Mon.Not.R.Astron.Soc.000,000–000(0000) Printed28January2010 (MNLATEXstylefilev2.2) Constraints on intragroup stellar mass from hostless Type Ia supernovae 0 1⋆ 1 Sean L. McGee and Michael L. Balogh 1 0 1DepartmentofPhysicsandAstronomy,UniversityofWaterloo,Waterloo,Ontario,N2L3G1,Canada 2 n a J 28January2010 8 2 ABSTRACT ] O We probethediffusestellarmassina sampleof1401lowredshiftgalaxygroups(1013 C - 1014 h−1 M ) by examining the rate of hostless Type Ia supernova (SNe Ia) within the ⊙ . groups.WecorrelatethesampleofconfirmedSNeIafromtheSDSSsupernovasurveywith h thepositionsofourgalaxygroups,aswellaswiththeresolvedgalaxieswithinthem.Wefind p that19ofthe59SNeIawithinthegroupsamplehavenodetectablehostgalaxy,withanother - o three ambiguousinstances. This gives a robust upper limit that a maximum of 2.69+1.58% −1.34 r percent of the group’s total mass arises from diffuse stars in the intragroup medium. After t s correctingfora contributionfrom“prompt”SNe occurringwithin galaxies,andincludinga a contributionfrom those which arise in dwarf galaxiesbelow our photometriclimit, we find [ thatonly1.32+−00..7780 % of the group’stotalmass is likely in the formof diffusestellar mass. 2 CombiningthisresultwiththegalaxystellarmassfunctionsofYangetal.(2009),wefindthat v 47+16%ofthestellarmassinourgroupsisintheformofdiffuselight,sothatstarsmakeup −15 5 a fraction0.028+0.011 ofthe totalgroupmass. Galaxygroupsappearto be veryefficientin 5 −0.010 disruptingstellarmassintoadiffusecomponent;however,starsstillmakeupasmallfraction 4 ofthegroupmass,comparabletothatseeninrichclusters.Thisremainsachallengetogalaxy 3 formationmodels. . 2 1 Keywords: galaxies:evolution,galaxies:formation,galaxies:structure 9 0 : v i 1 INTRODUCTION theintermediatehalomassregime,thatofgalaxygroups,isimpor- X tantinordertoreconcilethesetwoextremeregimes. r Diffuse light in the halos of galaxy clusters has been extensively a studied since the discovery of ’swarms of stars’ between galax- Galaxy groups are difficult to observe observationally and thus, a study of the intragroup medium (IGM) in typical sys- ies in the Coma cluster by Zwicky (1951). Although puzzling at tems has not been done. Studies of the more extreme compact thetime,diffusestellarlightisnowthoughttobeanaturalconse- groups have found a large variation in the group to group dif- quenceofhierarchical structureformation,whichcausesmerging fuse light, ranging from 5% up to as much as 45 % of the to- galaxiestoshedsomeoftheirstellarmaterial(Willmanetal.2004; tallight(Whiteetal.2003;DaRocha&MendesdeOliveira2005; Purcelletal.2007).Thediffuselightinindividualmassiveclusters DaRochaetal.2008). has been the focus of many observational studies,which find that Galaxy groups have velocity dispersions comparable to that thefractionofthetotalclusterlightinthiscomponent is10-30% ofthemostmassivegalaxieswithinthem,andassuchareaprime (e.g.,Thuan&Kormendy1977;Scheick&Kuhn1994).Bystack- location for the mergers, tidal stripping and shredding which is ing∼700clusters,Zibettietal.(2005)wasabletotightlyconstrain thought to give riseto the diffuse light. Thus, the amount of dif- thediffuselightwithin500kpcoftheclustercentertobe10.9± fusestellarmassingalaxygroupsisadirectprobeoftheefficiency 5.0%ofthetotalclusterlight. with which infalling galaxies are disrupted. This could have im- At the other extreme, the diffuse light around galaxies like portantimplicationsforsemi-analyticmodels,whichproduce too theMilkyWayissimilarlythoughttoarisefromthetidalheating manyfaintredgalaxies(Weinmannetal.2006;Gilbank&Balogh andstrippingofinfallingdwarfgalaxies(e.g.,Searle&Zinn1978; 2008). Bullocketal. 2001; Fontetal. 2008). However, in this regime, the fraction is only ∼ 1-2 % of the total light in the halo (e.g., Type Ia supernova (SNe Ia) likely result when a carbon- Chiba&Beers2000;Yannyetal.2000;Lawetal.2005).Probing oxygen white dwarf acquires additional mass from a companion star,whichcausesathermonuclear explosion.However,theexact originoftheprogenitor materialisuncertain, whichmakesdirect ⋆ Email:[email protected] predictionofSNIaratesfromstellarpopulationmodelingdifficult. 2 McGee &Balogh It is typical to parametrize the rate and then measure the coeffi- cientsempirically.ThemostcommonmodelfortheSNIarateis the so called A+B model, which assumes that SN Ia arise from two distinct channels. In this model, there is a “prompt” compo- nent which depends on the current star formation rate (SFR) of the host and a“delayed” component which tracesthe host’s stel- larmass(Scannapieco&Bildsten2005;Grahametal.2008).This model was motivated by the observation that the SN Iarate is∼ 20-30timeshigherinlatetypegalaxiesthaninearlytypegalaxies ofthesamemass(Mannuccietal.2005). Relatively little attention has been given to SNe which may be hosted by diffuse material within groups and clusters. But, Gal-Yametal.(2003)foundthat2ofthe7clusterSNeIadiscov- ered during a survey of low redshift Abell clusters were not as- sociated withgalaxies. Recently, Sandetal. (2008) have begun a searchof60X-rayselectedgalaxyclusterswiththeexpectationof finding∼10intraclusterSNeIa.Theyidentifiedthreeintracluster candidatesinearlydata,allofwhichwereactuallyoutsideofR200, implyingarelativedeficitofintraclustermassatsmallclusterradii. This Letter is complementary to these studies, as we con- strainthediffusestellarmassinrelativelylow-massgalaxygroups, by correlating type Ia supernovae with a large group catalogue, Figure1.ThedistributionoftypeIasupernovaeasafunctionofdistance to identify supernovae without a resolved galaxy host. In §2, we fromthegroupcentre.TheredtrianglesrepresenttherateofSNeIahosted discuss our supernova and group sample, as well as introducing bythesampleofspectroscopicgalaxieswiththegroup,whileblackcircles the derived galaxy properties we use. In §3, we discuss the pro- signifytherateofhostlessSNeIawithinthegroupsample.R180 corre- cedure we use to identify the hosts or lack of hosts of the su- spondstoadistanceof0.79h−1Mpcforagroupwiththemeanmassof pernovae. Finally,in§4,wediscusstheconstraintsthisplaceson oursample(3.86×1013h−1M⊙). the diffuse stellar mass in galaxy groups. Throughout this paper, we adopt, as was done during the assembly of the group cata- logue, aΛCDM cosmology withtheparameters of thethirdyear 2.2 Groupcatalogue WMAP data, namely Ωm = 0.238, ΩΛ = 0.762, Ωb = 0.042, n=0.951,h=H0/(100kms−1Mpc−1)=0.73andσ8 =0.75 Reliableandrepresentativesamplesofgalaxygroupscanbefound (Spergeletal.2007). usingfriendsof friendsalgorithms inlargeredshift surveys (e.g., Huchra&Geller 1982; Carlbergetal. 2001; Berlindetal. 2006). We use a highly complete group sample defined by Yangetal. (2007),whohave appliedtheir ’friendsoffriends’-like algorithm totheSDSSfourthdatareleasetoproduceasampleof∼300,000 2 DATA galaxygroupswithmassesaslowas1011.5h−1M⊙.Animportant aspectintheconstructionofthisgroupcatalogueisthesubsequent InthisLetter,werequireauniformlyselectedsampleofSNeIaand massestimates,whichareobtained byessentiallyranking groups alargesampleofgalaxygroupsoveralargeareaoftheskytofind bytheirtotalluminosityortotalstellarmassandassociatingthese enoughhostlessSNeIatoconstrainthediffusestellarmass.There- rankingswiththeexpectationsofaΛCDMhalooccupationmodel. fore,wewillexaminetheregionofStripe82intheSloanDigital Weuse“SampleI”fromYangetal.(2007),whichexclusivelyuses SkySurvey(SDSS)whichhoststheSDSSsupernovasurvey. galaxieswithSDSSspectroscopicredshifts.Wechosethissample, as opposed to the other samples, which add in existing redshifts fromtheliterature,becauseweareprincipallyconcernedwithob- taining a uniformly selected population of galaxy groups. In this 2.1 SDSSsupernovasurvey Letter,weusethehalomassrankingsobtainedfromthetotalgroup The SDSS supernova survey was designed to identify SNe Ia at stellarmassandrestrictouranalysistogroupswithmassesgreater lowredshift(0.05<z<0.35)byimaginganareaof300sq.de- than1013h−1M⊙,whichleavesafinalsampleof1401groupsbe- greesmultipletimesoveraperiodof5years(Friemanetal.2008). tweenz=0.1andz=0.2withintheSDSSsupernova legacysurvey Once identified, the SNe Ia candidates are spectroscopically fol- area.Thegalaxygroupshaveamedianhalomassof1.98×1013 lowedupandclassified(Sakoetal.2008;Zhengetal.2008).This h−1M⊙andameanvalueof3.86×1013h−1M⊙withastandard hasresultedinthelargestcollectionofsupernova atlowredshift. deviationof3.16×1013h−1M⊙. Crucially,forourpurposes,thescanningthroughoutthe300sq.de- We make use of measurements of the stellar mass and star greesisveryuniform,resultinginaconsistentdetectionthreshold. formation rates of the galaxies within the main galaxy spectro- Forthefollowing,werestrictouranalysistothe368confirmedSNe scopic sample of the SDSS. Our stellar masses are taken from Iawithin0.1<z<0.2.WenotethattheSDSSsupernovasurvey Kauffmannetal.(2003),andweredeterminedbycomparinglarge alsoidentifiestypeIISNe.However,despitebeingmorenumerous, librariesof stellar population models with line indices and broad they are are also much fainter (Bazinetal. 2009). Thus spectro- bandphotometry. Thestarformationratesweuseweremeasured scopicfollow-upoftypeIISNewaslimitedtothoseatz < 0.06, byBrinchmannetal.(2004)usingprincipallyHαemissionalong whichisbelowourredshiftlimit. withcontinuumproperties(e.g.,4000-A˚ break). ConstraintsonintragroupstellarmassfromhostlessTypeIa supernova 3 3 HOSTEDANDHOSTLESSGROUPSNEIA Iacountsperareadeclinesteeplywithgroupcentricdistance,which indicatetheyareassociatedwiththegalaxygroup.Alsoshownis Our goal is to obtain a complete sample of SNe Ia which reside therateofSNIahostedbygroupgalaxieswithinthespectroscopic withingalaxygroupsinoursample.Wedefinegroupmembership sample.Giventhesmallnumbersanduncertaintyoneachpoint,the asthoseSNeIawhicharewithintheprojectedgroupvirialradius distributionsaresimilar.ThereisnoevidencethatthehostlessSN, andwhichare±3000km/sfromthegroupredshift.Thisvelocity andthusthediffusestellarmass,aredistributeddifferentlyfromthe range islarger thanthetypical velocitydispersion of our groups, galaxypopulation. but ischosen tobe2sigma of theprecisionwithwhichredshifts Assuming that all 19 apparently hostless galaxies are truly canbederivedfromSNeIaspectralfeatures(ie.∼1500kms−1, hostless, and making the simplifying assumption that the stellar Friemanetal.2008;Cooperetal.2009).Ofthe368SNeIainour population in the intragroup medium is the same as within the completesample,59arematchedtooneofourgalaxygroups. groupgalaxies, our measurement immediatelytellsusthediffuse Wesearchfor hostgalaxiesof the59groupSNe,bymatch- stellar mass represents ∼ 32+4 per cent of the total stellar mass ingtoallgroupgalaxiesinthemaingalaxysampleofSDSS.We −3 inthesegroups, wherethequotedstatisticaluncertaintyisthe1σ assume a SN is hosted if it is within a distance equal to twice confidencelimit.Wenowexplorethesystematicuncertaintiesand the size of the radius enclosing 90% of the galaxy’s light. This consequencesassociatedwiththismeasurement. radius corresponds to a physical scale of 9–14 kpc/h for most of thegalaxiesinthespectroscopicsample,andisslightlysmallerfor thoseinthephotometricsample.However,forafewofthebright 4.1 Upperlimitonthediffusegroupstellarmass group/clustergalaxiesthisdistanceismuchlargerbecauseoftheir Asdiscussedabove,withoutadefinitemodeloftheoriginofSNe extendedhaloes.Forthisreasonwehavecappedthesearchradius Ia,theconversionofaSNenumbercountintotheunderlyingstellar tobeamaximumof40kpc/h.Inpractise,thischangesthemember- massisuncertain.Therefore,wefirsttrytoderivethemaximum shipofjustoneSNe,whichis78kpc/hfromaBCG.Bymatching diffusestellarmasspossiblegiventhepopulationofhostlessSNe withinour search radiusand avelocity window of ±3000 km/s, Ia.First,wewillassumethatthe22supernovawithoutaspectro- wefindthat23ofthe59groupSNearehostedbygalaxieswithin scopic or photo-z confirmed host are true descendants of diffuse the main spectroscopic galaxy sample. The spectroscopic galaxy groupstellarmass.Thisincludesthe19supernovawithnoapparent sampleonlyreachesamagnitudelimitofr = 17.77,sowemust hostaswellasthreewhichappeartobelocatedwithingalaxies,but extend our search for thehosts of theremaining SNetothe pho- whose galaxies have photometric redshifts inconsistant withboth tometriccatalogues,whichreach95%completenessatr∼22.2. theSNredshiftandtheredshiftofthegroup.Toobtainarobustup- Thisis an absolute magnitude of M ≈ −15 to −16 in our sam- r perlimitweherefurtherassumethatthereisnocontributionfrom ple.WesearchforhostsoftheremainingSNeinthephotometric faint,undetectedhosts.Itisworthpointingoutthatthisisalsoan catalogues again within our scaled radius, and now use the pho- upper limitbecause itismucheasier todetect SNeIainhostless tometricredshiftssuppliedbytheSDSSpipeline.Fourteenofthe environments,wherethecontrastishigh,thanitisforthosewhich remaining36SNewerematchedwithhostgalaxiesusingthiscri- occuringalaxies.Wewillassumethattheremaining37supernova teria.Finally,werelaxtherequirementthatthegalaxyphotometric occurwithingalaxies. redshift iswithin the range of the SN spectroscopic redshift, and Wenowneedtoderivearelationbetweenthestellarmassand findanadditional threegalaxiesarematched.Thisleavesuswith thenumberofresulting“delayed”supernova.Todothis,wemust asampleof 19SNewithnohost galaxy inthephotometriccata- accuratelyknowthestellarmassandstarformationrateofapop- logue. The images of these SNe, as with the entire sample, were ulationofgalaxies.Wewilluseoursampleofgalaxieswhichare visually inspected to confirm that they appeared as truly hostless spectroscopicallyconfirmedandwhicharewithinourgroups.Us- SNe.Giventhelimitofourphotometriccatalog,wemightexpect ingthestellarmassesofKauffmannetal.(2003)wefindthatthe that some of these 19 supernovae are actually hosted by galaxies spectroscopic sample of galaxies in our 1401 groups has a total whicharebelowourdetectionthreshold.Integratingther-bandlu- minosityfunctionofSDSSatz∼0.1(Blantonetal.2003),only3 stellarmassof6.55×1014 h−1 M⊙and,usingthestarformation rates of Brinchmannetal. (2004), the total star formation rate is %ofthetotalgalaxyluminosityisbelowourdetectionlimit.Ifwe adopt aluminosityfunctiontypicalofrichgalaxyclusters,which 2.62×104 h−1 M⊙/yr.Wecannowusetheempiricalrelationof Dildayetal.(2008),whichwasderivedfromtheSDSSsupernova haveasteepfaintendslope(Milneetal.2007),asmuchas5%of survey, to find out how many of the 23 SNein the spectroscopic thetotalgalaxyluminositymaygoundetectedinourimages.Thus, sampleare“prompt”SNandhowmanyare“delayed”.Dildayetal. ifthenumber ofsupernova scalewithluminosity,thenitislikely findsthatthesupernovarate,r,isgivenby,r=Aρ+Bρ˙,whereρisthe that∼2±1oftheapparentlyhostlessgalaxiesareactuallyhosted stellarmass,ρ˙isthestarformationrate,A=2.8±1.2×10−14SNe by very faint galaxies (all uncertainties are 1σ). In summary, we M−1 yr−1 andB=9.3+3.4 ×10−4 SNeM−1.Usingthisformula, findthatofthe59totalgroupSNe,23arematchedtospectroscop- ⊙ −3.1 ⊙ wefindthat43+18 %of23SNeare“delayed”and57+16 %are icallyconfirmedgalaxy,14arematchedtogalaxyviaphotometric −16 −18 “prompt”.So,weseethatthereare9.9+4.1“delayed”SNe(=43+18 redshift,andafurther3appearassociatedwithothergalaxies.This −3.9 −16 % ×23), which arise from an underlying stellar mass of 6.55 × leavesasampleof19apparentlyhostlessSNe. 1014h−1M⊙.Thus,wehavetherelationthat1delayedSNarises fromanunderlyingstellarmassof6.62+−33..9524×1013h−1M⊙.We will us this relation throughout the rest of the paper to relate the stellarmasstoaquantityofdelayedSNe. 4 RESULTS Thediffusestellarmassisexpectedtoberelativelyold,asthe We are first interested in the distribution of the SNe Ia sample intragroupmassisnotexpectedtobeabletoformstarsin-situ.Any withinourgalaxygroups. ThisispresentedinFigure1,inwhich starformationwhichresultsfromthestrippingofgasfromgalax- weshowtheSNIaperareapergroupasafunctionofgroupcentric ieswilloccurnearthegalaxy,andlikelywouldappearasifitwas distanceinunitsofR180ascalculatedinYangetal.(2007).TheSN hosted by that galaxy (Sunetal. 2007, 2009b). Indeed, the intra- 4 McGee &Balogh Figure2.Themeasurementsofintragroupstellarmassforoursample,as- Figure 3. Total stellar mass in our sample of groups. This includes sumingnopromptcomponentofSN.Thethickblacklinewiththearrow the diffuse intragroup mass measured in this paper added to the stel- represent our upper limits, while the dots are the best estimate after ac- lar mass of galaxies in the same sample as determined by Yangetal. counting foracontribution frompossiblehostgalaxies below thesurvey (2009). The dashed lines represent lines of constant total stellar frac- magnitudelimit.Alsoshownarethreeequalitylineswheretheintragroup tion,f∗=TTootatallSHteallloarMMaassss.Oursampleindicatesthestellarfractionthese stellarmassequals0.03(dot-dashedline),0.02(dashedline)or0.01(dotted groupsis∼0.02-0.04. line)ofthetotalhalomass. remaining19apparentlyhostlessSNetobe“delayed”SNehosted clusterlightobservedtodatehasbeenuniversallyold(Zibettietal. inunresolvedgalaxies. 2005).So,itisreasonabletoassumethatthereexistno“prompt” However,whilethe“delayed”SNrateshouldonlydependon supernovaintheintragroupmass,particularlysincewearehereaf- thetotalstellarmass,galaxieswhicharestronglystarformingwill ter arobust upper limit on thediffuse stellar mass. Thus, we can haveagreater“prompt”componentthangalaxieswithinourspec- conclude that the diffuse component hosts at most 22 “delayed” troscopic sample. To estimate this effect, we must adopt a scal- SN,andwecanusetherelationfoundabovethat1“delayed”SN ingbetweenthestellarmassandstarformationrate.Aslowmass arisesfromastellarmassof6.62+−33..9524×1013h−1M⊙,toseethat galaxies are usually uniformly star forming, we assume that the thetotal stellarmassinthediffuse component is≤ 1.46+−00..8763 × lowmassgalaxiesdoubletheirstellarmassinaHubbletime(e.g. 1015h−1M⊙.Therefore,thetotaldiffusestellarmasspergroupis SFR=M/M⊙).UsingtherelationofDildayetal.,wefindthatthe ≤ 1.04+−00..6512 ×1012h−1 M⊙,or≤ 2.69+−11..5384%ofthehalomass, numbe1r01o0fyprrompt SN isequal to9.3/2.8 = 3.3 timesthe num- given the average halo mass per group of 3.86 × 1013 h−1 M⊙. berofdelayedSN,sothat∼6ofthehostlessSNearelikelydue Taking the upper limit allowed by the statistical uncertainty, our to“prompt”explosionsinunresolvedgalaxies.Takentogether,this robust upper limitonthefractionof total massthat occursinthe means only ∼ 11 of our hostless SNe are likely true intragroup diffusestellarcomponentis4.3%.InFigure2,weshowtheseup- SNe.Again,weassumethatalltrueintragroupSNeare“delayed” perlimitsintwobinsofhalomass.Wediscusstheimplicationsof SNe,becausetheintragroupmassisuniformlyold.Therefore,we thisinSection5. canusethepreviousscalingwhichstatedthat1“delayed”SNarises fromastellarmassof6.62+−33..9524×1013h−1M⊙,tofindthatatotal 4.2 Bestestimateoftheintragroupmass massof7.28+−43..3819×1014h−1M⊙isinthediffusecomponent.On average,thiscorrespondsto5.20+−32..0788 ×1011 h−1 M⊙pergroup, We have presented a robust upper limit on the quantity of intra- representing a fraction 1.32+0.78 % of the total halo mass. The −0.70 group stellar mass in galaxy groups. We now attempt to make a black points in Figure 2 shows the final best estimate of the dif- morerealisticcalculationofthecontributionfromundetectedhost fusestellarmassintwobinsofhalomass,afterallthecorrections galaxies,toarriveatanestimateoftheactualmass. discussedabove.Thediffusestellarfractionisstatisticallyindistin- Intheprevioussection,weassumedall22hostlessSNwere guishableinthetwomassbins,with∼ 1.3+0.73 %inthelowest −0.65 actuallyassociatedwiththediffusemass.However,threeofthese massgroups,and1.2+0.62 %forthemoremassivesystems. −0.56 appear to be associated with photometric galaxies, which have A potential systematicerrorinour resultscouldoccur ifthe inconsistent photometric redshifts. From their proximity to these SDSSsupernovapipelineand/orspectroscopicfollow-upisbiased galaxies we think it is more likely that the photometric redshift towardsfindingSNewithouthosts.Thefirstissue,thatofthefind- is incorrect, and these are really “hosted” SN, within the group. ingalgorithm,wasexploredbyDildayetal.(2008),whofoundthat Moreover,wehavearguedthatfortypicalgroupsupto5%ofthe thepipelineuncovers>98%ofSNeIatoaredshiftof0.2.Evenif groupgalaxylightisexpectedtobeinunresolvedhosts.Therefore, thecompletenesswereonly95%andentirelybiasedtowardhost- ifstellarlight scalesasstellarmass, wewouldexpect ∼ 2of the lessSN(i.e.assumingthe5%missedSNareassociatedwithgalax- ConstraintsonintragroupstellarmassfromhostlessTypeIa supernova 5 ies),ourresultontheamountofmassindiffuseformwouldonly thelowgasfractioningroups(e.g.Vikhlininetal.2006;Sunetal. changefrom1.32%to1.17%.Regardingthespectroscopicfollow- 2009a)cannotlikelybeexplainedviaanextraordinarilyhighstar up, Sakoetal.(2008)statethatessentiallyallofthez<0.15type formationefficiency. IaSNewerespectroscopicallyfollowedup,andourresultsareun- changed if werestrict just tothis sample. Thus weconclude that neither of these selection affects have a significant affect on our REFERENCES results. Balogh,M.L.,McCarthy,I.G.,Bower,R.G.,&Eke,V.R.2008, MNRAS,385,1003 5 DISCUSSIONANDCONCLUSIONS Bazin,G.etal.2009,A&A,499,653 Berlind,A.A.etal.2006,ApJS,167,1 Wehavemeasuredthediffusestellarmassingalaxygroupsusing Berrier,J.C.etal.2009,690,1292 therateofhostlessSNeIa.Wefindthat1.32+0.78 % ofthetotal −0.70 Blanton,M.R.etal.2003,ApJ,592,819 halomassofagroupisintheformofthisdiffuseintragroupstel- Brinchmann,J.etal.2004,MNRAS,351,1151 larmass.Althoughmanynumericalpredictionsexistforthemass Bullock,J.S.,Kravtsov,A.V.,&Weinberg,D.H.2001,ApJ,548, ofthediffuseintragroupmaterial,theyareusuallystatedasafrac- 33 tion of the total stellar mass. To obtain this measure we will use Carlberg,R.G.etal.2001,ApJ,552,427 thestellarmassfunctionsofYangetal.(2009),whichweremea- Chiba,M.&Beers,T.C.2000,AJ,119,2843 sured for the same sample of groups we use. They find that the Cooper,M.C.,Newman,J.A.,&Yan,R.2009,ArXive-prints stellar mass function of the group galaxies is well approximated DaRocha,C.&MendesdeOliveira,C.2005,MNRAS,364,1069 byalog-normaldistributionforthecentralgalaxyandamodified Da Rocha, C., Ziegler, B. L., & Mendes de Oliveira, C. 2008, Schechter function for the satellite population. Integrating these MNRAS,388,1433 functionsoverallgalaxiesrevealsthatthefractionofstarsingalax- Dilday,B.etal.2008,ApJ,682,262 ies is ∼ 1.5 % of the halo mass for groups in our mass range1. Font,A.S.etal.2008,ApJ,673,215 Therefore, ∼47+16 % of thestellarmassinour groups isinthe −15 Frieman,J.A.etal.2008,AJ,135,338 diffuse component.This is significantly higher than the estimates Gal-Yam, A., Maoz, D., Guhathakurta, P., & Filippenko, A. V. ofPurcelletal.(2007),whousePress-Schechterformalismalong 2003,AJ,125,1087 with analytic models for the disruption and stripping of halos to Gilbank,D.G.&Balogh,M.L.2008,MNRAS,385,L116 estimatethat∼20%ofthestellarmassisinadiffuseform.Itis Gonzalez,A.H.,Zaritsky,D.,&Zabludoff,A.I.2007,ApJ,666, alsosignificantlylargerthanthatseeninthemostmassiveclusters, 147 whichismoretypicallyabout10%(Zibettietal.2005). Graham,M.L.etal.2008,AJ,135,1343 In Figure 3, we show the total stellar mass as a function of Huchra,J.P.&Geller,M.J.1982,ApJ,257,423 halo mass for our sample. This shows that, with the uncertainty, Kauffmann,G.etal.2003,MNRAS,341,33 thetotalstellarfractioninourgroupsis0.028+0.011,witharobust −0.010 Law,D.R.,Johnston,K.V.,&Majewski,S.R.2005,ApJ,619, upper limitof0.058. Wefindsometensionwithaprevious mea- 807 surementbyGonzalezetal.(2007)ofthestellarfractioninafew Mannucci,F.etal.2005,A&A,433,807 similarsizedgroups.Theyfound∼6%ofthetotalhalomasswas McGee,S.L.,Balogh,M.L.,Bower,R.G.,Font,A.S.,&Mc- insomeformofstarsinthesesizedgroups,whilemassiveclusters Carthy,I.G.2009,MNRAS,400,937 havestellarfractionsofonly∼0.02.Ourrobustupperlimitonthe Milne,M.L.etal.2007,AJ,133,177 stellarfractionisactuallyjust consistent withtheirmeasurement, Purcell,C.W.,Bullock,J.S.,&Zentner,A.R.2007, ApJ,666, but thisconservative limitwould imply that there isalmost three 20 timesasmuchstellarmassintheIGMasinthegalaxies;notonly Sako,M.etal.2008,AJ,135,348 is this almost certainly unreasonable, it is also much higher than Sand,D.J.etal.2008,AJ,135,1917 Gonzalezetal.(2007)themselvesfind.Infact,thefractionofstel- Scannapieco,E.&Bildsten,L.2005,ApJL,629,L85 larmasswefindintheIGM(∼47percent)isinreasonableagree- Scheick,X.&Kuhn,J.R.1994,ApJ,423,566 ment withtheirstudy; thedifferenceinour resultisinthestellar Searle,L.&Zinn,R.1978,ApJ,225,357 massfractionsthemselves,asevident inYangetal.(2009).Since Spergel,D.N.etal.2007,ApJS,170,377 itisexpectedthatclustersareformedfromthebuildupofgroups Sun,M.,Donahue,M.,&Voit,G.M.2007,ApJ,671,190 (Berrieretal.2009;McGeeetal.2009)andgiventhatmergersdo Sun,M.etal.2009a,ApJ,693,1142 notdestroystellarmass,Baloghetal.(2008)showedthatagroup —.2009b,ArXive-prints stellarfractionashighasfoundbyGonzalezetal.(2007)wasin- Thuan,T.X.&Kormendy,J.1977,PASP,89,466 compatiblewiththelowstellarfractionsinclusters,andarguedthat Vikhlinin,A.etal.2006,ApJ,640,691 thehalomassesoftheGonzalezetal.(2007)groupswereunderes- Weinmann,S.M.etal.2006,MNRAS,372,1161 timated.Thelowermeasurementofthegroupstellarfractionfrom White,P.M.etal.2003,ApJ,585,739 thisworkandYangetal.(2009)supportsthisconclusion. Willman,B.,Governato,F.,Wadsley,J.,&Quinn,T.2004,MN- Weconclude, therefore, thatdespitethesignificant contribu- RAS,355,159 tion from intragroup stars, the stellar mass fraction in groups is Yang,X.,Mo,H.J.,&vandenBosch,F.C.2009,ApJ,695,900 notsignificantlylargerthaninmassiveclusters.Thissuggeststhat Yang,X.etal.2007,671,153 Yanny,B.etal.2000,ApJ,540,825 1 Averysimilarresultisobtainedifweusethetotalstellarmasswithin Zheng,C.etal.2008,AJ,135,1766 thespectroscopicsample,andincludeasmallcorrectionforthestellarmass Zibetti, S., White, S. D. M., Schneider, D. P., & Brinkmann, J. belowthespectroscopiclimit. 2005,358,949 6 McGee &Balogh Zwicky,F.1951,PASP,63,61