ebook img

Constraining the Structure of GRB Jets Through the log(N)-log(S) Distribution PDF

0.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Constraining the Structure of GRB Jets Through the log(N)-log(S) Distribution

DRAFTVERSIONFEBRUARY2,2008 PreprinttypesetusingLATEXstyleemulateapjv.3/25/03 CONSTRAININGTHESTRUCTUREOFGRBJETSTHROUGHTHElogN- logSDISTRIBUTION DAFNEGUETTA1,2,JONATHANGRANOT3,4 ANDMITCHELLC.BEGELMAN2 DraftversionFebruary2,2008 ABSTRACT A generalformalism is developedfor calculating the luminosityfunctionand the expectednumberN of ob- servedGRBsaboveapeakphotonfluxSforanarbitraryGRBjetstructure. Thisformalismdirectlyprovides thetrueGRBrateforanyjetmodel,insteadoffirstcalculatingtheGRBrateassumingisotropicemissionand thenintroducinga‘correctionfactor’toaccountforeffectsoftheGRBjetstructure,aswasdoneinprevious works. Weapplyittotheuniformjet(UJ)anduniversalstructuredjet(USJ)modelsforthestructureofGRB 5 jetsandperformfitstotheobservedlogN- logSdistributionfromtheGUSBADcatalogwhichcontains2204 0 BATSEbursts. We allowforascatterinthepeakluminosityLforagivenjethalf-openingangleθ (viewing 0 j angleθ )intheUJ(USJ)model,whichisimpliedbyobservations.Acoreangleθ andanouteredgeatθ 2 obs c max areintroducedforthestructuredjet,andafiniterangeofopeninganglesθ θ θ isassumedforthe min j max n uniformjets. Theefficiencyforproducingγ-rays,ǫ ,andtheenergypersolid≤angl≤einthejet,ǫ,areallowed γ a tovarywithθ (θ )intheUJ(USJ)model,ǫ θ- bandǫ θ- a. Wefindthatasinglepower-lawluminosity J j obs γ ∝ ∝ functionprovidesa goodfit tothe data. Sucha luminosityfunctionarisesnaturallyin the USJmodel,while 7 intheUJmodelitimpliesa power-lawprobabilitydistributionforθ , P(θ ) θ- q. Thevalueofqcannotbe directlydeterminedfromthefittotheobservedlogN- logSdistributjion,anjd∝anajdditionalassumptiononthe 2 valueofa orb is required. Alternatively,anindependentestimate of thetrue GRB ratewouldenableoneto v 3 determinea,bandq. Theimpliedvaluesofθc (orθmin)andθmax areclosetothecurrentobservationallimits. 6 ThetrueGRBratefortheUSJmodelisfoundtobeRGRB(z=0)=0.86-+00..0154Gpc- 3yr- 1 (1σ)whilefortheUJ 0 modelitishigherbyafactor f(q)whichstronglydependsontheunknownvalueofq. 7 Subjectheadings:gammarays: bursts—gamma-rays: theory— cosmology: observations— ISM:jets and 0 outflows 4 0 / 1. INTRODUCTION Kumar&Panaitescu 2000; Moderski,Sikora&Bulik 2000; h Panaitescu&Mt’eszt’aros 1999; Rhoads 1997, 1999; p There are several lines of evidence in favor of jets in Sari,Piran&Halpern 1999), where the energy per solid - gamma-ray bursts (GRBs). For GRBs with known redshift o angle ǫ and the initial Lorentz factor Γ are uniform within z,thefluencecanbeusedtodeterminethetotalenergyoutput 0 r some finite half-opening angle θ , and sharply drop outside st iEnγ-ratyhsatawsseurmeiinngfesrprhederiicnatlhsiysmwmayetrsyo,mEeγt,iimso.esThapepvraolaucehseodf, of θj, and (2) the universal stjructured jet (USJ) model a γ,iso (Lipunov,Postnov&Prokhorov2001;Rossi,Lazzati&Rees v: hanigdhiennoenrgeiecsasaere(vGeRryBh9a9rd10to23re)ceovnecnileexwceitehdperdoMge⊙nict2o.rmSuocdh- 2002; Zhang&Mészáros 2002), where ǫ and Γ0 vary i smoothlywiththeangleθ fromthejetsymmetryaxis. Inthe X els involving stellar mass objects. A non-spherical, colli- UJ model the different values of the jet break time t in the mated outflow (i.e. a jet) can significantly reduce the total j r afterglowlightcurvearise mainlydueto differentθ (andto a energyoutputinγ-rayscomparedtoEγ,iso,sinceinthiscase alesserextentduetodifferentambientdensities). InjtheUSJ the γ-raysare emitted only into a small fraction, f 1, of b ≪ model,allGRBjetsareintrinsicallyidentical,andthediffer- the total solid angle. A more direct (and probably the best ent values of t arise mainly due to differentviewing angles so far) line of evidence in favor of jets in GRBs is from j θ fromthe jetaxis[in fact, the expressionfort is similar achromaticbreaksintheafterglowlightcurves(Rhoads1997, obs j tothatforauniformjetwithǫ ǫ(θ )andθ θ ]. The 1999;Sari,Piran&Halpern1999). observed correlation t E-→1 (Boblosom,Fraji→l&oKbsulkarni Despite the large progress in GRB research since the dis- j ∝ γ,iso coveryoftheafterglowemissioninearly1997,the structure 2003; Frailetal. 2001) implies a roughly constant true of GRB jets is still an open question. This is a particularly energy E between different GRB jets in the UJ model, and interesting and important question, since it affects the total ǫ θ- 2 outside of some core angle θc in the USJ model energyoutputandeventrateofGRBs,aswellastherequire- (R∝ossi,Lazzati&Rees 2002; Zhang&Mészáros 2002).5 mentsfromthecentralenginethatacceleratesandcollimates The probability distribution of jet half-opening angles be- theserelativisticjets. tween different GRBs in the UJ model, P(θj), is not given The leading models for the jet structure are: (1) a-prioribythemodel,andisafreefunctiontobedetermined the uniform jet (UJ) model (Granotetal. 2001, 2002; byobservations. Severalmethodshavebeenusedsofarinordertoconstrain 1 RacahInstituteforPhysics,TheHebrewUniversity, Jerusalem91904, thestructureofGRBjetsandhelpdistinguishbetweentheUJ Israel;[email protected] model and the USJ model. The afterglow light curves are 2 JILA, 440 UCB, University of Colorado, Boulder, CO 80309; similar for the UJ and USJ models, but nevertheless some [email protected] 3InstituteforAdvancedStudy,OldenLane,Princeton,NJ08540 5 Thelatterisobtainedassumingthattheefficiencyinproducingγ-rays, 4 KIPAC, Stanford University, P.O. Box 20450, MS29, Stanford, CA 94309;[email protected] ǫγ,doesnotdependonθ. Welaterexaminetheconsequences ofrelaxing thisassumption. 2 differences still exist which might help distinguish between θ θ θ , andinanalogytotheUSJmodelwechose min j max them(Granot&Kumar2003;Kumar&Granot2003). After- ǫγ(θj≤)=Θ≤(θmax- θj)Θ(θj- θmin)ǫγ,0(θj/θmin)- bUJ. glow light curves also constrain the jet structure in the USJ Theenergyper solid angle is also assumed to behaveas a model,asdiscussedin§3. Thismethodrequiresaverygood powerlaw,ǫ(θ)=Θ(θmax- θ)ǫ0min[1,(θ/θc)- aUSJ]intheUSJ anddensemonitoringoftheafterglowlightcurves,especially model and ǫ(θ)= Θ(θmax- θj)Θ(θj- θmin)ǫ0 (θj/θmin)- aUJ in nearthejetbreaktimetj. Anotherpossiblewaytodistinguish theUJmodel. Thepower-lawindexesaandbcanbediffer- betweenthesetwomodelsforthejetstructureisthroughthe entbetweentheUSJandUJmodels(asisemphasizedbythe differentexpectedevolutionofthelinear polarizationduring differentsubscriptforthetwomodels),andwealsoconsider the afterglow(Rossietal. 2004). However,some difficulties differentvaluesforaandbwithineachmodel. andcomplicationsexistin thismethod, like the poorquality Theexternalmassdensityistakentobeapower-lawinthe ofmostpolarizationlightcurves,andapossibleorderedmag- distance R from the central source, ρ =AR- k. For a con- ext neticfieldcomponentthatmightcausepolarizationthatisnot stantefficiencyǫ (b=0)theobservedcorrelationt E- 1 relatedtothejetstructure(Granot&Königl2003). Thedis- (Bloom,Frail&Kγulkarni2003;Frailetal.2001)imjp∝liesγa,is=o tribution of viewing angles θobs, inferred from the observed 2(Rossi,Lazzati&Rees2002;Zhang&Mészáros2002). In valuesoftj,hasbeenusedtoargueinfavoroftheUSJmodel thefollowing,weallowbtovaryandfindthejointconstraint (Perna,Sari&Frail 2003). However, when the known red- thattheFrailetal.(2001)relationputsonaandb. shifts of the same sample of GRBs are also taken into ac- TheafterglowemissionbecomesprominentwhentheGRB count,thereisaverypooragreementwiththepredictionsof ejecta sweeps enough of the external medium to decelerate the USJ model (Nakar,Granot&Guetta 2004). In order to significantly. After this time most of the energy is in the reachstrongconclusionsusing thismethod, a largeanduni- shocked external medium, and energy conservation implies formsampleofGRBswithknownredshiftsisneeded,likethe oneexpectedfromSwift. ǫ Γ2µc2=Γ2Ac2R3- k/(3- k), (1) InthispaperweusetheobservedlogN- logS distribution ≈ (the number N of GRBs above a limiting peak photon flux whereµistheswept-uprestmasspersolidangle. S) in order to constrain the jet structure. A somewhat sim- In the UJ model Γ(tj) 1/θj (Rhoads 1997; ∼ ilar analysis was done by Guetta,Piran&Waxman (2004). Sari,Piran&Halpern 1999) while in the USJ model They found that the observed logN- logS distribution rules Γ(tj) 1/θobs (Rossi, Lazzati & Rees 2002; Zhang & ∼ out the USJ model, due to the paucity of GRBs with small Mészáros2002)and the emission aroundtj is dominatedby peak fluxes compared to the prediction of the USJ model, materialclosetoourlineofsight. Togetherwiththerelation and fit a double power-law luminosity function for the UJ R 4Γ2ct,wehave ∼ model. Firmanietal. (2004) tried to constrain the redshift 1 (3- k)ǫ(θ) 1/(3- k) evolutionoftheGRBrateandluminosityfunction,usingthe t θ2(4- k)/(3- k) θ[2(4- k)- a]/(3- k) , (2) logN- logS distribution (as well as the redshift distribution j≈ 4c Ac2 ∝ (cid:20) (cid:21) derivedfromtheluminosity-variabilityrelation). where θ = θ for the UJ model and θ = θ for the USJ j obs This paper improves upon previous works by: (1) allow- model. Now, in order to satisfy the observed correlation6, ingtheefficiencyinproducingγ-raystobeafunctionofthe t E- 1 θa+b,wemusthave angle θ, ǫγ =ǫγ(θ), and varying ǫ(θ) accordingly, using the j∝ γ,iso∝ Frailetal.(2001)relation,(2)includinganinternaldispersion 2(4- k)- a inthepeakisotropicequivalentluminosityLatanygivenan- λ≡a+b= 3- k . (3) gleθ,(3)introducinganinnercoreangleθ andanouteredge c Thereforeifweallowtheefficiencyandtheenergypersolid θ in the USJ model, (4) using a largerand more uniform max angle to vary in this way, we obtain the condition b=(2- GRBsample. a)(4- k)/(3- k)ora=2- b(3- k)/(4- k)inordertoreproduce In §2 we allow ǫ and ǫ to vary with θ, and derive the γ theobservedcorrelationofFrailetal.(2001). constraintsonthe power-lawindexesthatare impliedby the For the USJ model, interesting constraints on the power- Frailetal.(2001)relation. Theformalismforcalculatingthe lawindexa oftheenergypersolidanglehavebeenderived luminosityfunctionandtheobservedGRBrateasafunction USJ fromtheshapeoftheafterglowlightcurve(Granot&Kumar ofthelimitingfluxfordifferentjetstructuresisderivedin§3. In§4and§5wecomparetheobservedlogN- logSdistribu- 2003; Kumar&Granot2003). For aUSJ.1.5 the changein thetemporaldecayindexacrossthejetbreakistoosmallcom- tiontothepredictionsoftheUSJandUJmodels,respectively. pared to observations, while for a & 2.5 there is a very Ourresultsarediscussedin§6. USJ pronouncedflatteningofthelightcurvebeforethejetbreak, 2. THEENERGYANDGAMMA-RAYEFFICIENCYDISTRIBUTIONS whichisnotobserved.Thelatterfeaturearisessincetheinner The efficiency for producing γ-rays, ǫ , is taken to be a partsof the jet near the core, where ǫ is the largest, become γ function of the angle θ from the jet symmetry axis in the visible. This explains why this feature becomes more pro- USJ model, and a function of the jet half-opening angle θj nouncedfor aUSJ >2, where mostof the energyin the jetis in the UJ model. For convenience we assume a power- concentratedatsmallangles,nearthecore. Thereisnosharp law dependence on θ in the USJ model, ǫ (θ) = Θ(θ - borderline where the light curves change abruptly. Instead, γ max θ)ǫγ,0min[1,(θ/θc)- bUSJ], where Θ(x) is the Heaviside step ttohgeelitghhert,ctuhrevoesbscehravnegdesshmapoeotohflythweiathftethrgelpoawralmigehttecruarUvSeJ.cAonl-- function. Anouteredgeatθ hasbeenintroduced,aswell asacoreangle,θ &1/Γ max5 10- 4rad,whichisneeded strainstheparameteraUSJtobeintherange1.5.aUSJ.2.5. c max inordertoavoidadivergenc∼eat×θ=0. HereΓ 2000is the maximum value of the Lorentz factor to wmhaixch∼the fire- 6WehaveEγ- 1,iso∝θa+bsinceEγ,iso(θ)=4πǫ(θ)ǫγ(θ).Thepeakisotropic ballcanbeaccelerated(Guetta,Spada&Waxman2001). For equivalentluminosityisgivenbyL=Eγ,iso/T whereT istheeffectivedura- tionoftheGRB,whichisassumedtobeuncorrelatedwithLsothatLhasthe the UJ model P(θj) is restricted to a finite range of values, sameθ-dependenceasEγ,iso 3 Itisimportanttostressthatthisconstraintappliesonlytothe universal structured jet model where7 P(Lθ) = δ[L- L(θ)] USJmodelandnottotheUJmodel,sinceintheformeraUSJ and L(θ) = L0(θ/θ0)- λ. Using Eq. (4) this| implies P(L) = determinesthestructureofanindividualjet(andthereforeaf- (θ /λL )(L/L )- 1- 1/λsinθ(L),whereθ(L)=θ (L/L )- 1/λ,and 0 0 0 0 0 fects the light curves) while in the latter the structure of an forθ(L) 1itreducesto P(L) (θ2/λL )(L/L )- 1- 2/λ. Al- individual jet is fixed and aUJ only affects how the uniform ternative≪ly,onemayassume8P(L≈)=C0 L- η0,wher0eη=1+2/λ ǫchangesbetweendifferentjetsofdifferenthalf-openingan- 0 glesθj. andC0∼λ- 1θ02L0η- 1 isdeterminedbythenormalizationcon- One might also try to constrain the power-law index b of dition, P(L)dL=1. thegamma-rayefficiencyǫ fromobservations. Thiswould, AnimportantpointtostresshereisthatP(L)representsthe γ of course, apply to both the USJ model and the UJ model. averageRover all possible viewing angles. Even if the jet is The way in which this has been done so far is by taking assumedtohaveasharpouteredgeatsomefiniteangleθmax, ǫγ =Eγ,iso/(Eγ,iso+Ek,iso) where Ek,iso is the initial value of with some probability distribution P∗(L) for θ <θmax, such the isotropic equivalent kinetic energy. However, it is hard that P∗(L)=(1- cosθ )- 1 θmaxdθsinθP(Lθ) and P(Lθ > toevaluateEk,iso veryaccurately. Itisusuallyevaluatedfrom θj)=δ(L),thenP(L)=m(a1x- cos0θmax)P∗(L)+c|osθmaxδ(L).| afterglow observations several hours to days after the GRB, If the GRB jet structure iRs not universal, and P(Lθ) de- andcanprovideanestimateaccuratetowithinafactorof 2 pends on additional parameters that describe the jet|struc- ∼ or so for the kinetic energy at that time. An additional and ture, then Eq. (4) needs to be averaged over these parame- potentiallylargeruncertaintyarisessinceatearlytimesthere tersin ordertoobtaintheGRB luminosityfunction. Forex- isfastcoolingandradiativelossesmightreducetheinitialki- ample, for a uniform jet of half-opening angle θ , we have j neticenergybyuptoanorderofmagnitudeorso. Thiscanbe P(Lθ,θ )=Θ(θ - θ)P∗(Lθ )+Θ(θ- θ )δ(L)whereP∗(Lθ ) j j j j j takenintoaccount,butintroducesanadditionaluncertaintyin isth|eprobabilitydistributi|onofLinsidethejet(atθ<θ )|for j thevalueofEk,isothatisestimatedinthisway. a given value of θj. In this case, if P(θj) is the probability Panaitescu&Kumar (2001, 2002) evaluated Ek,iso from a distributionforθj,thentheGRBluminosityfunctionisgiven fittothebroadbandafterglowdatafortendifferentGRBsand by obtained ǫ &0.5 for most of these GRBs and ǫ &0.1 for γ γ π/2 π/2 allofthem. Thereseemstobenoparticularcorrelationwith P(L)= P(θ )dθ P(θ)dθP(Lθ,θ ) j j j θ, but due to the small number of bursts and the reasonably Z0 Z0 | large uncertainty in Ek,iso there might still be some intrinsic π/2 correlation. Lloyd-Ronning&Zhang (2004) used the X-ray = P(θ )dθ (1- cosθ )P∗(Lθ )+cosθ δ(L) .(5) j j j j j | luminosityat10hrtoestimatethekineticenergyatthattime Z0 andusedasimpleanalyticexpression(Sari1997)toaccount InanalogywiththeUSJ(cid:2)model,weassumefortheUJm(cid:3)odel fortheradiativelosses. Inthisway theyestimatedǫγ for17 that ǫ=ǫ0(θj/θmin)- aUJ and ǫγ =ǫγ,0(θj/θmin)- bUJ. Note that GRBs and one X-ray flash (XRF 020903). Their Figure 6 sinceǫ=Eiso/4π≈E/2πθ2j thisimpliesthatthe trueenergy suggests that ǫγ decreases with θ, although they claim that is not necessarily constant, E θ2- aUJ. In order to imitate a thisisnotstatisticallysignificant.Sincemostoftheestimates ∝ j structuredjetwithauniformcore,wechose forǫγ are&0.5andareforsmallvaluesofθ,andsinceǫγ<1 P(θ )=Θ(θ - θ )Θ(θ - θ )C(q)θ- q+B(q)δ(θ - θ ), by definition, this suggests b&0 (otherwise we would have j j min max j j j min (6) ǫ >1 at large θ, which is impossible). Moreover,Figure 6 owγfeLalsosyudm-Reotnhnatin0g.&bZ.ha1n,gt(h2e0n0E4)qs.u(g3g)ewstosuthldatim0p.lyb1..215..If w[1h-erBe(C1)(]q/)l=n([θ1m-axB/(θqm)]in()1f-roqm)/(tθhm1e-aqxn-orθmm1-ianql)izfoatrioqn6=1Pan(θdjC)d(θ1)j== a.2,2.λ.2.25fork=0,and1.5.a.2, 2.λ.2.5 1.ForP∗(Lθj)=δ[L- L(θj)]whereL(θj)=Lmin(θj/θmax)- λUJ fork=2. andL =L|(θ ),thisimplies R min max Cθ1- q 3. LUMINOSITYFUNCTIONFORDIFFERENTJETSTRUCTURES P(L)=Θ(L- L )Θ(L - L) max [1- cosθ (L)] min max j λ L Forsimplicity,weassumethattheemissionfromtheGRB UJ min jet is axially symmetric, so that the observedluminosity de- L - 1- (1- q)/λUJ +B(1- cosθ )δ(L- L ) pendsonlyontheviewingangleθfromthejetaxis,anddoes × L min max notdependon theazimuthalangleφ. Itisconvenientto de- (cid:18) min(cid:19) fiprnoebtahbeilpitryobfaobrialintyisdoistrtoripbiuctieoqnuPiv(aLl|eθn)t,lwuhmeirneoPsi(tLy|θb)edtwLeisenthLe + Bcosθmin+C θmaxdθθ- qcosθ δ(L) andL+dL,whenviewingthejetfromanangleθ. Naturally, " Zθmin # wemusthave P(Lθ)dL=1foranyvalueofθ. Theproba- Cθ3- q L - 1- (3- q)/λUJ bilityofviewingthe|jetfromananglebetweenθandθ+dθis Θ(L- Lmin)Θ(Lmax- L) max ≈ 2λ L L R π/2 UJ min(cid:18) min(cid:19) simplyP(θ)dθ=sinθdθ,and 0 P(θ)dθ=1.Averagingover θ2 theviewingangleθweobtaintheoverallprobabilitydistribu- +B minδ(L- L ) max tionforL, R 2 θ2 C(θ3- q- θ3- q) π/2 1 + 1- B min- max min δ(L), (7) P(L)= P(θ)P(Lθ)dθ= P(Lθ)dcosθ. (4) " 2 2 (3- q) # | | Z0 Z0 For a universal GRB jet structure, i.e., if all GRB jets have 7Thisisthestandarduniversalstructuredjetmodel(Rossi,Lazzati&Rees 2002;Zhang&Mészáros2002)forλ=2,andassumingnoscatterinLfora thesameintrinsicproperties,thenEq.(4)representstheGRB givenθ. luminosityfunction. 8ThisisapurepowerlawinLforallθ,insteadofjustforθ≪1aswe As a simple and very useful example, let us consider a hadbefore. 4 termsinEq. (10)fortheUSJmodelbyafactorof P∗(L)=Θ(L- Lmin)Θ(Lmax- L)λCUθJLm1-maqxin(cid:18)LmLin(cid:19)- 1- (1- q)/λUJ f(q)=(cid:18)θθmmainx(cid:19)1- q+((31-- qq))"1- (cid:18)θθmmainx(cid:19)1- q# +Bδ(L- Lmax), (8) (3- q)/(1- q) (q<1), whIenrethθej(cLa)s=eθomfaxth(Le/sLtmruinc)t-u1r/eλdUJ.jet discussed above, with a ≈([2/(q- 1)](θ /θ )q- 1 (q>1), (14) max min sharpouteredgeatsomefiniteangleθ ,andauniformcore max where f(1)=1+2ln(θ /θ ). Thisfactor f isthe ratioof withinsomeangleθ ,wehave max min c thetrueGRBratefortheUJmodeltothetrueGRBrateforthe P(Lθ)=Θ(θ - θ)δ(L- L )+Θ(θ- θ )δ(L) USJmodelthatcorrespondstothesameluminosityfunction c max max | +Θ(θ- θ )Θ(θ - θ)δ[L- L(θ)], (9) (i.e. Eqs. 7and10). Figure1 shows f(q)forthreedifferent c max valuesofθ /θ . Thefactthat f(q)>1meansthatalarger whereL(θ)=Lmin(θ/θmax)- λUSJ andLmin=L(θmax).Therefore, numberofmunaxiformminjetsisneeded,comparedtostructuredjets, in order to reproduce the same luminosity function and the θ sinθ(L) L - 1- 1/λUSJ ˙ P(L)=Θ(Lmax- L)Θ(L- Lmin) mλaUxSJLmin (cid:18)Lmin(cid:19) ssaammeeNo˙bGsReBrvtheedirnattreinosficGGRRBBs,rNatGeRpBe.rTuhniistcmoemaonvsitnhgatvofolurmthee, +(1- cosθc)δ(L- Lmax)+δ(L)cosθmax RGRB(z),andspecificallyRGRB(z=0),islargerbyafactorof θ2 L - 1- 2/λUSJ f fortheUJmodelcomparedtotheUSJmodel. Θ(L - L)Θ(L- L ) max (10) Thesamefactor f isobtainedfromtheratiooftheenergy max min ≈ λUSJLmin(cid:18)Lmin(cid:19) outputingamma-raysofasinglestructuredjettotheaverage θ2 θ2 energyoutputingamma-raysofauniformjet. Thisratiomust + cδ(L- Lmax)+ 1- max δ(L), equaltheratiooftheintrinsicratessincethetotalenergyout- 2 2 (cid:18) (cid:19) putingamma-raysperunittimeperunitvolumemustbethe Θ(L - L)Θ(L- L ) L - 1- 1/λUSJ same(Guetta,Piran&Waxman2004). P∗(L)= (1- comsaθxmax)θm- 1axλUSmJLinminsinθ(L)(cid:18)Lmin(cid:19) forWqe>ca1n.seTehitshactanf b∼e1unfdoerrqsto<od1aasndfolflo∼ws(.θmSaixn/cθemimn)oq-s1t (1- cosθ ) + c δ(L- L ) ofthesolidangleofthestructuredjetis nearθmax, the num- (1- cosθmax) max ber of uniform jets with θj θmax should be comparable to ∼ 2 L - 1- 2/λUSJ the number of structured jets. Therefore, for q <1 where Θ(L - L)Θ(L- L ) mostoftheuniformjetshaveθ θ wehave f 1,while ≈ max min λUSJLmin(cid:18)Lmin(cid:19) for q > 1 where most of the ju∼nifomramx jets have ∼θj θmin, + θθc 2δ(L- Lmax), (11) jfet∼sw(θitmhaxθ/jθminθ)mqa-x1.is roughly the inverse of the frac∼tion of (cid:18) max(cid:19) We have ∼demonstrated that the luminosity function of the swhhoeurledθb(eL.)N=oθtemtahx(aLt/thLemcino)-e1f/fiλcUiSeJnatnindthLe∞mifinPrs∗t(tLe)rdmLin=t1heasexi-t UprSiaJtemcohdoeilcceaonfbPe(iθmj)i.tatTehdebiymtphleieUdJtrmueodGelRwBitrhatteheRaGpRpBr(oz)- R ˙ pressionforP(L)includesθmax onlythroughthecombination forthesameobservedGRBrateNGRBwouldalwaysbelarger θ L1/λ=θ [L(θ )]1/λ,whichisindependentofθ (for (byafactor f)fortheUJmodel. FortheUJmodel,theterm amfiaxxedminnormmaalxizatiomnaxofL)sinceL(θ) θ- λ. max Bδ(θj- θmin)inP(θj)whichproducestheterm∝δ(L- Lmax)in ∝ P(L)issomewhatartificial,andwasintroducedonlytomake Bycomparingequations(7)and(10)onecanalsoseethata similarluminosityfunctioncanbeobtainedfordifferentval- uesofλ=a+b,aslongasλ /λ =(3- q)/2. Inthiscase, UJ USJ 106 whenq=1thenλUJ=λUSJ. Forthesameθmax,Lmin andLmax 106 pwleiehsaθvce/6 Lθmmianx/=L(mθimni=n/6(θθmmaaxx)/(1θ-mqi)n/)2λ(UwJ =he(θremaθxc/θ<c)θλmUSinJ wfohricqh<im1- 105 110045 qq mmaaxx//qq mmiinn==110010.5 andθc>θminforq>1).Inorderfortheluminosityfunctions f103 q max/q min=10 tobethesamealsoforthecoreofthestructuredjet,whichis 104 102 representedbytheterm δ(L- L ),theratioofthistermto 101 max theothertermsshouldb∝ethesameforequations(7)and(10). f103 10100−1 100 Thusweobtain q θ1- q θ1- q- θ1- q - 1 102 C(q)= min + max min , (12) "(3- q) (1- q) # 101 B(q)= 1+(3- q) θmax 1- q- 1 - 1 , (13) 10−02 −1 0 1 2 3 4 (1- q) θ q ( "(cid:18) min(cid:19) #) whereB(1)=C(1)/2=[1+2ln(θ /θ )]- 1andC(q)/B(q)= FIG. 1.— Theratio f (Eq. 14)ofthetrueGRBratefortheUJmodelto max min thetrueGRBratefortheUSJmodel,giventhesameobservedGRBrateand (3- q)θq- 1. luminosityfunction (i.e., thesamelogN- logSdistribution), asafunction min Thenormalizationof thefirst twotermsin Eq. (7) forthe oftheslopeqoftheprobabilitydistributionfortheopeningangleθj ofthe UJmodelissmallerthanthatofthe(corresponding)firsttwo uniformjet,P(θj)∝θ-jqforθmin<θj<θmax.Seetextfordetails. 5 a completeanalogywith P(L)forthe USJmodel. Theexact Theluminosityfunctioninthiscasecanbeobtainedusing formof the cutoffnear θ is notclear and probablywould equations(4)and(15). Itisimportanttonotethattheintegral min not have a very large effect on the logN- logS distribution, inEq.(4)mustbedoneoverallpossibleviewingangles,even makingithardtodistinguishbetweenthetwomodelsinthis ifthejetisassumedtohaveacoreangle,θ ,andmaximalan- c way.Itisalsoimportanttokeepinmindthattheobservational gle,θ . Infact, togetherwiththepower-lawindex(λ)and max constraintsontheparameterafromtheshapeoftheafterglow normalization(θλL ), theothertwo intrinsic parametersthat 0 0 lightcurve, namely1.5.a .2.5, applyonly to the USJ defineapower-lawuniversalstructuredjetaretheanglesofits USJ modelandnottotheUJmodel. outeredge(θ )andinnercore(θ ). FortheUJmodelout- max c Theformoftheluminosityfunctiongiveninequations(7) linedabove,θ andθ arereplacedbyθ andθ which or(10)isvalidonlyifθλL(θ) const,whereθ=θ forthe determinethemraaxngeofcpossibleθ values,mwaxhereP(mθin) θ- q ∼ obs j j ∝ j USJmodelandθ=θj fortheUJmodel. Howwellthiscon- alsodependsonanadditionalparameterq. dition is satisfied may be tested by using the values of both TheobservedrateofGRBs(overtheentiresky)withapeak L and θ that were estimated from observations for a sam- photonfluxgreaterthanSisgivenby: ple of GRBs. We considera sub-sampleof 19 GRBs out of the Bloom,Frail&Kulkarni (2003) sample, for which there N˙ (>S)= P(L)dL zmax(L,S)RGRB(z)dV(z)dz, (16) is both a known redshift and an estimate for θ. There are GRB (1+z) dz Z Z0 larger uncertainties in the determination of the peak lumi- whereP(L)isgivenbyequations(4)and(15),zistheredshift nosity,9 as the bursts were detected by different instruments of the GRB, z (L,S) is the maximalredshiftfromwhich a max with different temporal and spectral sensitivities. Follow- GRBwithluminosityLandpeakfluxScanbedetected,and ingGuetta,Piran&Waxman(2004)wehaveextrapolatedthe R (z)isthe(true)GRBrateperunitcomovingvolumeV.11 GRBfluxestotheBATSErange(50keV- 300keV)usingthe ThGeRBfactor(1+z)- 1accountsforthecosmologicaltimedilation methoddescribedinSethi&Bhargavi(2001).Inouranalysis anddV(z)/dzisthecomovingvolumeelement. wehaveusedthemedianvalueofthespectralphotonindexin the 50keV- 300keV bandfor the longburstssample, - 1.6, 4. CONSTRAINTSONTHELUMINOSITYFUNCTIONOFTHEUSJ as found by Schmidt (2001). The redshifts and fluxes were MODEL takenfromthetablegiveninVanPutten&Regimbau(2003). We consider all the GRBs in the GUSBAD catalog We calculate the values of θλL for such a sample and for (Schmidt 2004), which lists 2204 GRBs detected at a time different values of λ within the range allowed for the USJ scale of 1024ms. This catalog contains all the long GRBs modelfromtheconstraintsgivenabove(namely,1.5.aUSJ. (T90 > 2 sec; Kouveliotouetal. 1993), detected while the 2.5andEq. 3): 1.83.λ.2.17fork=0,and1.5.λ.2.5 BATSEon-boardtrigger(Paciesasetal.1999)wassetfor5.5 fork=2. Thereforeoverall1.5<λ<2.5. Theresultofthis σ over background in at least two detectors, in the energy analysisis that the distributionof θλL(θ) is notquite a delta range 50- 300 keV. Using this sample we estimate the ra- function,andthereissomedispersionaroundthemeanvalue. tioC /C for each burst, whereC is the countrate in max min max Thisdispersionisreasonablyfitbyalog-normaldistribution, thesecondbrightestilluminateddetectorandC isthemin- min imumdetectablerate. Wefind V/V =0.335 0.007. max 1 [lnL- lnL(θ)]2 We consider also the Rowhan-Robiinson SFR±(RR-SFR; P(Lθ)= exp - , (15) | Lσ√2π× ( 2σ2 ) Rowan-Robinson1999)thatcanbefittedwiththeexpression 100.75z z<1, with L(θ)=L0(θ/θ0)- λ, where θ0λL0 is the average value of RGRB(z)=ρ0× 100.75 z>1, (17) θλL(θ)fortheobservedsample,andσ isthestandarddevia- (cid:26) whereρ =R (z=0)isthetrueGRBrateperunitcomoving tionofln[θλL(θ)],whichisdeterminedbyafittothedisper- 0 GRB volume at z=0. Throughoutthe paper we use the following sion of the observedsample. This distribution approachesa deltafunction(i.e. withnoscatter)forσ 0. cosmologicalparameters:(ΩM,ΩΛ,h)=(0.3,0.7,0.7). We performed fits of θλL to a sampl→e of 19 bursts from ObjectswithluminosityLobservedbyBATSEwithaflux limit S are detectable to a maximumredshiftz (L,S ). Bloom,Frail&Kulkarni (2003) which were observed by lim max lim The limiting flux has a distribution G(S ) that can be ob- BATSE and Beppo-SAX. For λ = (1.5,2,2.5,3) we ob- lim tained θλL = (15,5.8,2.2,1.1) 1049 ergs- 1 and σ = tained from the distribution of Cmin of the GUSBAD cata- 0 0 × obs log. Considering five main representative intervals we ob- (1.2,1.2,1.3,1.5). Thesevaluesofσ canbethoughtofas obs tainthat30%,30%,10%,20%,and10%ofthesamplehave upperlimitsonσ(i.e. σ.σobs),sincetheobservedscatterin S 0.23, 0.25, 0.22, 0.26, and 0.27phcm- 2s- 1, respec- θλL(θ)includesboththeintrinsicscatter(whichshouldbere- lim ∼ tively.Therefore,wehave flectedinσ)andadditionalscatterduetomeasurementerrors ˙ inθ(whichproducessomescatterσerr),whichcanbeashigh NGRB(>S)= as tens of percent. Bloom,Frail&Kulkarni(2003) obtain a zmax[L,max(S,Slim)]R (z)dV(z) factorof 2.2forthe scatter in ǫθ2, implyingthatσlnθ .0.4, P(L)dL G(Slim)dSlim (G1R+Bz) dz dz and therefore σerr .0.4λ. 10 Assuming that the measure- Z Z Z0 ment errors in θ are uncorrelated with the intrinsic scatter S zmax(L,S)R (z)dV(z) GRB itnherθeλfLo(rθe)(,1.t0h,is0.i9m,0p.l8ie,s0.σ9o2)b.s ≈σ.σ2(+1.σ2,e2r1r..2,1σ.23,+1(.05.)4fλo)r2aλn=d =Z P(L)dL"Z0 G(Slim)dSlimZ0 (1+z) dz dz (1.5,2,2.5,3). ∞ zmax(L,Slim)R (z)dV(z) + G(S )dS GRB dz ,(18) lim lim (1+z) dz 9Weusethepeakluminositysinceitisusuallythemostrelevantquantity ZS Z0 # forthetriggeringofthedifferentdetectors. 10ThisissincethedominantmeasurementerrorinθλLcomesfromθλ, 11NotethatRGRB(z)isthetrueGRBrate,anditisobtaineddirectlyfrom whileLismeasuredmoreaccurately. thisformalismwithoutanyneedfora‘correctionfactor’etc. 6 less steep than r- 4 can develop a shocked layer near the jet TABLE1. FITSTOTHElogN- logSDISTRIBUTION boundary,duetothelossofcausalcontactbetweenthejetin- teriorandwall. Ifthisshockisresponsibleforthegamma-ray P(L) model RGRB(z=0) goodness emission,itcouldleadtoradiativeefficiencyincreasingwith model parameters [Gpc- 3yr- 1] offit θ. splaionwwgleer λσθθcmU=a=SxJ00==..500+-2500..7+-..97500+-±..0000..012505.2 5.04.+-8116..80+- 00(..U1045J(,UqS=J)1) χP((219==.1d010..o17σ..2f0))35 2dmetaOchtreinessatwhsoeefosuoǫwltdh.ietiIhrmfhpθλal,nydwb,hia>fipcthph0re,iosila.uecmm.hoaeinrsgeo2asc.mi5otymntfhsauiis-snrtceawtnyiotoeunwflfidiimcthfipeavndliocieryrsecaλǫtγUkeSt=Jsht>ai2-t γ USJ fisλPi.xUnLegS.dJl+e θθλσcmU=a=SxJ00==..800+-2300.5+-(..42fi00±..x0001e05d.)05 5.00.+-7105..38+- 00(..U0076J(,UqS=J)1) χP((121=0=.40d16..48oσ.5.6f)5)7 dluemWnsieintoypsepirtrfyoofifrumlene.cdtitownowfihtiscthoctahnedaraitsaeuesiitnhgeraisninthgeleUpSowJmer-oldaewl double α=0.6±0.1 χ2=10.57 orintheUJmodel. Inthefirstfitweletallfourfreeparam- σlpaow=w+0er Lβ5=1=0.18.+-600+-..2100..86† (1U0J.7,q±=2.13) P((10=0.80d6..6oσ0.f)8) pvetaaelrruasemvoeaftreyλr:sfiλtoxUeSvdJa,raθytc:,λθθUmS,aJxθ=an2daanσnd.dIanσll.othwTeehsdeectshoeencdorenfimdtawfiinteiwnhgaesltdhptreheree- c max formedsince a value of λ =2 is expectedin the simplest USJ NOTE. —Thebestfitparameterswiththeir1σconfidenceintervalsare versionoftheUSJmodelwherethegamma-rayefficiencyǫ showntogetherwiththeimpliedtrueGRBrateandthegoodnessoffit. The γ isconstant(b =0)andthereforea =λ =2becauseof confidenceintervalsaretheprojectionontotherelevantparameteraxisofthe USJ USJ USJ regioninthemulti-dimensionalparameterspacearoundtheglobalminimum the Frail relation (Eq. 3). Therefore, it is interesting to test χ2 ofχ2where∆χ2=χ2- χ2 <1. whetherthissimplestversionofthetheUSJmodelisconsis- min min †HereL51=L∗/(1051ergs- 1). tentwiththeobservedlogN- logSdistribution. Inordertoassignaχ2 valuetothefitwedividedthe2204 GRBsintheGUSBADcataloginto14binsaccordingtotheir valueofS,thepeakphotonflux. Thefirst11binsareequally where P(L) is given by equation (4). For the USJ model spacedinlogS. Intheremaining3bins,whichcorrespondto P(Lθ > θ ) = δ(L) while P(Lθ < θ ) is given by max max the highest values of S, we chose a larger range of S values L(1m5in)|(θwmiitnh/θLm(aθx))-=λULSJm.aAx×simmiilna[r1d,i(sθp/e|θrmsiion)n- λisUSiJn]trwohdeurceedLimnaxth=e shoavaesrteoahsoavneabaltelePaositssNomninst=at4is0tiGcsR.BSsinicneetahcehobviner,ailnlonrodremratlo- UJmodel.ThepredictedlogN- logSdistributiondependson izationisanadditionalfreeparameterinourfits,thenumber thevaluesofλ , θ ,θ , σ andthenormalizationθλUSJL , ofdegreesoffreedom(d.o.f)inourfitsisν=14- (4+1)=9 USJ c max 0 0 wherethelastparameterisdeterminedthroughafittoobser- inourfirstfit,andν=10inoursecondfit. vationsandisnotconsideredtobeafreeparameter.Thescat- TheresultsofthefitsarepresentedinTable4andinFigures terσisconstrainedbyobservations,(1.0,0.9,0.8,0.9).σ. 2and3. Whenλisfreetovaryweobtainabestfitvalueof (1.2,1.2,1.3,1.5)forλUSJ=(1.5,2,2.5,3),butwasallowed λUSJ=2.9-+00..52, however,whenwefixλUSJ =2westillgetan tovaryoverawiderrangewhenperformingthefittothedata. acceptablefit. ThissuggeststhatalthoughvaluesofλUSJ>2 The smallestobservedvaluesof θ providean upperlimiton arepreferredbythedata,avalueofλUSJ=2isstillpossible. θcofθc.0.05whilethelargestobservedvaluesofθprovide On the other hand, values of λUSJ <2 become increasingly a lower limit on θmax of θmax &0.5. For the USJ model the hard to reconcile with the data. Values of λUSJ >2, which shape of the afterglowlight curvesimplies1.5.a .2.5 USJ andtherefore1.5.λ .2.5,however,sincethislimitdoes USJ not apply to the UJ model and since we wanted to properly check the consistency of the USJ with the data we allowed 3.5 λUSJtovaryoverawiderrangewhenperformingthefittothe observed UJ data. 3 best fit USJ Combining the constraint from the Frail relation (Eq. 3) best fit USJ l=2 with the limit on λ from the luminosity function allows us 2.5 separately to constrain a and b. From Eq. (3) we have a=2(4- k)- (3- k)λ=8- 3λ for k=0 and 4- λ for k=2. 2 N) SincefortheUSJmodel1.5.aUSJ.2.5fromtheafterglow og( lightcurves, this implies 11/6.λ .13/6 for k =0 and l1.5 USJ 1.5.λ .2.5 for k=2. For k=0, λ must be close to 2 USJ and b=(4- k)(λ- 2)falls in the range - 2/3.b.2/3. for 1 k=2thisimplies- 1.b.1. Asdiscussedin§2, directes- timatesofǫ suggest0.b.1(thisappliesbothtotheUSJ 0.5 γ modelandtotheUJmodel). Thedifferentconstraintsonthe parametersaandbaresummarizedinFig. 5. 00 0.5 1 1.5 2 2.5 3 IftheluminosityfunctionforcesλUSJ tovalueslessthan2, log(CM/Cm) thenbmustbenegativeandifλUSJapproaches1.5thiswould FIG.2.— Theobservedcumulativelog10N- log10(Cmax/Cmin)distribution favor an externalmedium with a k=2 density profile. Note takenfromtheGUSBADcatalog(solidstep-likeline)comparedtothepre- that b<0 corresponds to the dissipation efficiency increas- dictedlog10N- log10(P/Plim)distributionsforourbestfitmodels: asingle power-lawluminosityfunction(relevantforboththeUSJandtheUJmodels), ing with angle, as would be expectedif it is associated with bothwhenlettingallparametersvary(dashesline)andwhenfixingλUSJ=2 a shear layer well outside the jet core. We note that highly (dottedline),andabrokenpower-lawluminosityfunction(solidline;relevant relativisticjetspassingthroughanexternalpressuregradient onlyfortheUJmodel). 7 2.8 2.6 2.6 2.4 observed best USJ 2.2 2.4 2 log[N(C/C)]Mm2.22 oUbbbeeJsssett rffiivtt eUUdSSJJ l=2 log[N(C/C)]Mm11..68 1.8 1.4 1.6 1.2 1.4 1 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 log(CM/Cm) log(CM/Cm) FIG. 3.— The same as Figure 2 but for the differential distribution: FIG.4.— ThesameasFigure3butforadifferentbinningoflog10(P/Plim): log10(P/Plim)isdividedinto14bins,thefirst11ofequalsize,andthere- 26binsandNmin=15. maining3withvaryingsizeschosensuchthatthenumberofbustsperbinin theobservedsampleisatleastNmin=40(inordertohavereasonablestatis- ticssothatthePoissonerrorwillnottobetoolarge),andNistheobserved (circles)ortheoretical(lines;onlythevaluesatthecenterofeachbincount) theexactchoiceofbinninghassomeeffectonourresults,this numberofburstsineachbin.Theedgesofthebinsarealsoplotted. effectisrathersmall. Inordertoestimatetheeffectofourchoiceforthestarfor- mationrate(ormoreaccuratelytheGRBratethatisassumed to follow the star formation rate up to an unknown normal- arepreferredbythedata, correspondtob>0(agamma-ray ization constant) we repeated our fit with the original bin- efficiency ǫγ that decreases with θ) and for the USJ model ning(14bins)butwitha differentstar formationrate: SFR2 λUSJ ≈2.5 favors k=2 (i.e., a stellar wind external density fromPorciani&Madau(2001). Weobtained: λUSJ=2.9+- 00..34, profile). σ=0.5 0.5,θ =0.04 0.005andθ =0.9 0.2. While Thefirstfitgivesσ=0.5+- 00..75 whichindicatesthatthisfitis changin±gthestacrformati±onratehasalamragxereffec±tthanchang- notverysensitivetothevalueofσ. Italsoincludestherange ingthebinning,theparametervaluesforthetwodifferentstar 0.8.σ .1.3 for λUSJ =2.5 and 0.9.σ .1.5 for λUSJ = formation rates that we considered are still consistent with 2.9thatare impliedby observations. Incontrast, the second eachotherwithintheir1σ confidenceintervals. Forthenew fit with a fixed λUSJ =2 gives σ =0.8+- 00..42 which requires a starformationrateweobtainaslightlylowertrueGRBrate: positivevalueofσinordertogetareasonablefittothedata. R (z=0)=0.65+0.05Gpc- 3yr- 1. GRB - 0.17 Thebestfitvaluesofθ andθ areslightlyhigherforthe c max firstfit,butareratherclosebetweenthetwofits. Thebestfit 5. THELUMINOSITYFUNCTIONFORTHEUNIFORMJETMODEL value of θc =0.05-+00..00105 for a free λ and θc =0.03-+00..00015 for a The two fits that were discussed in §4 for the USJ model fixedλUSJ =2 are close to the upperlimit ofθc .0.05from still apply to the UJ model with θ θ and λ c min USJ observations,andtheallowedconfidenceregionsdonotallow λ 2/(3- q). The second substitutio→n indicates a dege→n- UJ valuesmuchsmaller(bymorethanafactorof 2)thanthis × eracy where the luminosity function P(L) and therefore the ∼ limit. Thebestfitvaluesofθmax=0.7 0.2fora freeλand logN- logS distribution would be the same for UJ models ± θmax =0.5 0.05 for a fixed λUSJ =2 are close to the lower withthesamevalueofλ /(3- q)=(a +b )/(3- q). This ± UJ UJ UJ limit of θmax &0.5 from observationsand are not consistent degeneracy does not enable us to determine P(θ ), which is j withθmax=π/2. parameterized by q from a fit to the observed logN- logS The true GRB rate that is implied from our fits is rather distribution. Such a fit can only determine η=1+2/λ = close to the value of RGRB(z=0) 0.5Gpc- 3yr- 1 that was 1+(3- q)/λ where P(L) L- η. The degeneracymigUhStJbe ∼ UJ found by Perna,Sari&Frail (2003). We obtain a slightly ∝ brokenifwecouldestimatethetrueGRBrateinanindepen- larger rate for the free λ fit compared to the fixed λUSJ =2 dentway.ThisissincethetrueGRBratefortheUSJmodelis fit, but the difference is very small. The rates we obtain for determinedfromthefittotheobservedlogN- logSdistribu- theUSJmodelarelowerbyafactorof 300comparedtothe tion,andthecorrectionfactorfortheUJmodeldependsonly ∼ estimateofFrailetal.(2001)fortheUJmodel. onq(seeEq.14andFigure1). Thusanindependentestimate Finally, since the exact choice for the number and sizes ofthetrueGRBratewouldenablethedeterminationofqand of the bins used in our fit is somewhat arbitrary and might wouldthereforeconstrainP(θ ). j havesomeeffectonourresults,weestimatethiseffectmore Thevalueofλ=a+bisthesamefortheUJandUSJmodels quantitativelyby repeatingour fit for a single power law lu- if and only if q=1. In fact, the Frail relation as manifested minosityfunctionwithalargernumberofbins,26insteadof in Eq. (3) implies that for q=1 and a given value of k, it 14 (see Fig. 4). The best fit parameter values remained the is enough that either a or b be the same for the two models sameasfortheoriginalbinning(14bins)uptothesignificant in order for λ= a+b to be the same. Add to this the fact digits shown in Table 4, while the 1σ confidence intervals that for q=1 there is an equal number of uniform jets per aslnigdhθtmlyaxc=ha0n.g7e+- d00..:21.λTUhSJe=G2R.9B+- 00r..a24t,eσis=s0li.g5h+- t00l..y74,hθicg=he0r,.0R5G±RB0(.z0=5 tlhoegamriothsmt ‘incaitnutrearlv’avlailnueθjf,oarnqd. qH=ow1emveirg,hwtebeemcopnhsaidsiezreedthaast 0)=0.95+0.25Gpc- 3yr- 1, but well within the 1σ confidence thereisnophysicalbasisforcomparingpairsofmodelswith - 0.22 intervalfortheoriginalbinning.Thisdemonstratesthatwhile λ =λ ,andthereforenoapriorreasonforchoosingq=1. USJ UJ 8 3 suggeststhatabrokenpower-lawisnotreallynecessary,and l l l l =2 =2.4 =2.9 =3.1 a single power-law can provide a reasonable fit to the data 2.5 k=0 even for σ =0 (as we obtain for the first fit from the previ- oussection,withdifferentL andL whichcorrespondto k=2 differentθ andθ ). min max max c 2 a 6. DISCUSSION We have developed a formalism that enables us to cal- 1.5 culate the theoretical logN- logS distribution for any GRB jet structure, and directly provides the true GRB rate from 1 a fit to the observed logN- logS distribution. This is a more straightforward approach compared to previous works (Guetta,Piran&Waxman 2004; Schmidt 2001) which first 0.5 −1 −0.5 0 0.5 1 1.5 2 calculatedthe GRB rate assuming an isotropicemission and b then introduced a ‘correction factor’ in order to account for FIG.5.—Asummaryoftheconstraintsonthepowerlawindexesaandbof the effects of the GRB jet structure. We have applied this thekineticenergypersolidangleandthegamma-rayefficiency,respectively: formalismtotheuniformjet(UJ)modelandtotheuniversal ǫ∝θ- aandǫγ∝θ- b,whereθ=θobsfortheUSJmodelandθ=θj forthe structuredjet(USJ)modelandperformedfitstotheGUSBAD UJmodel. Theconstraint fromthe Frail et al. relation (Eq. 3)is shown bothforaconstant densityexternal medium(k=0)andforastellar wind catalogwhichincludes2204BATSEbursts. Ouranalysisim- environment(k=2). Alsoshownarethevaluesofλ=a+bforthebestfit proves on previous works by: (1) allowing the efficiency in value(λUSJ=2.9)andthe1σconfidenceinterval(2.4<λUSJ<3.1)forthe producingγ-raystovarywithθ,(2)includinganinternaldis- USJmodel,aswellasλ=2whichisstillacceptable. Theshadedregions persioninthepeakluminosityLatanygivenθ,(3)introduc- showtheconstraints1.5.aUSJ.2.5fromtheafterglowlightcurves,which appliesonlytotheUSJmodel,and0.b.1fromestimatesofthegamma- inganinnercoreangleθc andanouteredgeθmax intheUSJ rayefficiency,whichappliestoboththeUSJmodelandtheUJmodel. The model,and(4)usingalargerandmoreuniformGRBsample. intersectionofthesetwoshadedregionsisindicated. TheresultsofourfitsaresummarizedinTable4andFigures 2and3. A power law luminosity function has also been fit- ted to the the logN - logS distribution in some previ- Theonlymeaningfulcomparisonistoobservations. ous works (Hakkilaetal. 1996; Loredo&Wasserman 1998; Thediscussionin§4aboutthevaluesofλ , σ, θ and USJ max Stern,Tikhomirova&Svensson 2002, hereafter STS02). Of θ forthe USJ modelare still valid forthe UJ model, where θc is replaced by θ and λ is replaced by 2λ /(3- q). theseworks,itismostusefultocompareourresultstothose c min USJ UJ ofSTS02,sincetheirassumptionsaretheclosesttoours:sim- The true GRB rate for the UJ model is higher than that for the USJ model for the same fit to the observed logN- logS ilar to us, they assumed (ΩM,ΩΛ) = (0.3,0.7) and that the GRB rate follows the star formation rate. It is important to distributionbyafactorof f(q)whichisgiveninEq. (14)and keepinmind,however,thatSTS02usedadifferentGRBsam- showninFigure1. InTable4weprovidethevaluesforq=1 ple. STS02obtainedapowerlawluminosityfunctionatlow asanexample.ThetrueGRBratethatweobtainforq=1isa factorof 6- 6.6lowerthanthatofGuetta,Piran&Waxman luminosities,withanindexofη=1.4,whereP(L)∝L- η.This (2004)an≈dafactorof 45- 50smallerthanthatofFrailetal. isratherclosetothepowerlawindexofη=1.7(orbetween ≈ 1.6 and 1.8 at 1σ) that we obtain over the whole luminos- (2001). However,since theGRBratethatisobtainedinthis ityrangeforasinglepowerlawluminosityfunction.Itisalso way has a strong dependence on the value of q (see Figure closetothepowerlawindexofη=1.6(orbetween1.5and1.7 1), the rates for q=1 are not very meaningful(as discussed at1σ)thatweobtainforlowluminositieswhenusingabro- inthepreviousparagraph). Aconstantefficiency(b=0)and kenpowerlawluminosityfunction. Also,forasinglepower aconstantenergy(a=2)implyλ =2which,togetherwith thebestfitvalueofλ 2.9,givUeJ q=3- 2λ /λ 1.6. law,wehaveamaximalluminosity(correspondingtothecore USJ≈ UJ USJ≈ angleθ intheUSJmodelortheminimaljethalf-openingan- Forthebestfitparametervaluesthiswouldimply f(q) 14.4 c andatrueGRBrateofR (z=0) 12.3Gpc- 3yr- 1.≈ gleθminintheUJmodel)withandexponentialtail[duetothe GRB ≈ assumedscatteraroundthemeanvalueofL(θ)],whichisnot It is remarkable that we obtain a good fit to the data for verydifferentfromanexponentialcutoff(ordecline)athigh the UJ modelfor a single power-lawdistribution of jet half- luminosities,thatwasfoundtobeaviableoptionbySTS02. openingangles,P(θ ),andascatterσ inthepeakluminosity j Thus, we concludethat our results are consistent with those for a given θ which is consistent with observations. Previ- j ofSTS02. ousworksusedabrokenpower-lawluminosityfunctionP(L) Themaindifferencesbetweenourworkandpreviousworks whichcorrespondstoabrokenpower-lawP(θ ),andnoscat- j intheliteraturewhichaimedconstrainingtheGRBluminosity ter (σ = 0). For this reason, we also performed a fit with functionusingthepeakfluxdistributionare: (i)thedifferent σ=0andabrokenpowerpower-lawluminosityfunctionP(L) samplethatweuse,and(ii)thefactthatweconsideradiffer- withtheparameterizationofGuetta,Piran&Waxman(2004), where12P(L) L- 1- αforL<L∗andP(L) L- 1- β forL>L∗. ential peak flux distribution instead of the cumulative distri- ∝ ∝ bution,sincerandomerrorspropagateinanunknownwayin TheresultsofthisfitareshowninTable4andFigures2and 3. We geta goodfit whereα=0.6 0.1andβ =0.8+0.2 are the cumulative distribution. Moreover, differently from pre- ± - 0.1 viousauthors,weconsiderthepossibilitythatthejetisstruc- consistentwithhavingthesamevalue,α β 0.7.Thislast ≈ ≈ turedandderivethecorrespondingluminosityfunctionwhich value implies η 1.7, which is consistent with our best fit value of λ =2≈.9 that implies η =1+2/λ 1.7. This in turn puts constraintson the jet structure throughthe fit to USJ USJ ≈ thelogN- logSdistribution. 12Herewedefineαandβwithaminussignwithrespecttotheirdefinition Thevaluesweobtainforθc intheUSJmodelorθmininthe inGuetta,Piran&Waxman(2004). UJmodelareclosetotheupperlimitof 0.05thatisimplied ∼ 9 by the smallest values of θ that are inferred from afterglow onetobreakthisdegeneracy. observations. Furthermore,theyarenotconsistentwithzero. Alternatively, one can make an additional assumption on Th0e.5vaflruoemofafθtmeragxltohwatowbeseorvbatatiionniss,calnodseistonothtecolonwsiesrtelnimtwitiothf aanUdJ oarcboUnJ.staTnhteentreuregyenceorrgryesipnonthdesjteot sacale=s2a.s EIf∝wθe2j-aasU-J ∼ UJ π/2.Therefore,wefindthatincludingθc(orθmin)andθmaxis sume a constant energy, the Frail relation (Eq. 3) implies requiredinordertoobtainagoodfittothedata. a constant efficiency (b =0), and vice versa. In this case We fit the observeddistribution of θλL(θ) (where L is the λ = 2 and the best fitUJvalue of η = 1+2/λ 1.7 im- UJ USJ peak luminosity), for a sample of 19 GRBs with a known plies q 1.6. For the best fit parameter values t≈his would redshift z and an estimate for θ, to a log-normal distribu- imply f≈(q) 14.4 and a true GRB rate of R (z = 0) GRB tion with a standard deviation σ. We found the fit to a 12.3Gpc- 3y≈r- 1. This last value is a factor of 2.7 low≈er log-normal distribution to be acceptable. The implied val- than that of Guetta,Piran&Waxman (2004) and≈a factor of ues of σ are (1.0,0.9,0.8,0.9).σ.(1.2,1.2,1.3,1.5) for 20 smaller than thatof Frailetal. (2001). It is also a fac- λ=(1.5,2,2.5,3),wherewehavetakenintoaccountthatpart ≈tor of 4.9 103 smaller than the rate of SNe Type Ib/c, oftheobserveddispersionmightariseduetoerrorinthees- R ≈(z=0)× 6 104Gpc- 3yr- 1. SNIb/c timatedvalueofθ. Thisisconsistentwiththewiderangeof For a = 2≈and×b = 0, the 1 σ confidence interval of possibleσvaluesweobtaininourfitforafreeλ,σ=0.5-+00..57, 2.4<λUUSJJ<3.1inλUUJSJ correspondsto1.3<q<1.7,9.5< and with the smaller range of values for our fit with a fixed f(q)<16.5,andR (z=0)= (7.7- 16.5)Gpc- 3yr- 1. These λUSJ=2,σ=0.8+- 00..42. values of q are noGtRvBery far∼from q = 1 for which there is TheFrailetal. (2001) relationconstrainsthe valuesofthe an equal number of jets per logarithmic interval in θ . It j powerlawindexesaandboftheenergypersolidangleinthe implies that there are more jets with θ θ compared to j min jet(ǫ)andthegamma-rayefficiency(ǫγ),respectively(seeEq. θ θ , by a factor of (θ /θ )q-∼1 2.1- 9.1where 3). For the USJ modelthe observedshapesof the afterglow j ∼ max ∼ max min ∼ 9.θ /θ .23(seeTable4). Ifweallowthevalueofei- lightcurvesimply1.5.a .2.5(Granot&Kumar2003; max min USJ thera orb tovary,theymustbothvarytogetherinorderto Kumar&Granot2003),whichinturnimplies11/6.λ . UJ UJ USJ satisfytheFrailrelation(Eq. 3). Thiswouldcausethevalues 13/6and- 2/3.b .2/3fork=0or1.5.λ .2.5and USJ USJ ofq, f(q)andthetrueGRBratefortheUJmodeltoallvary - 1.b .1fork=2. Asdiscussedin§2,directestimates USJ accordingly. Thestrongdependenceof f(q)onq(seeFigure ofǫ fromafterglowobservationssuggest0.b.1.Ourbest γ 1)impliesthatthiscanpotentiallyincreasethetrueGRBrate fitvalueofλUSJ=2.9+- 00..25favorastellarwindexternaldensity byalargefactor. Thefactthat f(q)>1forallqimpliesthat profile(k=2)andanefficiencythatdecreaseswithθ(b>0). thetrueGRBratefortheUSJmodel,whichisgiveninTable However,λUSJ =2, whichcorrespondsto b=0anddoesnot 4,providesalowerlimitfortheUJmodel. constrainthevalueofk,stillprovidesanacceptablefittothe data. TheconstraintsonaandbaresummarizedinFig. 5. For the UJ model we find a degeneracy in the luminosity function: P(L) L- η where η = 1+(3- q)/λ and λ = Wethanktherefereeforusefulcommentswhichhelpedim- UJ UJ a +b . Since∝a fit to the observed logN- logS distribu- provethepaper. D.G.thankstheWeizmanninstituteforthe UJ UJ tion can only constrain the luminosity function P(L), in our pleasant hospitality. This work was supported by the RTN case it can only provide the value of η. However, this con- “GRBs - Enigma and a Tool" and by an ISF grant for a Is- strainsonlythevalueof(3- q)/λ =(3- q)/(a +b ),and raeli Center for High Energy Astrophysics (D. G.), by the UJ UJ UJ thereforestilldoesnotenableustodeterminethevaluesqand W. M. Keck foundation and by US Department of Energy λ separately.AnindependentestimateofthetrueGRBrate undercontractDE-AC03-76SF00515(J.G.)andNSFgrants UJ wouldconstrain f(q)andthereforeq,andwouldthusenable AST-0307502(D.G.andM.C.B.)andPHY-0070928(J.G.). REFERENCES Bloom,J.S.,Frail,D.A.,&Kulkarni,S.R.2003,ApJ,594,674 Panaitescu,A.,&Kumar,P.2001,ApJ,554,667 Firmani,C.,Avila-Reese,V.,Ghisellini,G.,&Tutukov,A.V.2004,submitted Panaitescu,A.,&Kumar,P.2002,ApJ,571,779 toApJ(astro-ph/0401580) Panaitescu,A.,&Mt’eszt’aros,P.1999,ApJ,526,707 Frail,D.A.,etal.2001,ApJ,562,L55 Perna,R.,Sari,R.&Frail,D.,2003,ApJ,594,379 Granot,J.,etal.2001,inGRBsintheAfterglowEra,ed.E.Costa,F.Frontera, Porciani,C.,&Madau,P.2001,ApJ,548,522 &J.Hjorth(Berlin:Springer),312 Rhoads,J.E.,1997,ApJ,487,L1 Granot,J.,Panaitescu,A.,Kumar,P.,&Woosley,S.E.2002,ApJ,570,L61 Rhoads,J.E.,1999,ApJ,525,737 Granot,J.,&Königl,A.2003,ApJ,594,L83 Rossi,E.,Lazzati,D.,&Rees,M.J.2002,MNRAS,332,945 Granot,J.,&Kumar,P.,2003,ApJ,591,1086 Rossi,E.,Lazzati,D.,Salmonson,J.D.,&Ghisellini,G.2004,submittedto Guetta,D.,Piran,T.,&Waxman,E.2004,ApJ,inpress(astro-ph/0311488) MNRAS(astro-ph/0401124) Guetta,D.,Spada,M.,&Waxman,E.2001,ApJ,557,399 Rowan-Robinson,M.1999,Ap&SS,266,291 Hakkila,J.,etal.1996,ApJ,462,125 Sari,R.1997,ApJ,489,L37 Kouveliotou,C.,etal.1993,ApJ,431,101 Sari,R.,Piran,T.&Halpern,J.1999,ApJ,519,L17 Kumar,P.,&Granot,J.2003,591,1075 Schmidt,M.2001,ApJ,552,36 Kumar,P.,&Panaitescu,A.2000,ApJ,541,L9 Schmidt,M.2004,submittedtoApJ(astro-ph/0406519) Lipunov,V.M.,Postnov,K.A.,&Prokhorov,M.E.2001,Astron.Rep.,45, Sethi,S.,&Bhargavi,S.G.2001,A&A,376,10 236 Stern,B.E.,Tikhomirova,Ya.,&Svensson,R.2002,ApJ,573,75 Lloyd-Ronning,N.M.,&Zhang,B.2004,ApJ,inpress(astro-ph/0404107) VanPutten,M.,&Regimbau,T.2003,ApJ,593,L15 Loredo,T.J.,&Wasserman,I.M.1998,ApJ,502,75 Zhang,B.,&Mészáros,P.2002,ApJ,571,876 Moderski,R.,Sikora,M.,&Bulik,T.2000,ApJ,529,151 Nakar,E.,Granot,J.,&Guetta,D.2004,ApJ,606,L37 Paciesas,W.,etal.1999,ApJS,122,465

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.