ebook img

Constraints on intragroup stellar mass from hostless Type Ia supernova PDF

0.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Constraints on intragroup stellar mass from hostless Type Ia supernova

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed28January2010 (MNLATEXstylefilev2.2) Constraints on intragroup stellar mass from hostless Type Ia supernovae 0 1⋆ 1 Sean L. McGee and Michael L. Balogh 1 0 1DepartmentofPhysicsandAstronomy,UniversityofWaterloo,Waterloo,Ontario,N2L3G1,Canada 2 n a J 28January2010 8 2 ABSTRACT ] O We probethediffusestellarmassina sampleof1401lowredshiftgalaxygroups(1013 C - 1014 h−1 M ) by examining the rate of hostless Type Ia supernova (SNe Ia) within the ⊙ . groups.WecorrelatethesampleofconfirmedSNeIafromtheSDSSsupernovasurveywith h thepositionsofourgalaxygroups,aswellaswiththeresolvedgalaxieswithinthem.Wefind p that19ofthe59SNeIawithinthegroupsamplehavenodetectablehostgalaxy,withanother - o three ambiguousinstances. This gives a robust upper limit that a maximum of 2.69+1.58% −1.34 r percent of the group’s total mass arises from diffuse stars in the intragroup medium. After t s correctingfora contributionfrom“prompt”SNe occurringwithin galaxies,andincludinga a contributionfrom those which arise in dwarf galaxiesbelow our photometriclimit, we find [ thatonly1.32+−00..7780 % of the group’stotalmass is likely in the formof diffusestellar mass. 2 CombiningthisresultwiththegalaxystellarmassfunctionsofYangetal.(2009),wefindthat v 47+16%ofthestellarmassinourgroupsisintheformofdiffuselight,sothatstarsmakeup −15 5 a fraction0.028+0.011 ofthe totalgroupmass. Galaxygroupsappearto be veryefficientin 5 −0.010 disruptingstellarmassintoadiffusecomponent;however,starsstillmakeupasmallfraction 4 ofthegroupmass,comparabletothatseeninrichclusters.Thisremainsachallengetogalaxy 3 formationmodels. . 2 1 Keywords: galaxies:evolution,galaxies:formation,galaxies:structure 9 0 : v i 1 INTRODUCTION theintermediatehalomassregime,thatofgalaxygroups,isimpor- X tantinordertoreconcilethesetwoextremeregimes. r Diffuse light in the halos of galaxy clusters has been extensively a studied since the discovery of ’swarms of stars’ between galax- Galaxy groups are difficult to observe observationally and thus, a study of the intragroup medium (IGM) in typical sys- ies in the Coma cluster by Zwicky (1951). Although puzzling at tems has not been done. Studies of the more extreme compact thetime,diffusestellarlightisnowthoughttobeanaturalconse- groups have found a large variation in the group to group dif- quenceofhierarchical structureformation,whichcausesmerging fuse light, ranging from 5% up to as much as 45 % of the to- galaxiestoshedsomeoftheirstellarmaterial(Willmanetal.2004; tallight(Whiteetal.2003;DaRocha&MendesdeOliveira2005; Purcelletal.2007).Thediffuselightinindividualmassiveclusters DaRochaetal.2008). has been the focus of many observational studies,which find that Galaxy groups have velocity dispersions comparable to that thefractionofthetotalclusterlightinthiscomponent is10-30% ofthemostmassivegalaxieswithinthem,andassuchareaprime (e.g.,Thuan&Kormendy1977;Scheick&Kuhn1994).Bystack- location for the mergers, tidal stripping and shredding which is ing∼700clusters,Zibettietal.(2005)wasabletotightlyconstrain thought to give riseto the diffuse light. Thus, the amount of dif- thediffuselightwithin500kpcoftheclustercentertobe10.9± fusestellarmassingalaxygroupsisadirectprobeoftheefficiency 5.0%ofthetotalclusterlight. with which infalling galaxies are disrupted. This could have im- At the other extreme, the diffuse light around galaxies like portantimplicationsforsemi-analyticmodels,whichproduce too theMilkyWayissimilarlythoughttoarisefromthetidalheating manyfaintredgalaxies(Weinmannetal.2006;Gilbank&Balogh andstrippingofinfallingdwarfgalaxies(e.g.,Searle&Zinn1978; 2008). Bullocketal. 2001; Fontetal. 2008). However, in this regime, the fraction is only ∼ 1-2 % of the total light in the halo (e.g., Type Ia supernova (SNe Ia) likely result when a carbon- Chiba&Beers2000;Yannyetal.2000;Lawetal.2005).Probing oxygen white dwarf acquires additional mass from a companion star,whichcausesathermonuclear explosion.However,theexact originoftheprogenitor materialisuncertain, whichmakesdirect ⋆ Email:[email protected] predictionofSNIaratesfromstellarpopulationmodelingdifficult. 2 McGee &Balogh It is typical to parametrize the rate and then measure the coeffi- cientsempirically.ThemostcommonmodelfortheSNIarateis the so called A+B model, which assumes that SN Ia arise from two distinct channels. In this model, there is a “prompt” compo- nent which depends on the current star formation rate (SFR) of the host and a“delayed” component which tracesthe host’s stel- larmass(Scannapieco&Bildsten2005;Grahametal.2008).This model was motivated by the observation that the SN Iarate is∼ 20-30timeshigherinlatetypegalaxiesthaninearlytypegalaxies ofthesamemass(Mannuccietal.2005). Relatively little attention has been given to SNe which may be hosted by diffuse material within groups and clusters. But, Gal-Yametal.(2003)foundthat2ofthe7clusterSNeIadiscov- ered during a survey of low redshift Abell clusters were not as- sociated withgalaxies. Recently, Sandetal. (2008) have begun a searchof60X-rayselectedgalaxyclusterswiththeexpectationof finding∼10intraclusterSNeIa.Theyidentifiedthreeintracluster candidatesinearlydata,allofwhichwereactuallyoutsideofR200, implyingarelativedeficitofintraclustermassatsmallclusterradii. This Letter is complementary to these studies, as we con- strainthediffusestellarmassinrelativelylow-massgalaxygroups, by correlating type Ia supernovae with a large group catalogue, Figure1.ThedistributionoftypeIasupernovaeasafunctionofdistance to identify supernovae without a resolved galaxy host. In §2, we fromthegroupcentre.TheredtrianglesrepresenttherateofSNeIahosted discuss our supernova and group sample, as well as introducing bythesampleofspectroscopicgalaxieswiththegroup,whileblackcircles the derived galaxy properties we use. In §3, we discuss the pro- signifytherateofhostlessSNeIawithinthegroupsample.R180 corre- cedure we use to identify the hosts or lack of hosts of the su- spondstoadistanceof0.79h−1Mpcforagroupwiththemeanmassof pernovae. Finally,in§4,wediscusstheconstraintsthisplaceson oursample(3.86×1013h−1M⊙). the diffuse stellar mass in galaxy groups. Throughout this paper, we adopt, as was done during the assembly of the group cata- logue, aΛCDM cosmology withtheparameters of thethirdyear 2.2 Groupcatalogue WMAP data, namely Ωm = 0.238, ΩΛ = 0.762, Ωb = 0.042, n=0.951,h=H0/(100kms−1Mpc−1)=0.73andσ8 =0.75 Reliableandrepresentativesamplesofgalaxygroupscanbefound (Spergeletal.2007). usingfriendsof friendsalgorithms inlargeredshift surveys (e.g., Huchra&Geller 1982; Carlbergetal. 2001; Berlindetal. 2006). We use a highly complete group sample defined by Yangetal. (2007),whohave appliedtheir ’friendsoffriends’-like algorithm totheSDSSfourthdatareleasetoproduceasampleof∼300,000 2 DATA galaxygroupswithmassesaslowas1011.5h−1M⊙.Animportant aspectintheconstructionofthisgroupcatalogueisthesubsequent InthisLetter,werequireauniformlyselectedsampleofSNeIaand massestimates,whichareobtained byessentiallyranking groups alargesampleofgalaxygroupsoveralargeareaoftheskytofind bytheirtotalluminosityortotalstellarmassandassociatingthese enoughhostlessSNeIatoconstrainthediffusestellarmass.There- rankingswiththeexpectationsofaΛCDMhalooccupationmodel. fore,wewillexaminetheregionofStripe82intheSloanDigital Weuse“SampleI”fromYangetal.(2007),whichexclusivelyuses SkySurvey(SDSS)whichhoststheSDSSsupernovasurvey. galaxieswithSDSSspectroscopicredshifts.Wechosethissample, as opposed to the other samples, which add in existing redshifts fromtheliterature,becauseweareprincipallyconcernedwithob- taining a uniformly selected population of galaxy groups. In this 2.1 SDSSsupernovasurvey Letter,weusethehalomassrankingsobtainedfromthetotalgroup The SDSS supernova survey was designed to identify SNe Ia at stellarmassandrestrictouranalysistogroupswithmassesgreater lowredshift(0.05<z<0.35)byimaginganareaof300sq.de- than1013h−1M⊙,whichleavesafinalsampleof1401groupsbe- greesmultipletimesoveraperiodof5years(Friemanetal.2008). tweenz=0.1andz=0.2withintheSDSSsupernova legacysurvey Once identified, the SNe Ia candidates are spectroscopically fol- area.Thegalaxygroupshaveamedianhalomassof1.98×1013 lowedupandclassified(Sakoetal.2008;Zhengetal.2008).This h−1M⊙andameanvalueof3.86×1013h−1M⊙withastandard hasresultedinthelargestcollectionofsupernova atlowredshift. deviationof3.16×1013h−1M⊙. Crucially,forourpurposes,thescanningthroughoutthe300sq.de- We make use of measurements of the stellar mass and star greesisveryuniform,resultinginaconsistentdetectionthreshold. formation rates of the galaxies within the main galaxy spectro- Forthefollowing,werestrictouranalysistothe368confirmedSNe scopic sample of the SDSS. Our stellar masses are taken from Iawithin0.1<z<0.2.WenotethattheSDSSsupernovasurvey Kauffmannetal.(2003),andweredeterminedbycomparinglarge alsoidentifiestypeIISNe.However,despitebeingmorenumerous, librariesof stellar population models with line indices and broad they are are also much fainter (Bazinetal. 2009). Thus spectro- bandphotometry. Thestarformationratesweuseweremeasured scopicfollow-upoftypeIISNewaslimitedtothoseatz < 0.06, byBrinchmannetal.(2004)usingprincipallyHαemissionalong whichisbelowourredshiftlimit. withcontinuumproperties(e.g.,4000-A˚ break). ConstraintsonintragroupstellarmassfromhostlessTypeIa supernova 3 3 HOSTEDANDHOSTLESSGROUPSNEIA Iacountsperareadeclinesteeplywithgroupcentricdistance,which indicatetheyareassociatedwiththegalaxygroup.Alsoshownis Our goal is to obtain a complete sample of SNe Ia which reside therateofSNIahostedbygroupgalaxieswithinthespectroscopic withingalaxygroupsinoursample.Wedefinegroupmembership sample.Giventhesmallnumbersanduncertaintyoneachpoint,the asthoseSNeIawhicharewithintheprojectedgroupvirialradius distributionsaresimilar.ThereisnoevidencethatthehostlessSN, andwhichare±3000km/sfromthegroupredshift.Thisvelocity andthusthediffusestellarmass,aredistributeddifferentlyfromthe range islarger thanthetypical velocitydispersion of our groups, galaxypopulation. but ischosen tobe2sigma of theprecisionwithwhichredshifts Assuming that all 19 apparently hostless galaxies are truly canbederivedfromSNeIaspectralfeatures(ie.∼1500kms−1, hostless, and making the simplifying assumption that the stellar Friemanetal.2008;Cooperetal.2009).Ofthe368SNeIainour population in the intragroup medium is the same as within the completesample,59arematchedtooneofourgalaxygroups. groupgalaxies, our measurement immediatelytellsusthediffuse Wesearchfor hostgalaxiesof the59groupSNe,bymatch- stellar mass represents ∼ 32+4 per cent of the total stellar mass ingtoallgroupgalaxiesinthemaingalaxysampleofSDSS.We −3 inthesegroups, wherethequotedstatisticaluncertaintyisthe1σ assume a SN is hosted if it is within a distance equal to twice confidencelimit.Wenowexplorethesystematicuncertaintiesand the size of the radius enclosing 90% of the galaxy’s light. This consequencesassociatedwiththismeasurement. radius corresponds to a physical scale of 9–14 kpc/h for most of thegalaxiesinthespectroscopicsample,andisslightlysmallerfor thoseinthephotometricsample.However,forafewofthebright 4.1 Upperlimitonthediffusegroupstellarmass group/clustergalaxiesthisdistanceismuchlargerbecauseoftheir Asdiscussedabove,withoutadefinitemodeloftheoriginofSNe extendedhaloes.Forthisreasonwehavecappedthesearchradius Ia,theconversionofaSNenumbercountintotheunderlyingstellar tobeamaximumof40kpc/h.Inpractise,thischangesthemember- massisuncertain.Therefore,wefirsttrytoderivethemaximum shipofjustoneSNe,whichis78kpc/hfromaBCG.Bymatching diffusestellarmasspossiblegiventhepopulationofhostlessSNe withinour search radiusand avelocity window of ±3000 km/s, Ia.First,wewillassumethatthe22supernovawithoutaspectro- wefindthat23ofthe59groupSNearehostedbygalaxieswithin scopic or photo-z confirmed host are true descendants of diffuse the main spectroscopic galaxy sample. The spectroscopic galaxy groupstellarmass.Thisincludesthe19supernovawithnoapparent sampleonlyreachesamagnitudelimitofr = 17.77,sowemust hostaswellasthreewhichappeartobelocatedwithingalaxies,but extend our search for thehosts of theremaining SNetothe pho- whose galaxies have photometric redshifts inconsistant withboth tometriccatalogues,whichreach95%completenessatr∼22.2. theSNredshiftandtheredshiftofthegroup.Toobtainarobustup- Thisis an absolute magnitude of M ≈ −15 to −16 in our sam- r perlimitweherefurtherassumethatthereisnocontributionfrom ple.WesearchforhostsoftheremainingSNeinthephotometric faint,undetectedhosts.Itisworthpointingoutthatthisisalsoan catalogues again within our scaled radius, and now use the pho- upper limitbecause itismucheasier todetect SNeIainhostless tometricredshiftssuppliedbytheSDSSpipeline.Fourteenofthe environments,wherethecontrastishigh,thanitisforthosewhich remaining36SNewerematchedwithhostgalaxiesusingthiscri- occuringalaxies.Wewillassumethattheremaining37supernova teria.Finally,werelaxtherequirementthatthegalaxyphotometric occurwithingalaxies. redshift iswithin the range of the SN spectroscopic redshift, and Wenowneedtoderivearelationbetweenthestellarmassand findanadditional threegalaxiesarematched.Thisleavesuswith thenumberofresulting“delayed”supernova.Todothis,wemust asampleof 19SNewithnohost galaxy inthephotometriccata- accuratelyknowthestellarmassandstarformationrateofapop- logue. The images of these SNe, as with the entire sample, were ulationofgalaxies.Wewilluseoursampleofgalaxieswhichare visually inspected to confirm that they appeared as truly hostless spectroscopicallyconfirmedandwhicharewithinourgroups.Us- SNe.Giventhelimitofourphotometriccatalog,wemightexpect ingthestellarmassesofKauffmannetal.(2003)wefindthatthe that some of these 19 supernovae are actually hosted by galaxies spectroscopic sample of galaxies in our 1401 groups has a total whicharebelowourdetectionthreshold.Integratingther-bandlu- minosityfunctionofSDSSatz∼0.1(Blantonetal.2003),only3 stellarmassof6.55×1014 h−1 M⊙and,usingthestarformation rates of Brinchmannetal. (2004), the total star formation rate is %ofthetotalgalaxyluminosityisbelowourdetectionlimit.Ifwe adopt aluminosityfunctiontypicalofrichgalaxyclusters,which 2.62×104 h−1 M⊙/yr.Wecannowusetheempiricalrelationof Dildayetal.(2008),whichwasderivedfromtheSDSSsupernova haveasteepfaintendslope(Milneetal.2007),asmuchas5%of survey, to find out how many of the 23 SNein the spectroscopic thetotalgalaxyluminositymaygoundetectedinourimages.Thus, sampleare“prompt”SNandhowmanyare“delayed”.Dildayetal. ifthenumber ofsupernova scalewithluminosity,thenitislikely findsthatthesupernovarate,r,isgivenby,r=Aρ+Bρ˙,whereρisthe that∼2±1oftheapparentlyhostlessgalaxiesareactuallyhosted stellarmass,ρ˙isthestarformationrate,A=2.8±1.2×10−14SNe by very faint galaxies (all uncertainties are 1σ). In summary, we M−1 yr−1 andB=9.3+3.4 ×10−4 SNeM−1.Usingthisformula, findthatofthe59totalgroupSNe,23arematchedtospectroscop- ⊙ −3.1 ⊙ wefindthat43+18 %of23SNeare“delayed”and57+16 %are icallyconfirmedgalaxy,14arematchedtogalaxyviaphotometric −16 −18 “prompt”.So,weseethatthereare9.9+4.1“delayed”SNe(=43+18 redshift,andafurther3appearassociatedwithothergalaxies.This −3.9 −16 % ×23), which arise from an underlying stellar mass of 6.55 × leavesasampleof19apparentlyhostlessSNe. 1014h−1M⊙.Thus,wehavetherelationthat1delayedSNarises fromanunderlyingstellarmassof6.62+−33..9524×1013h−1M⊙.We will us this relation throughout the rest of the paper to relate the stellarmasstoaquantityofdelayedSNe. 4 RESULTS Thediffusestellarmassisexpectedtoberelativelyold,asthe We are first interested in the distribution of the SNe Ia sample intragroupmassisnotexpectedtobeabletoformstarsin-situ.Any withinourgalaxygroups. ThisispresentedinFigure1,inwhich starformationwhichresultsfromthestrippingofgasfromgalax- weshowtheSNIaperareapergroupasafunctionofgroupcentric ieswilloccurnearthegalaxy,andlikelywouldappearasifitwas distanceinunitsofR180ascalculatedinYangetal.(2007).TheSN hosted by that galaxy (Sunetal. 2007, 2009b). Indeed, the intra- 4 McGee &Balogh Figure2.Themeasurementsofintragroupstellarmassforoursample,as- Figure 3. Total stellar mass in our sample of groups. This includes sumingnopromptcomponentofSN.Thethickblacklinewiththearrow the diffuse intragroup mass measured in this paper added to the stel- represent our upper limits, while the dots are the best estimate after ac- lar mass of galaxies in the same sample as determined by Yangetal. counting foracontribution frompossiblehostgalaxies below thesurvey (2009). The dashed lines represent lines of constant total stellar frac- magnitudelimit.Alsoshownarethreeequalitylineswheretheintragroup tion,f∗=TTootatallSHteallloarMMaassss.Oursampleindicatesthestellarfractionthese stellarmassequals0.03(dot-dashedline),0.02(dashedline)or0.01(dotted groupsis∼0.02-0.04. line)ofthetotalhalomass. remaining19apparentlyhostlessSNetobe“delayed”SNehosted clusterlightobservedtodatehasbeenuniversallyold(Zibettietal. inunresolvedgalaxies. 2005).So,itisreasonabletoassumethatthereexistno“prompt” However,whilethe“delayed”SNrateshouldonlydependon supernovaintheintragroupmass,particularlysincewearehereaf- thetotalstellarmass,galaxieswhicharestronglystarformingwill ter arobust upper limit on thediffuse stellar mass. Thus, we can haveagreater“prompt”componentthangalaxieswithinourspec- conclude that the diffuse component hosts at most 22 “delayed” troscopic sample. To estimate this effect, we must adopt a scal- SN,andwecanusetherelationfoundabovethat1“delayed”SN ingbetweenthestellarmassandstarformationrate.Aslowmass arisesfromastellarmassof6.62+−33..9524×1013h−1M⊙,toseethat galaxies are usually uniformly star forming, we assume that the thetotal stellarmassinthediffuse component is≤ 1.46+−00..8763 × lowmassgalaxiesdoubletheirstellarmassinaHubbletime(e.g. 1015h−1M⊙.Therefore,thetotaldiffusestellarmasspergroupis SFR=M/M⊙).UsingtherelationofDildayetal.,wefindthatthe ≤ 1.04+−00..6512 ×1012h−1 M⊙,or≤ 2.69+−11..5384%ofthehalomass, numbe1r01o0fyprrompt SN isequal to9.3/2.8 = 3.3 timesthe num- given the average halo mass per group of 3.86 × 1013 h−1 M⊙. berofdelayedSN,sothat∼6ofthehostlessSNearelikelydue Taking the upper limit allowed by the statistical uncertainty, our to“prompt”explosionsinunresolvedgalaxies.Takentogether,this robust upper limitonthefractionof total massthat occursinthe means only ∼ 11 of our hostless SNe are likely true intragroup diffusestellarcomponentis4.3%.InFigure2,weshowtheseup- SNe.Again,weassumethatalltrueintragroupSNeare“delayed” perlimitsintwobinsofhalomass.Wediscusstheimplicationsof SNe,becausetheintragroupmassisuniformlyold.Therefore,we thisinSection5. canusethepreviousscalingwhichstatedthat1“delayed”SNarises fromastellarmassof6.62+−33..9524×1013h−1M⊙,tofindthatatotal 4.2 Bestestimateoftheintragroupmass massof7.28+−43..3819×1014h−1M⊙isinthediffusecomponent.On average,thiscorrespondsto5.20+−32..0788 ×1011 h−1 M⊙pergroup, We have presented a robust upper limit on the quantity of intra- representing a fraction 1.32+0.78 % of the total halo mass. The −0.70 group stellar mass in galaxy groups. We now attempt to make a black points in Figure 2 shows the final best estimate of the dif- morerealisticcalculationofthecontributionfromundetectedhost fusestellarmassintwobinsofhalomass,afterallthecorrections galaxies,toarriveatanestimateoftheactualmass. discussedabove.Thediffusestellarfractionisstatisticallyindistin- Intheprevioussection,weassumedall22hostlessSNwere guishableinthetwomassbins,with∼ 1.3+0.73 %inthelowest −0.65 actuallyassociatedwiththediffusemass.However,threeofthese massgroups,and1.2+0.62 %forthemoremassivesystems. −0.56 appear to be associated with photometric galaxies, which have A potential systematicerrorinour resultscouldoccur ifthe inconsistent photometric redshifts. From their proximity to these SDSSsupernovapipelineand/orspectroscopicfollow-upisbiased galaxies we think it is more likely that the photometric redshift towardsfindingSNewithouthosts.Thefirstissue,thatofthefind- is incorrect, and these are really “hosted” SN, within the group. ingalgorithm,wasexploredbyDildayetal.(2008),whofoundthat Moreover,wehavearguedthatfortypicalgroupsupto5%ofthe thepipelineuncovers>98%ofSNeIatoaredshiftof0.2.Evenif groupgalaxylightisexpectedtobeinunresolvedhosts.Therefore, thecompletenesswereonly95%andentirelybiasedtowardhost- ifstellarlight scalesasstellarmass, wewouldexpect ∼ 2of the lessSN(i.e.assumingthe5%missedSNareassociatedwithgalax- ConstraintsonintragroupstellarmassfromhostlessTypeIa supernova 5 ies),ourresultontheamountofmassindiffuseformwouldonly thelowgasfractioningroups(e.g.Vikhlininetal.2006;Sunetal. changefrom1.32%to1.17%.Regardingthespectroscopicfollow- 2009a)cannotlikelybeexplainedviaanextraordinarilyhighstar up, Sakoetal.(2008)statethatessentiallyallofthez<0.15type formationefficiency. IaSNewerespectroscopicallyfollowedup,andourresultsareun- changed if werestrict just tothis sample. Thus weconclude that neither of these selection affects have a significant affect on our REFERENCES results. Balogh,M.L.,McCarthy,I.G.,Bower,R.G.,&Eke,V.R.2008, MNRAS,385,1003 5 DISCUSSIONANDCONCLUSIONS Bazin,G.etal.2009,A&A,499,653 Berlind,A.A.etal.2006,ApJS,167,1 Wehavemeasuredthediffusestellarmassingalaxygroupsusing Berrier,J.C.etal.2009,690,1292 therateofhostlessSNeIa.Wefindthat1.32+0.78 % ofthetotal −0.70 Blanton,M.R.etal.2003,ApJ,592,819 halomassofagroupisintheformofthisdiffuseintragroupstel- Brinchmann,J.etal.2004,MNRAS,351,1151 larmass.Althoughmanynumericalpredictionsexistforthemass Bullock,J.S.,Kravtsov,A.V.,&Weinberg,D.H.2001,ApJ,548, ofthediffuseintragroupmaterial,theyareusuallystatedasafrac- 33 tion of the total stellar mass. To obtain this measure we will use Carlberg,R.G.etal.2001,ApJ,552,427 thestellarmassfunctionsofYangetal.(2009),whichweremea- Chiba,M.&Beers,T.C.2000,AJ,119,2843 sured for the same sample of groups we use. They find that the Cooper,M.C.,Newman,J.A.,&Yan,R.2009,ArXive-prints stellar mass function of the group galaxies is well approximated DaRocha,C.&MendesdeOliveira,C.2005,MNRAS,364,1069 byalog-normaldistributionforthecentralgalaxyandamodified Da Rocha, C., Ziegler, B. L., & Mendes de Oliveira, C. 2008, Schechter function for the satellite population. Integrating these MNRAS,388,1433 functionsoverallgalaxiesrevealsthatthefractionofstarsingalax- Dilday,B.etal.2008,ApJ,682,262 ies is ∼ 1.5 % of the halo mass for groups in our mass range1. Font,A.S.etal.2008,ApJ,673,215 Therefore, ∼47+16 % of thestellarmassinour groups isinthe −15 Frieman,J.A.etal.2008,AJ,135,338 diffuse component.This is significantly higher than the estimates Gal-Yam, A., Maoz, D., Guhathakurta, P., & Filippenko, A. V. ofPurcelletal.(2007),whousePress-Schechterformalismalong 2003,AJ,125,1087 with analytic models for the disruption and stripping of halos to Gilbank,D.G.&Balogh,M.L.2008,MNRAS,385,L116 estimatethat∼20%ofthestellarmassisinadiffuseform.Itis Gonzalez,A.H.,Zaritsky,D.,&Zabludoff,A.I.2007,ApJ,666, alsosignificantlylargerthanthatseeninthemostmassiveclusters, 147 whichismoretypicallyabout10%(Zibettietal.2005). Graham,M.L.etal.2008,AJ,135,1343 In Figure 3, we show the total stellar mass as a function of Huchra,J.P.&Geller,M.J.1982,ApJ,257,423 halo mass for our sample. This shows that, with the uncertainty, Kauffmann,G.etal.2003,MNRAS,341,33 thetotalstellarfractioninourgroupsis0.028+0.011,witharobust −0.010 Law,D.R.,Johnston,K.V.,&Majewski,S.R.2005,ApJ,619, upper limitof0.058. Wefindsometensionwithaprevious mea- 807 surementbyGonzalezetal.(2007)ofthestellarfractioninafew Mannucci,F.etal.2005,A&A,433,807 similarsizedgroups.Theyfound∼6%ofthetotalhalomasswas McGee,S.L.,Balogh,M.L.,Bower,R.G.,Font,A.S.,&Mc- insomeformofstarsinthesesizedgroups,whilemassiveclusters Carthy,I.G.2009,MNRAS,400,937 havestellarfractionsofonly∼0.02.Ourrobustupperlimitonthe Milne,M.L.etal.2007,AJ,133,177 stellarfractionisactuallyjust consistent withtheirmeasurement, Purcell,C.W.,Bullock,J.S.,&Zentner,A.R.2007, ApJ,666, but thisconservative limitwould imply that there isalmost three 20 timesasmuchstellarmassintheIGMasinthegalaxies;notonly Sako,M.etal.2008,AJ,135,348 is this almost certainly unreasonable, it is also much higher than Sand,D.J.etal.2008,AJ,135,1917 Gonzalezetal.(2007)themselvesfind.Infact,thefractionofstel- Scannapieco,E.&Bildsten,L.2005,ApJL,629,L85 larmasswefindintheIGM(∼47percent)isinreasonableagree- Scheick,X.&Kuhn,J.R.1994,ApJ,423,566 ment withtheirstudy; thedifferenceinour resultisinthestellar Searle,L.&Zinn,R.1978,ApJ,225,357 massfractionsthemselves,asevident inYangetal.(2009).Since Spergel,D.N.etal.2007,ApJS,170,377 itisexpectedthatclustersareformedfromthebuildupofgroups Sun,M.,Donahue,M.,&Voit,G.M.2007,ApJ,671,190 (Berrieretal.2009;McGeeetal.2009)andgiventhatmergersdo Sun,M.etal.2009a,ApJ,693,1142 notdestroystellarmass,Baloghetal.(2008)showedthatagroup —.2009b,ArXive-prints stellarfractionashighasfoundbyGonzalezetal.(2007)wasin- Thuan,T.X.&Kormendy,J.1977,PASP,89,466 compatiblewiththelowstellarfractionsinclusters,andarguedthat Vikhlinin,A.etal.2006,ApJ,640,691 thehalomassesoftheGonzalezetal.(2007)groupswereunderes- Weinmann,S.M.etal.2006,MNRAS,372,1161 timated.Thelowermeasurementofthegroupstellarfractionfrom White,P.M.etal.2003,ApJ,585,739 thisworkandYangetal.(2009)supportsthisconclusion. Willman,B.,Governato,F.,Wadsley,J.,&Quinn,T.2004,MN- Weconclude, therefore, thatdespitethesignificant contribu- RAS,355,159 tion from intragroup stars, the stellar mass fraction in groups is Yang,X.,Mo,H.J.,&vandenBosch,F.C.2009,ApJ,695,900 notsignificantlylargerthaninmassiveclusters.Thissuggeststhat Yang,X.etal.2007,671,153 Yanny,B.etal.2000,ApJ,540,825 1 Averysimilarresultisobtainedifweusethetotalstellarmasswithin Zheng,C.etal.2008,AJ,135,1766 thespectroscopicsample,andincludeasmallcorrectionforthestellarmass Zibetti, S., White, S. D. M., Schneider, D. P., & Brinkmann, J. belowthespectroscopiclimit. 2005,358,949 6 McGee &Balogh Zwicky,F.1951,PASP,63,61

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.