor axis. On small scales, the ex- wicos2(2Δθi),anddeterminetheerrorusingσf¯ΔΣiso =1/ iw(cid:5)i. tendedlightofbrightlensesleadstoerroneousskybackground Sin(cid:6)ce(cid:4)wiandcos2(2Δθi)ar√euncorrelated,itfollowstha(cid:6)t(cid:4)σf¯ΔΣiso = estimates, which causes a local deficiency in the source num- 1/ iwi(cid:4)cos2(2Δθ)(cid:5) = 2σΔΣiso, with σΔΣiso = 1/ √ iwi the ber density. This deficiency is different along the major axis error on ΔΣ . Hence the error of f¯ΔΣ is a factor 2 larger and minor axis, which could bias the correction we make to iso iso thantheerrorofΔΣ .Consequently,thesignal-to-noiseofthe account for physically associated galaxies in the source sam- anisotropic part of thisoe lensing signal, (S/N) , is related to the ple.Todeterminewhichscalesareaffected,westudythesource ani signal-to-noiseoftheisotropicpart,(S/N) ,as: number density around galaxies as a function of their bright- iso (cid:7) (cid:8) ness and ellipticity. The results are shown in Appendix D. For (S/N) = 0√.15 eh (S/N) . (13) galaxieswithmr(cid:3) <19,wefindalargerdeficiencyalongthema- ani 2 0.3 iso jor axis onprojectedscales smaller than0.2 arcmin;forgalax- ies with mr(cid:3) > 19, the deficiency is larger on projected scales In the best-case scenario, the expected signal-to-noise of the smaller than 0.1 arcmin. Therefore, we only use scales larger shearanisotropyisanorderofmagnitudelowerthanthesignal- than 0.1 arcmin for galaxies with mr(cid:3) > 19, and scales larger to-noiseoftheazimuthallyaveragedshear.Applyingthecorrec- than 0.2 arcmin for galaxies with mr(cid:3) < 19. The overdensities tion to remove systematic contributions√increases the errors of around the lens samples are shown in Fig. 4. We find that the theshearanisotropybyanotherfactorof 2.Ifthedarkmatteris source sample is only mildly contaminatedby physicallyasso- describedbyanellipticalNFW,thesignaldecreasesrapidlywith ciatedgalaxies,astheoverdensitiesreachamaximumexcessof increasingseparation (see Fig. 2 of Mandelbaumet al. 2006a), only 30%for the “red” lenses at the smallest projectedsepara- A71,page6of25 E.vanUitertetal.:Constraintsontheshapesofdarkmatterhaloes with1+f (r,Δθ)theazimuthallyvaryingexcessgalaxydensity cg ratio, and Δ(cid:2)Σ the unboosted lensing signal. We assume that iso 1+ f (r,Δθ) has a similar azimuthal dependenceas the shear, cg andcanbedescribedby 1+ fcg(r,Δθ)= Niso(r)+2NΔθ(r)eαgcos(2Δθ), (15) with α the exponent of the ellipticity used to weigh the shear measurement, N the azimuthally averaged boost factor iso andNΔθ theamplitudeoftheanisotropy.UsingaTaylorexpan- sion,wefindthattofirstorder f(r)= f(cid:10)(r)+ feff(r), (16) with feff(r) = ANΔθ(r)/Niso(r). To determine feff(r), we mea- sure both the angle-averaged boost factor, N (r) = N /N , iso LS LR where N denotes the number of lens-source pairs and N LS LR the number of pairs of lenses with(cid:4)random sources, and the azimuthally varying part, ξΔθ(r) = LSeαgcos(2Δθ)/NLR. For the adoptedmodelof the excessgalaxydensity ratio this gives Niso(r) = (cid:4)1+ fcg(r)(cid:5)Δθ, which is averaged over the angle, and ξΔθ =2NΔθ(r)e2gα.Thesemeasurementsarecombinedtogive dFiisgt.a4n.ceExtocetshsesloeunrscees.gTahlaexgyredeennssiqtyuarraetsio(balsueatfruianncgtiloens)oinfdpircoajteecttehde feff(r)= A(cid:4)1+ fcξgΔ(θr()r(cid:5))Δθ(cid:4)e2gα(cid:5)· (17) excess density ratio measured using sources within 45 degrees of the Wedeterminetheaveragevalueof feff(r)withinthevirialradius, major(minor)axis.Thearrowsindicatethelocationofthevirialradius andadditto(cid:4)f − f (cid:5).ThevaluesaretabulatedinTable3.Note atthemeanredshiftofthelenses.Wefindthattheexcessdensityratio 45 thatasimilarcorrectionisappliedinMandelbaumetal.(2006a). alongthemajoraxisishigherthanalongtheminoraxis,mostnoticeably forthe“red”sample.Pleasenotethedifferentscalesoftheverticalaxes. To compare the anisotropy of the distribution of satellites to the literature, we now assume that at a narrow radial range the excess galaxy density ratio can be described by 1+ f = cg tions. The excess source galaxy density ratio is a few percent Niso+N(cid:10)Δθcos(2Δθ).Wefitthistotheexcessdensityratiointhe largeralongthemajoraxisthanalongtheminoraxiswithinthe majorand minoraxis quadrants,separately for each radialbin. virialradiiofthelenssamples,mostnoticeablyforthe“red”lens We use these fits to compute (cid:4)θ(cid:5), the mean angle between the sample. locationofthesatellitesandthemajoraxisofthecentralgalaxy, The measured anisotropy is caused by two effects4: using anisotropicmagnification,and the presence of physically asso- (cid:11) π/2 creiadtsehdifstsouforcreosurthgaatlaaxreiesa,nwiseotcraonpnicoatldlyisednisttarnibguletetdh.eAtwsoweeffelacctsk. (cid:4)θ(cid:5)= (cid:11)0π/2dθθfcg(θ)· (18) dθf (θ) However, we estimate the impact of anisotropic magnification 0 cg for the lens samples in Appendix E, and find that even in the InFig.5,we show(cid:4)θ(cid:5) asa functionofprojectedseparationfor case where the galaxy and the dark matter halo are perfectly thethreelenssamples. aligned, the effect is small. We conclude therefore that the ob- We find that satellite galaxies preferentially reside near the servedanisotropyistheresultoftheanisotropyofthe distribu- majoraxisofthelenses,moststronglyforthe“red”lenses.We tionofsatellitegalaxies. determinetheweightedmeanof(cid:4)θ(cid:5)withinthevirialradius,and We correctthetangentialshearinthemajorandminoraxis find(cid:4)θ(cid:5) = 43.7◦±0.3◦ forthe“all”sample,(cid:4)θ(cid:5) = 41.7◦±0.5◦ quadrantforthecontaminationbysatellitesbymultiplyingwith for the “red” sample and (cid:4)θ(cid:5) = 42.0◦ ± 1.4◦ for “blue” sam- theirrespectiveexcessgalaxydensity ratio,beforewe measure ple.Additionally,forthe“red”lenseswefindthat(cid:4)θ(cid:5) becomes theshearratios.Tocalculatethecorrectionof(f − f ),weob- 45 moreisotropicatlargerprojectedseparations.Itisusefultocom- servehow fΔΣ (r)changesinthepresenceofphysicallyasso- iso pareourresultstopreviousstudies,thatarebasedonsimulations ciatedgalaxiesinthesourcesamplethatareanisotropicallydis- (e.g. Sales et al. 2007; Faltenbacher et al. 2008; Agustsson & tributed.RatherthanEq.(7),thequantityweactuallymeasureis Brainerd2010)andobservations(e.g.Brainerd2005;Agustsson (cid:5)fΔ(cid:2)Σ (r) = A (cid:9)wiΔΣieαg,icos(2Δθi); &200B8r;aiNnieerrden2b0e0r6g,e2t0a1l0.;2F0a1l1te)n.bInacthheerseetwaol.rk2s0,0(cid:4)7θ;(cid:5)Bisaiflionunedt atlo. iso N(cid:9)i 1+ fcg(r,Δθ) be in the range between 41◦ and 43◦ for red central galaxies, whilst no anisotropy is observed for blue central galaxies. We N = 2 we2αcos2(2Δθ), (14) i g,i i canonlymakeausefulcomparisonforthe“red”lenssample,as i thissampleiscomparabletopreviouslystudiedredgalaxysam- 4 AnothereffectismentionedinMandelbaumetal.(2006a)thatcould ples (i.e. predominantlycontaining red early-typegalaxies, the majorityofthemexpectedtobecentralsbasedontheirluminos- cause an anisotropic source density ratio: additional lensing by fore- groundgalaxies.Weestimatethatthishasanegligibleimpactbecause itydistribution).Wefindthattheconstraintsagreewell.Forthe thenumber of additional massive foreground galaxies issmall due to “blue”and“all” sample,we cannotmakea comparisonto pre- ourlenssampleselection. viousworkasthesesamplescontainamixtureofearly-typeand A71,page7of25 A&A545,A71(2012) Table2.Shearratiosforthelenssamples. Sample (cid:4)1/f (cid:5) (cid:4)1/fcorr(cid:5) mm mm All 1.15+0.10 0.87±0.09 −0.09 Red 0.93+0.10 0.81+0.11 −0.09 −0.10 Blue 1.16+0.19 1.04+0.21 −0.16 −0.17 lenslight,andatlargerseparationsneighbouringstructuresbias thelensingsignalhigh.ThebestfitM ,r andr aregivenin 200 200 s Table1.Notethatingeneral,thebestfitmassesarelowerthan themeanhalomassbecausetheshearofNFWprofilesdoesnot scalelinearlywithmass,andthedistributionofthehalomasses isnotuniform(Tasitsiomietal.2004;Mandelbaumetal.2005b; Cacciato et al. 2009; Leauthaud et al. 2012; van Uitert et al. 2011).Theresultinguncertaintyintheactualmassisnotimpor- tanthereaswearemainlyinterestedintheextentofthehaloes, which is affected less (an increase of 30% in mass leads to an increaseofonly10%insize). Fig.5.Meananglebetweenthelocationofthesatellitesandthemajor 3. Shearratio axisofthelensgalaxyasafunctionofprojectedseparation.Theblack triangles,purplediamondsandbluesquaresindicatetheresultsforthe In this section we present the measurements of the ensemble- “all”,“red”and“blue”lenssample.Thearrowsonthehorizontalaxis averagedratioofthetangentialshearalongthemajorandminor indicatethelocationofthevirialradiiatthemeanredshiftofthelenses, axis of the lenses. This is a basic indicator of the presence of andcorrespondto150kpc,280kpcand192kpcforthe“all”,“red”and anisotropiesinthelensingsignal.Wenotethattheshearratiois “blue” lens samples, respectively. The satellitegalaxies preferentially residenearthemajoraxisofthelenses. notanoptimalestimatorastheweightissimplyastepfunction, anddoesnotdependonthe ellipticityofthe galaxy.Itenables, however,acomparisontoParkeretal.(2007).Furthermore,we late-typegalaxies,andafairfractionofthemisexpectedtobea willusetheshearratiotoexaminehowPSFresidualsystematics satelliteofalargersystem.Theconstraintsweobtainedarestill intheshapecataloguesaffecttheanisotropy(Sect.3.1). interesting,however,assimilarselectioncriteriacanbeapplied For all elliptical non-power law profiles, the shear ra- tosimulations,andtheresultscompared. tio varies as a function of distance to the lens. This radial dependence differs for different dark matter density profiles (Mandelbaumet al. 2006a).Hence to obtain constraintson the 2.5.Virialmassesandradii haloellipticityofthedarkmatter,wehavetoadoptaparticular To determine to which projected separations the dark matter densityprofile.TocompareourresultstothosefromParkeretal. haloesofthe galaxiesdominatethelensingsignal, we estimate (2007), we first assume that the density profile follows an SIE the averagehalo size of each lens sample. For this purposewe profile on small scales. In thatcase, the shear ratio is constant, modeltheazimuthallyaveragedtangentialshear(afterapplying andwedeterminetheaverageandthe68%confidencelimitsas thecontaminationcorrections)withanNFWprofile,andfitfor detailedinAppendixC. themass.TheNFWdensityprofileisgivenby In Fig. 6, we show the average tangential shear along the major and minor axis, the averagecross shear in the quadrants δ ρ ρ(r)= c c , (19) that are rotated by 45 degrees, and the inverse of the shear ra- (r/rs)(1+r/rs)2 tios fmm and fmcomrr.Thetangentialshearandthecrossshearhave been multiplied with the projectedseparation in arcmin, to en- with δ the characteristic overdensity of the halo, ρ the criti- cal dencsityfor closure of the Universe,and r = r c/c the hance the visibility of the measurementson large scales where s 200 NFW thesignalisclosetozeroandtheerrorbarsaresmall.Weshow scale radius, with c the concentration parameter. We adopt themass-concentratNioFnWrelationfromDuffyetal.(2008) the inverse of the ratios followingthe definitionused in Parker et al. (2007).We do not observea clear signature for an align- (cid:12) (cid:13) c =5.71 M200 −0.084 (1+z)−0.47, (20) mentoranti-alignmentbetweenthelensesandtheirdarkmatter NFW 2×1012h−1M(cid:8) haloes. Furthermore,we find that on small scales (<1 arcmin), f and fcorr are consistent, which suggests that the systemat- mm mm which is based on numerical simulations using the best fit pa- icspresentonthesescalesaresmallerthanthemeasurementer- rametersoftheWMAP5cosmology.M isdefinedasthemass rors.Onlargerscales,thedifferenceislarger,whichunderlines 200 inside a sphere with radius r , the radius inside of which the theimportanceofapplyingthecorrectionstoremovesystematic 200 densityis200timesthecriticaldensityρ .Wecalculatethetan- contributions.Thecorrectionislargestforthe“all”lenssample, c gential shear profile using the analytical expressions provided becauseitslensingsignalissmallestandthereforemostsuscep- byBartelmann(1996)andWright&Brainerd(2000).Wefitthe tibletosystematiccontributions.Wedeterminetheaverageshear NFWprofilebetween50and500kpcatthemeanlensredshift; ratiowithinthevirialradiusatthemeanlensredshift,andshow closer to the lens the lensing signal might be contaminated by theresultsinTable2. A71,page8of25 E.vanUitertetal.:Constraintsontheshapesofdarkmatterhaloes Fig.6.Lensingsignalmultipliedwiththeprojectedseparationinarcminasafunctionofangulardistancefromthelens,forthe“all”lenssample (left-handpanels),the“red”lenssample(middlepanels)andthe“blue”lenssample(right-handpanels).Inthetoppanels,thegreensquares(blue triangles)showtheaveragerΔΣalongthemajor(minor)axis(quadrantsB(A)inFig.3).ThedashedlinesindicatethebestfitNFWprofiletimes theprojectedseparation,fittedtotheazimuthallyaveragedlensingsignalonscalesbetween50and500kpcusingthemeanlensredshift.Inthe middlepanel,thegreensquares(bluetriangles)showthecrossshearsignalaveragedinquadrantD(C)ofFig.3.Inthebottompanels,1/f and mm 1/fcorr areshownbytheredsquaresandblacktriangles,respectively.Thedottedlinesindicatethevirialradiusfromthebest-fitNFWprofiles. mm Theshearratiodoesnotprovideclearsignsforthealignmentbetweengalaxiesandtheirdarkmatterhaloes. Parkeretal.(2007)used22squaredegreesoftheCFHTLS shearonlytendstoincrease1/f ;ifsystematicswerepresent, mm tomeasuretheshapesof∼2×105lenses,selectedwithabright- the discrepancy would be even larger. Secondly, it is not clear nesscutof19 < i(cid:3) < 22.Theirlenssampleconsistedofamix- whetherParkeretal. (2007)accountedforthenon-Gaussianity tureofearly-typeandlate-typegalaxieswith amedianredshift oftheratiooftwoGaussiandistributedvariablesindetermining of0.4.Theshearratiowasdeterminedusingmeasurementsout theshearratio;thisisparticularlyimportantwhenthesignal-to- to 70 arcsec (correspondingto 250 h−1kpc at z = 0.4), with a noise of the lensing measurementsis not very high. Generally, best-fit value of (cid:4)1/f (cid:5) = 0.76± 0.10. Excluding the round accountingfor the non-Gaussianityincreases the positive error mm lenseswithe < 0.15,thebest-fitratiois(cid:4)1/f (cid:5) = 0.56±0.13. baroftheshearratio,anddecreasesthenegativeone.Thiscould mm ThelenssamplefromParkeretal.(2007)canbebestcompared bringtheirresultclosertoours.Finally,itisnotdescribedhow to our “all” sample; comparing the relative number of early-/ the average ratio was determined. These differences could ex- late-types in both samples using the CFHTLS W1 photomet- plainthediscrepancybetweentheresults. ric redshift catalogue (Hildebrandt et al. 2012), we find they are similar. Also, the average mass of the lenses are compara- 3.1.ImperfectPSFcorrection ble. Fitting the shear ratio on the same physical scale, we find (cid:4)1/fmcomrr(cid:5)=0.98±0.08forthe“all”sample,whichis∼2σlarger Tomeasuretheellipticitiesofgalaxies,wehavetocorrecttheir thanParkeretal.(2007).Excludinglenseswithe<0.15,wefind observedshapesfor smearingby the PSF. The precision of the (cid:4)1/fmcomrr(cid:5) = 0.95−+00..1101, which is evenalmost 3σ apart.Since the PSFcorrectionislimited,whichismainlyduetotheinaccuracy lenssamplesarecomparable,thisismostlikelytheresultofdif- ofthePSFmodel(Hoekstra2004).Hence,residualPSFpatterns ferencesintheanalysis.Firstly,Parkeretal.(2007)donotapply may still be present in the shape catalogues. These residuals a correction for systematic contributions. However, systematic affect both the ellipticity estimates of the lens and the source A71,page9of25 A&A545,A71(2012) Table3.Best-fitvaluesfortheanisotropyofthegalaxy-masscross-correlationsfunction,(cid:4)f − f (cid:5),andtheratioofthedarkmatterhaloellipticity 45 andthegalaxyellipticity, f ,foranSIEandanellipticalNFWprofile. h Sample α (cid:4)feff(cid:5) (cid:4)f − f45(cid:5) fh(SIE) fh(NFW) All 0.0 1.3±0.6×10−3 0.19±0.10 0.47±0.37 0.96+0.83 −0.80 All 0.5 1.1±0.7×10−3 0.21+0.11 0.57±0.40 1.19+0.89 −0.10 −0.85 All 1.0 0.8±0.8×10−3 0.23±0.12 0.70±0.46 1.50+1.03 −1.01 All 1.5 0.6±1.0×10−3 0.26±0.15 0.83±0.55 1.80+1.23 −1.19 All 2.0 0.4±1.2×10−3 0.29±0.17 0.97±0.65 2.12+1.45 −1.42 Red 0.0 11.9±1.8×10−3 0.13±0.15 0.00±0.58 −0.19+1.09 −1.08 Red 0.5 11.3±2.1×10−3 0.19±0.16 0.05±0.60 −0.14+1.12 −1.10 Red 1.0 9.3±2.5×10−3 0.28±0.18 0.25±0.70 0.20+1.34 −1.31 Red 1.5 7.2±3.1×10−3 0.40±0.22 0.61±0.86 0.87+1.67 −1.63 Red 2.0 5.2±4.0×10−3 0.54±0.27 1.09±1.07 1.82+2.12 −2.08 Blue 0.0 1.5±1.4×10−3 −0.16+0.18 −0.56±0.68 −1.24+1.62 −0.19 −1.65 Blue 0.5 2.0±1.6×10−3 −0.25±0.19 −0.75±0.70 −1.62+1.69 −1.72 Blue 1.0 2.3±1.9×10−3 −0.35+0.21 −1.01±0.81 −2.17+1.97 −0.22 −2.03 Blue 1.5 2.5±2.3×10−3 −0.45±0.26 −1.24±0.96 −2.67+2.36 −2.44 Blue 2.0 2.5±2.7×10−3 −0.53+0.31 −1.44±1.17 −3.06+2.85 −0.32 −2.95 galaxies,albeitwithadifferentamount.Lensgalaxiesaretypi- callylargeandbright,whilesourcegalaxiesaresmallandfaint, andhencehardertocorrectfor.Regardlessofthat,PSFresiduals tendtoalignthelensandsourcegalaxies.Ifnotaccountedfor, itcouldaddafalseanti-alignmentsignaltotheshearanisotropy measurement(seeHoekstraetal.2004). WecorrectforPSFresidualsystematicsinthecataloguesby subtractingthecrossshearsignalinthequadrantsthatarerotated by45degreeswithrespecttothemajorandminoraxes(γx,C−D and f Δ (r) in fcorr and (f − f ), respectively). To quantify 45 iso mm 45 howmuchPSFresidualsactuallycontributetothesecorrection terms,andtestwhethertheyareproperlyremoved,weintroduce onpurposeanadditionalbiasinthePSFcorrection,andrecalcu- latetheshapesofthegalaxies.Usually,theellipticitiesofgalax- iesintheKSBmethodarecomputedasfollows: (cid:14) (cid:15) 1 Psm e = (cid:10)−(1+b)× (cid:10)(cid:11) , (21) g P Psm(cid:11) γ with P the shear polarisability, Psm the smear susceptibility γ tensor,and (cid:10) the polarizations(Kaiser et al. 1995).The starred quantitiesaredeterminedusingthePSFstars.Thebiasbisnor- mally equal to zero, but to mimic an imperfect PSF correction Fig.7.DifferencebetweentheoriginalandthePSFbiasedshearratios we set it to −0.05, and recalculate the shapes of all galaxies. (1/fcorr)−(1/fcorr) (blacktriangles)and(1/f )−(1/f ) (red mm mm bias mm mm bias Wecreatenewrandomshearcatalogues,andrepeattheanalysis squares)asafunctionofprojectedseparationfromthelensforthethree usingthese biasedshapes.We showthe differencebetweenthe lenssamples.WefindthatthePSFresidualsareproperlyremovedfrom originalandthebiasedshearratiosofthelenssamplesinFig.7. thecorrectedratio1/fmcomrr,asthedifferenceisconsistent withzeroon We find that the difference of the shear ratios that are all scales. For the uncorrected ratio 1/fmm, the difference is negative anddecreaseswithprojectedseparation.Thisresultshowsthatthecross determinedusing the originaland the PSF biased cataloguesis termeffectivelyremovesPSFresidualsintheshearratioestimators. consistentwithzeroonallscalesfor1/fcorr,theshearratioesti- mm matorthatiscorrectedwiththecrossshearterms.Fortheuncor- rectedshearratioestimator,1/f ,wefindthatthedifferenceis themselves.Inthissection,weestimatetheimpactofthesemul- mm consistentwithzeroonsmallscales,butturnsnegativeforpro- tiplelensingeventsonthehaloellipticitymeasurements.Wealso jected separations larger than a few arcmin. This shows that if studytheimpactoftheclusteringofthelenses,andthecorrela- PSFresidualsarestillpresentintheshapecatalogues,itaffects tionbetweentheirshapes,ontheshearanisotropy. 1/f ,butnot1/fcorr.HenceweconcludethatPSFresidualsare mm mm properlyaccountedforusingthecrossshearsignal. 4.1.Multipledeflections Someforegroundgalaxiesinourdatalensboththelensesfrom 4. Impactofmultiplelenses thelenssamplesandthesourcegalaxies.Wedenotethesefore- More than one lens may contribute to the shearing of a sin- groundgalaxieswith L2, and our selected lenses with L1. The gle source galaxy. Furthermore, some of the lenses are lensed impact of these “multiple deflections” on the halo ellipticity A71,page10of25

Description:
Brainerd 2006, 2010; Faltenbacher et al. 2007; Bailin et al. 2008; Nierenberg et al. 2011). In these works, 〈θ〉 is found to Splinter, R. J., Melott, A. L., Linn, A. M., Buck, C., & Tinker, J. 1997, ApJ, 479,. 632. Springel, V., White, S. D. M., Jenkins, A., et al. 2005, Nature, 435, 629. Suyu
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.