Astronomy&Astrophysicsmanuscriptno.ms3041 February2,2008 (DOI:willbeinsertedbyhandlater) Constraining the cosmological parameters with the gas mass fraction in local and z > 0.7 Galaxy Clusters 1 2 1 S.Ettori ,P.Tozzi ,andP.Rosati 1 ESO,Karl-Schwarzschild-Str.2,D-85748Garching,Germany 3 2 INAF,OsservatorioAstronomicodiTrieste,viaTiepolo11,I-34131Trieste,Italy 0 0 Acceptedon14thNov2002 2 n Abstract. Wepresentastudyofthebaryonicfractioningalaxyclustersaimedatconstrainingthecosmologicalparameters a J Ωm,ΩΛandtheratiobetweenthepressureanddensityofthe“dark”energy,w.Weuseresultsonthegravitatingmassprofiles of a sample of nearby galaxy clusters observed withthe BeppoSAX X-ray satellite(Ettori, De Grandi & Molendi, 2002) to 1 2 setconstraintsonthedynamicalestimateofΩm.WethenanalyzeChandraobservationsofasampleofeightdistantclusters withredshiftintherange0.72and1.27andevaluatethegeometrical limitsonthecosmological parametersΩm,ΩΛ andw 3 byrequiringthatthegasfractionremainsconstant withrespecttothelook-back time.Bycombining thesetwoindependent v probability distributions and using a priori distributions on both Ωb and H0 peaked around primordial nucleosynthesis and 5 HST-KeyProjectresultsrespectively,weobtainthat,at95.4percentlevelofconfidence,(i)w<−0.49,(ii)Ωm =0.34+−00..1015, 3 ΩΛ = 1.30+−01..4049 forw = −1(correspondingtothecaseforacosmologicalconstant),and(iii)Ωm = 1−ΩΛ = 0.33+−00..0075 3 foraflatUniverse.Theseresultsareinexcellentagreementwiththecosmicconcordancescenariowhichcombinesconstraints 1 fromthepowerspectrumoftheCosmicMicrowaveBackground,thegalaxyandclusterdistribution,theevolutionoftheX-ray 1 propertiesofgalaxyclustersandthemagnitude-redshiftrelationfordistanttypeIasupernovae.Bycombiningourresultswith 02 thelattermethodwefurtherconstrainΩΛ =0.94+−00..2382 andw<−0.89atthe2σlevel. / h Keywords.galaxies:cluster:general–galaxies:fundamentalparameters–intergalacticmedium–X-ray:galaxies–cosmol- p ogy:observations–darkmatter. - o r st 1. INTRODUCTION tion. In Section3, we use a sampleof nearbyclustersto con- a strain mainly the cosmic matterdensity.Eightgalaxyclusters : Several tests have been suggested to constrain the geometry v withz > 0.7arethenpresentedandanalyzedinSection4and i andtherelativeamountsofthematterandenergyconstituents a further constraint on the geometry of the Universe is given X of the Universe (see recent review in Peebles & Ratra 2002 undertheassumptionofaconstantgasfractionasfunctionof r and references therein). A method that is robust and comple- a redshift. A descriptionof the systematic uncertaintiesthat af- mentaryto the othersis obtainedusing the gas mass fraction, fect our estimates is discussed in Section 5. Finally, the com- f = M /M , as inferred from X-ray observations of gas gas tot bined probability function and the overall cosmological con- clustersofgalaxies.Inthiswork,weconsidertwoindependent straints (also consideredin combinationwith results fromSN methodsforourpurpose:(i)wecomparetherelativeamountof typeIamagnitude-redshiftdiagram)aredescribedinSection6 baryonswithrespecttothetotalmassobservedingalaxyclus- alongwithprospectiveforfuturework. terstothecosmicbaryonfractiontoprovideadirectconstraint onΩ (thismethodwasoriginallyadoptedtoshowthecrisisof m 2. THECOSMOLOGICALFRAMEWORK thestandardcolddarkmatterscenarioinanEinstein-deSitter UniversefromWhiteetal.1993),(ii)welimittheparameters We refer to Ω as the total matter density (i.e., the sum of m that describe the geometry of the universe assuming that the the cold and baryonic component: Ω = Ω +Ω ) in unity m c b gasfractionis constantin time,as firstly suggestedby Sasaki of the critical density, ρ = 3H2/(8πG), where H = 100h c 0 0 (1996). km s−1 Mpc−1 is the Hubble constant and G is the gravita- Theoutlineofourworkisthefollowing.InSection2,we tional constant, and to Ω as the constant energy density as- Λ describethecosmologicalframeworkthatallowsustoformu- sociatedwiththe“vacuum”(Carrolletal.1992).We consider latethecosmologicaldependenceoftheclustergasmassfrac- ageneralizationfromthisstatic,homogeneousenergycompo- nentto a dynamical,spatially inhomogeneousformofenergy Sendoffprintrequeststo:S.Ettori withstillanegativepressure,or“quintessence”(e.g.Turner& Correspondenceto:[email protected] White1997,Caldwelletal.1998).Weneglecttheenergyasso- 2 S.Ettorietal.:CosmologicalconstraintsfromtheClusterGasFraction Fig.1. (Left) Values of the density contrast ∆ (with respect to what expected for an Einstein -de Sitter model) of the density contrast ∆ estimated in an “Ω + Ω = 1” universe at redshift 0, 0.1, 0.4, 0.7 and 1 (filled circles, from bottom to top, m Λ respectively) and with w equal to –0.2, –0.6, –1 (diamonds, from top to bottom, respectively; solid line: values at z = 0 for w = −1). (Right) Plot of the multiplicative factors that correct the gas fraction with respect to the initial estimate computed withinadensitycontrastof1500inanEinstein-deSitteruniverse:correctionsduetothedependenceupond3/2 (filledcircles,at ang z =0.1,0.4,0.7and1,startingfromthebottom,respectively)andthechangeduetothedensitycontrast(diamonds;solidline: valuesatz =0.1). ciated to the radiation of the cosmic microwave background, 2.1. Thecosmologicaldependenceoftheobserved Ω ≈ 5 × 10−5, and any possible contributions from light Cluster GasMassFraction r neutrinos, Ω = ( µ /h2/92.5eV), that is expected to be ν P ν less than0.05fora totalmass inneutrinos,Pµν, lower than Weassumethatgalaxyclustersaresphericallysymmetricgrav- 2.5 eV (see, e.g., the recent constraints from 2dF galaxy sur- itationallyboundsystems.Foreachgalaxyclusterobservedat veyinElgaroyetal.2002andfromcombinedanalysisofcos- redshiftz,weevaluatethegasmassfractionatr ,f (r )= ∆ gas ∆ mological datasets in Hannestad 2002). Thus, we can write M (< r )/M (< r ), where r is defined accordingto gas ∆ tot ∆ ∆ Ωm + ΩΛ + Ωk = 1, where Ωk accounts for the curvature thedarkmatterprofile,Mtot(< r),forafixeddensitycontrast ofspace. ∆ = M (< r )/(4πρ r3). In the latter equation, ρ is tot ∆ c,z ∆ c,z Inthiscosmologicalscenario,theangulardiameterdistance the critical density at redshift z and is equal to 3H2/(8πG) z canbewrittenas(e.g.Carroll,Press&Turner1992,cf.eqn.25) with H = H E(z) (see eqn. 2). In the following sections, z 0 we describe how the dark matter mass profile is obtained for d = c S(ω) , ang H0(1+z)|Ωk|1/2 eachobjectandwhichdensitycontrastweadoptinitiallyinan ω = |Ω |1/2 z dζ , (1) Einstein-deSitteruniverse. k R0 E(ζ) The assumedcosmologicalmodelaffectsthe definitionof whereS(ω)issinh(ω),ω,sin(ω)forΩ greaterthan,equalto k the gas mass fraction, f (r ), given above in two indepen- andlessthan0,respectively,and gas ∆ dentways: E(z)= Ω (1+z)3+Ω (1+z)2+Ω (1+z)3+3w 1/2,(2) (cid:2) m k Λ (cid:3) that includes the dependence upon the ratio w between the pressureandtheenergydensityinthe equationofstate ofthe 1. for a galaxy cluster observed at redshift z up to a char- dark energy component (Caldwell, Dave & Steinhardt 1998, acteristic angular radius θ and with an X-ray flux S = c X Wang & Steinhardt 1998). Hereafter we consider a pressure- L (1 + z)−4/(4πd2 ) ∝ M2 θ−3d−3/d2 [where X ang gas c ang ang to-densityratiowconstantintime(see,e.g.,Huterer&Turner the X-ray luminosity L ≈ n2 Λ(T ) × θ3d3 , and X gas gas c ang 2001,Gerke & Efstathiou2002for the extension of eqn.2 to Λ(T ) is the cooling function of the X-ray emitting gas aredshift-dependentform).Inparticular,thecaseforacosmo- plasma that dependsonly on the plasma temperature]and logicalconstantΛrequiresw=−1. a total mass, M , estimated through the equation of the tot S.Ettorietal.:CosmologicalconstraintsfromtheClusterGasFraction 3 hydrostaticequilibrium,themeasuredgasmassfractionis Table 1. The local sample from BeppoSAX MECS observa- tions. The quoted values are obtained from the deprojection 1/2 3/2 5/2 M S θ d of the spectral results and assuming a functional form of the f = gas ∝ X c ang ∝d (z,Ω ,Ω ,w)3/2, gas M θ d ang m Λ totalmassprofile(seeEttorietal.2002fordetails).AHubble tot c ang (3) constantof50kms−1 Mpc−1 isconsideredinanEinstein-de 2. the densitycontrast,∆, dependsuponthe redshiftandthe Sitteruniverse. cosmologicalparameters. cluster z Tmw(r∆) fgas(r∆) Wehaveinitiallyevaluatedthegasfraction,f (∆ ), gas Ωm=1 ∆=1500 inanEinstein-deSitteruniversewithaHubbleconstantof50 A85 0.0518 5.77±0.32 0.121±0.008 kms−1 Mpc−1. Then,we changethe set ofcosmologicalpa- A426 0.0183 7.31±0.16 0.172±0.009 rameters and evaluate for each cluster at redshift z the new A1795 0.0632 5.53±0.27 0.130±0.009 values of the angular diameter distance dang and the density A2029 0.0767 7.68±0.46 0.126±0.007 contrastwithrespecttothecriticaldensityatthatredshift.This A2142 0.0899 8.47±0.46 0.176±0.011 densitycontrastiscalculatedaccordingtotheformulainLokas A2199 0.0309 4.53±0.21 0.123±0.009 &Hoffman(2001,Sect.4.2)fora“Ω +Ω +Ω = 1”uni- A3562 0.0483 4.82±0.64 0.117±0.027 m Λ k verseandinWang&Steinhardt(1998,eqn.5,7andA11;note A3571 0.0391 5.91±0.33 0.104±0.009 thattheseformulaareestimatedforabackgrounddensitythat PKS0745 0.1028 8.36±0.47 0.143±0.009 is Ω (z) times the critical density) for a “quintessence” flat m ∆=500 model(seeleftpanelinFig.1). A85 0.0518 4.84±0.27 0.134±0.011 Since we want to consider the gas fraction in each A426 0.0183 8.12±0.17 0.235±0.015 cluster estimated within the same ∆ for any given set of A1795 0.0632 4.59±0.22 0.122±0.013 cosmologicalparameters,wethereforemultiplyfgas(∆Ωm=1) A2029 0.0767 6.30±0.37 0.142±0.011 by two factors, the first one that rescales the distance, A2142 0.0899 7.19±0.34 0.203±0.018 F1 = (dang,Ωm,ΩΛ,w/dang,Ωm=1)3/2, and the second one A2199 0.0309 4.21±0.20 0.183±0.014 that corrects by the change in the density contrast, F = A3571 0.0391 4.24±0.23 0.132±0.017 2 (∆ /∆ ) × (H2d2 ) /(H2d2 ) , PKS0745 0.1028 8.81±0.50 0.126±0.012 Ωm,ΩΛ,w Ωm=1 z ang Ωm=1 z ang Ωm,ΩΛ,w where in the latter factor M (< r ) and the angular radius tot ∆ θ∆ = r∆/dang are given (see right panel in Fig. 1). In If the regions that collapse to form rich clusters maintain particular, being ∆ ∝ r∆−2 and fgas ∝ r∆0.2 (e.g. Ettori & the same ratio Ωb/Ωc as the rest of the Universe, a measure- Fabian1999a,andfigure13inFrenketal.1999),weconclude mentoftheclusterbaryonfractionandanestimateofΩ can b that thenbeusedtoconstraintthe“cold”,andmorerelaxed,compo- fgas,Ωm,ΩΛ,w =fgas,Ωm=1×F1×F2−0.1. (4) nentofthetotalmatterdensity.Thismethodalonecannotpro- videareliablelimitontheamountofthemass-energypresents As shown in Fig. 1, the secondcorrectionaffects the f gas intheUniverseashotconstituents(e.g.WIMPS,likemassive valuesbylessthan10percentandismarginalwithrespectto neutrino)orenergyofthefield(e.g.Ω ,quintessence),asboth thecosmologicaleffectsduetothedependenceupontheangu- Λ donotclusteronscalesbelow50Mpc. lardiameterdistance.Weapplyboththesecorrectionstoeval- X-ray observationsshow that the dominantcomponentof uateeachclustergasfractioninthefollowinganalysis. the luminousbaryonsis the X-ray emitting gas that falls into the cluster dark matter halo. Therefore,the gas fractionalone 3. FIRSTCONSTRAINT:Ωm FROMTHEGAS providesareasonableupperlimitonΩc: FRACTIONVALUE Ω Ω < b ∝h−1/2, (5) c f Inthissection,wedescribehowthelocalestimateofgasmass gas fractionprovidesarobustconstraintonthecosmicmatterden- where the dependence of the ratio Ω /f on the Hubble b gas sity.We make useof thefurtherassumptionofa constantgas constant is factored out (White et al. 1993, White & Fabian fractionwithredshiftinthenextsection,whereweconsidera 1995, David, Jones & Forman 1995, Evrard 1997, Ettori & sampleofgalaxyclusterswithz >0.7. Fabian1999a,Mohr,Mathiesen&Evrard1999,Roussel,Sadat Theobservationalconstraintsontheabundanceofthelight & Blanchard 2000, Erdogdu, Ettori & Lahav 2002, Allen, elements(e.g.D,3He,4He,7Li)inthescenariooftheprimor- Schmidt&Fabian2002). dialnucleosynthesisgivesadirectmeasurementofthebaryon To assess this limit, we use the gas mass fraction esti- density with respect to the critical value, Ω . Moreover, the matedinnearbymassivegalaxyclustersselectedtoberelaxed, b BOOMERANG,MAXIMA-1andDASIexperimentshavere- cooling-flow systems with mass-weighted T >4 keV from gas centlyshownthatthesecondpeakin the angularpowerspec- the sample presented in Ettori, De Grandi & Molendi (2002; trum of the cosmic microwave background provides a con- cf. Table 1). To date, this sample is the largest for which the straint on Ω completely consistent with the one obtained physical quantities (i.e. profiles of gas density, temperature, b from calculations on the primordial nucleosynthesis (e.g. de luminosity, total mass, etc.) have all been derived simultane- Bernardisetal.2002). ouslyfromspatially-resolvedspectroscopyofthesamedataset 4 S.Ettorietal.:CosmologicalconstraintsfromtheClusterGasFraction Fig.2. Probability distributions (see Press 1996) at different Fig.3. The observed gas fraction at ∆ = 500 for the eight density contrast ∆ of the values of the gas mass fraction galaxy clusters in Table 1 is here plotted as function of the for cooling-flow clusters with T > 4 keV from the sam- Hubble constant (shaded region: constraints from Freedman gas ple in Ettori, De Grandi & Molendi (2002). The central and et al. 2001).The solid line indicatesthe centralvalueand the 1 − σ values are (0.126,0.024) and (0.152,0.020) at ∆ = dashedlinesthe1and2σuncertainties. 1500and500,respectively.Thesevalueshavetobecompared with the mean and standard deviation of (0.134,0.025) and (0.152,0.043),respectively.TheestimatedΩ fromprimordial WeplotinFig.3thedependenceupontheHubbleconstant b nucleosynthesis results (Burles et al. 2001) is overplotted for ofthefgas value(∝ h−3/2)estimatedat∆ =500fortheob- comparison. jectsinthelocalsample.Assumingh = hHST = 0.72±0.08 (from the results of the HST Key Project on distances mea- sured using Cepheid variables, Freedman et al. 2001) and Ω h2 = Ω h2 = 0.019±0.001(fromprimevaldeuterium b b,PN abundanceandcalculationsontheprimordialnucleosynthesis, (BeppoSAXobservations,in this case). Throughthe deprojec- Burles, Nollett, Turner 2001), we obtain that Ω in eqn. 5 is c tionofthespectralresults,andassumingafunctionalformfor lessthan0.54(95.4percentconfidencelevel). the dark matter distribution to be either a King (King 1962) Including a contribution from stars in galaxies of about or a Navarro,Frenk& White (1997)profile,the gasand total f = 0.02(±0.01)h−1 (White et al. 1993, Fukugita et al. gal 50 massprofilesarerecoveredinaself-consistentway.Hence,the 1998)andexcludinganyfurthercomponentstothebaryonbud- density contrast, ∆ = Mtot(< r∆)/(4πρc,zr∆3), and the gas get(seee.g.Ettori2001),onecanwriteΩb/Ωc =fgas+fgal = fractionatr∆,fgas(r∆) = Mgas(< r∆)/Mtot(< r∆),canbe fb and, consequently from the definition of Ωm, Ωb/Ωm = properlyevaluated. f /(1+f ).(NotethattheestimateofM doesnotinclude b b tot InFig.2,wecomparetheestimatedΩ fromprimordialnu- thecontributionofthegasmass,thatwouldrequirethesolution b cleosynthesiscalculationwiththeprobabilitydistribution(ob- ofasecondorderdifferentialequationinsteadofamuchsim- tainedfollowingaBayesianapproachdiscussedinPress1996) pler,andusually adopted,first orderequationofthe spherical ofthe valuesofthe gasmassfractionfornine(at∆ = 1500) hydrostaticequilibrium). andeight(at∆=500)nearbymassiveobjects.Thisplotshows Finally,weconsidertheeightrelaxednearbyclustersiwith that at lower density contrast (i.e. larger radius) the amount T >4keV(seeTable1)toevaluatethebaryonfractionatred- ofgasmasstendstoincreaserelativelytotheunderlyingdark shiftz ,f ,andwithin∆(Ω =1,Ω =0,w =−1)=500. i b,i m Λ matterdistribution.Evenifthereisindicationthatthegasfrac- For a givenset ofparameters(Ω ,Ω ,w) in the range[0,1], m Λ tionbecomeslargermovingoutwardandwithinthevirialized [0,2] and [−1,0], respectively, we estimate f (and its rela- b,i region,wedecidetoadoptf at∆=500asrepresentativeof tive error ǫ as propagation of the estimated error on f gas b,i gas,i the clustergasfraction.In fact,at∆ =500thegasfractionis and f , where the error on f comes from the measured gal gas,i expectedtobenotmorethan10percentlessthantheuniversal uncertainties on the gas and total mass estimates in Ettori et value, a difference which is smaller than our statistical error, al. 2002, and the error on f is 0.01h−1) after considering gal 50 and in any case is likely to be swamped by other effects (see thecosmologicaldependenceofbothd and∆(Ω ,Ω ,w) ang m Λ commentsinthefirstiteminSection5). (more relevantfor high−z systems, see Section 2) and calcu- S.Ettorietal.:CosmologicalconstraintsfromtheClusterGasFraction 5 Fig.4. (Left)Probabilitydistributioncontours(solidlines:1,2,3σ fortwointerestingparameters)intheΩ −Ω planefrom b m marginalizationofthelikelihoodprovidedfromthebaryonfractioninclustersassumingaf =0.02(±0.01)h−1(Whiteetal. gal 50 1993;Fukugita,Hogan&Peebles1998),Ω (Burlesetal.2001),andH = 72±8kms−1 Mpc−1 (Freedmanetal.2001). b,PN 0 Asreference,Ω (horizontalshadedregion)andΩ (verticalshadedregion;Netterfieldetal.2002),and(Ω /Ω ) b,CMB m,CMB b m 2dF (dashedlineindicatesthecentralvalue;Percivaletal.2001)areindicated.(Right)MaximumlikelihooddistributionintheΩ m axisaftermarginalizationovertheotherparameters(dottedline:1σ,dashedline:2σ). late Sasaki(1996;seealsoCooray1998,Danos&Ue-LiPen1998, Rines et al. 1999, Ettori & Fabian 1999b, Allen et al. 2002), χ2A =Pi (fb,i−ǫΩ2bb,i/Ωm )2 + does not require any prior on the values of Ωb and H0, tak- (Ωb−Ωb,PN)2 + (h−hHST)2, (6) ingintoaccountjusttherelativevariationofthegasfractionas ǫ2Ωb ǫ2h functionoftime.Inotherwords,themethodassumesthatgas fractioningalaxyclusterscanbeusedlikea“standardcandle” whereΩ andh aredefinedabove. b,PN HST tomeasurethegeometryoftheUniverse.Thisisareasonable The χ2-distribution in eqn. 6 is used to construct a ∆χ2 assumptioninanyhierarchicalclusteringscenariowhentheen- statistics,∆χ2 =χ2 −χ2 ,bywhichwegenerateregions A A,min ergyoftheICMisdominatedbythegravitationalheatingand andintervalsofconfidence(e.g.,the1σlevelofconfidencefor is supported by numerical and semianalytical models for the oneand two degreesof freedomis ∆χ2 = 1 and 2.3,respec- thermodynamicsof the ICM, also when including preheating tively.Aχ2 =29.3isobtained). A,min andcoolingeffects.Inrecenthydrodynamicalsimulationswith Marginalizing over the accepted ranges of Hubble con- an entropy level of 50 keV cm−2 generated in the cluster at stant from the HST Key Project (Freedman et al. 2001) and z = 3(seeBorganietal.2002),thebaryonfractioninclusters Ωb from primordial nucleosynthesis, we obtain (2σ) Ωm = withanobservedtemperaturearound3keVisconstantintime 0.37+−00..0078 and Ωb = 0.032+−00..001170, that are well in agreement within few percent (see also figure 13 in Bialek, Evrard and with Ωm,CMB fromCMB and Ωb/Ωm fromlargescale struc- Mohr2001).Similarresultsareobtainedinthesemianalytical turesanalysisofthe“2dF”data(seeFigure4). model of Tozzi & Norman (2001), where a constant entropy floorisinitiallypresentinthecosmicbaryons.InFigure5,we show the prediction for the baryonic fraction (in terms of the 4. SECONDCONSTRAINT:GAS FRACTION universalvalue)withinanaverageoverdensity∆ = 1500asa CONSTANTIN TIME functionoftheemissionweightedtemperatureT ,computed ew In this section, we present a sample of galaxy clusters with inaΛCDMcosmologyandwithanentropylevelof0.3×1034 z > 0.7 and compute their gas mass fraction. These values ergcm2 g−5/3 (see Tozzi&Norman2001fordetails).Asig- are compared to the local estimates to put cosmological con- nificantdecreaseofthebaryonicfractionisexpectedatz = 1 straintsundertheassumptionthatthegasfractionremainscon- (dashedline)withrespecttothelocalvalue(solidline)onlyfor stantwithredshiftwhencomputedatthesamedensitycontrast. temperaturesbelow4keV.Inparticular,attemperaturesabove Itisworthnoticingthatthismethod,originallyproposedfrom 6 keV,the baryonicfractionisconstantorpossibly5 percent 6 S.Ettorietal.:CosmologicalconstraintsfromtheClusterGasFraction Fig.6. Distribution as functionof redshiftof the gas fraction Fig.5. The gas fraction in unit of the cosmic baryon bud- relativetothemeanlocalvalueandestimatedfortheclustersin get at ∆ = 1500 as a function of the observed (emission oursampleatthesameoverdensity∆=1500.Filledcirclesare weighted) temperature computed for the model of Tozzi & thevaluescalculatedinanEinstein-deSitteruniverse,whereas Norman(2001)withaconstantentropyof0.3×1034 ergcm2 diamondsindicatetheresultsforalowdensityuniverse(Ω = m g−5/3 inaΛCDM(Ω = 1−Ω = 0.3)Universe.Thesolid 1−Ω =0.3). m Λ Λ line is forz = 0, and the dashedline forz = 1. Note the 20 per cent offset from the universal value, which reduces to 10 percentfor∆=500(seecommentsonthebaryonicdepletion (z > 0.7) hot (T > 4 keV) clusters, four of which selected inSection5). from the ROSAT Deep Cluster Survey (RDCS; Rosati et al. 1998, Stanfordet al. 2001,Holden et al. 2002),two from the Einstein Extended Medium Sensitivity Survey (MS; Gioia et higheratz = 1withrespecttoz = 0.Thisstronglysupports al. 1990), one from the Wide Angle ROSAT Pointed Survey the assumption of a baryonfraction constantwith the cosmic (WARPS; Perlman et al. 2002,Maughanet al. 2002)and one epochforclusterswithkT >4keV. partoftheNorthEclipticPolesurvey(NEP;Gioiaetal.1999, Withthisassumption,weexpecttomeasureaconstantav- Henry et al. 2001). We reprocess the level=1 events files re- eragegasfractionlocallyandindistantclusters.However,the trievedfromthearchiveandobtainaspectrumandanimagefor gasfractionisgivenbyacombinationoftheobservedfluxand eachcluster(seedetailsinTozzietal.,inpreparation).Sevenof oftheangulardistance,andthusitdependsoncosmology(see theseobjectswereobservedinACIS-Imode(onlyMS1054has discussion in Section 2). As shown in Figure 1, the high red- beenobservedwiththeback-illuminatedS3CCD).Following shiftobjectsaremoreaffectedfromthisdependenceandshow the prescription in Markevitch & Vikhlinin (2001), the effec- lowerfgaswithrespecttothelocalvalueswhenuniverseswith tive area below 1.8 keV in the front-illuminated CCD is cor- high matter density are assumed. By requiring the measured rected by a factor 0.93 to improve the cross calibration with gas fractions to be constantas a function of redshift, one can back-illuminatedCCDs. The spectrum extracted up to the ra- constraintherangeofvaluesofcosmologicalparameterswhich diusr to optimizethe signal-to-noiseratiois modelledbe- out satisfiessuchacondition. tween 0.8 and 7 keV with an absorbed optically–thin plasma (wabs(mekal)inXSPECv.11.1.0,Arnaud1996)withfixed redshift,galacticabsorption(fromradioHImapsinDickey& 4.1. Thehigh−z sample Lockman 1990) and metallicity (0.3 times the solar values in We define a local sample considering all the relaxed systems Anders & Grevesse 1989) and using a local background ob- in Ettori et al. (2002) that have a mass-weighted temperature tainedfromregionsofthesameCCDfreeofanypointsource. largerthan4 keV within ∆ = 1500(cf.Table 1). Within this The gas temperature and the normalization K of the thermal density contrast, we measure f as described in Section 2. component are the only free parameters. The surface bright- gas The density contrast is chosen to be 1500 as a good com- ness profile obtainedfrom the image is fitted with an isother- promize between the cluster regions directly observed in the malβ−model(Cavaliere&Fusco-Femiano1976,Ettori2000), nearby systems and those with relevant X-ray emission in whichprovidesan analyticexpressionfor thegasdensityand the high−z objects. This sample includes eight high redshift totalmassofthecluster.Inparticular,thecentralelectronden- S.Ettorietal.:CosmologicalconstraintsfromtheClusterGasFraction 7 Table 2.ThehighredshiftsamplefromChandraobservations.Theresultsareobtainedapplyinga β−modelinanEinstein-de Sitter universe with a Hubble constantof 50 km s−1 Mpc−1. All the quoted errorsare at 1σ level. Note that MS1054.5-0321 presentssignificantsubstructure(e.g.Jeltemaetal.2001).Thetemperatureandthebest-fitofthesurfacebrightnessprofileare estimatedfromthemainbodyoftheclusteronceacircularregioncenteredat(RA,Dec;2000)=(10h56m55”7,−3o37′37′′)and withradiusof36arcsecismasked. cluster z rout Tgas rc β nele(0) Mtot(rout) ∆(rout) fgas(rout) ”/kpc keV kpc 10−2cm−3 1013M⊙ RDCSJ0849+4452 1.261 29.5/254 5.0+1.4 97+56 0.68+0.28 0.96+0.24 8.3+2.9 1506+529 0.048+0.016 −1.0 −31 −0.13 −0.19 −2.1 −376 −0.012 RDCSJ0910+5422 1.101 29.5/253 5.0+1.3 114+61 0.65+0.33 0.81+0.19 7.9+2.6 1802+583 0.046+0.015 −1.0 −42 −0.17 −0.13 −2.0 −460 −0.010 MS1054.5-0321 0.833 82.7/685 10.1+1.1 576+51 1.36+0.16 0.54+0.01 61.3+7.2 1064+125 0.109+0.011 −0.9 −43 −0.12 −0.01 −6.0 −103 −0.011 NEPJ1716.9+6708 0.813 33.5/276 7.1+1.0 116+14 0.60+0.03 1.36+0.12 11.1+1.6 3048+433 0.080+0.012 −0.8 −13 −0.03 −0.11 −1.3 −360 −0.011 RDCSJ1350.0+6007 0.804 68.9/567 4.1+−00..86 191+−6413 0.57+−00..1038 0.47+−00..0066 13.2+−32..35 425+−18016 0.192+−00..004316 MS1137.5+6625 0.782 45.3/370 6.3+0.4 116+7 0.67+0.02 1.69+0.08 15.9+1.1 1895+132 0.104+0.008 −0.4 −7 −0.02 −0.07 −1.0 −125 −0.008 WARPSJ1113.1-2615 0.730 51.2/412 5.0+0.8 109+27 0.65+0.12 0.97+0.11 14.1+3.1 1336+297 0.063+0.012 −0.7 −22 −0.09 −0.09 −2.5 −239 −0.012 RDCSJ2302.8+0844 0.720 49.2/394 6.7+1.1 118+24 0.57+0.07 0.75+0.06 15.3+3.0 1681+332 0.075+0.013 −0.9 −16 −0.05 −0.06 −2.5 −273 −0.012 sityisobtainedfromthecombinationofthebest-fitresultsfrom wheref andǫ arethemeanandthestandarddeviationof gas gas thespectralandimaginganalysesasfollows: the values of the gas fraction in the local cluster sample, and ǫ istheerroronthemeasurementoff forj ∈ [high–z gas,j gas,j n2 = 4πd2ang×(1+z)2×K×1014, (7) sample].Itisworthnoticingthattheuseofthestandarddevi- 0,ele 0.82×4πr3×EI ation around the mean is a conservative approach. For exam- c ple, at (∆,Ω ,H ) = (1500,1,50), we measure a mean of m 0 where the emission integral is estimated by integrating along 0.134andstandarddeviationof0.025,thelatterbeingabout8 the line of sight the emission from the spherical source up to timeslargerthanthemeasurederrorontheweightedmeanand 10Mpc,EI =R0x1(1+x2)−3βx2dx+Rxx12(1+x2)−3βx2(1− slightly larger than the dispersion obtainedwith the Bayesian cosθ)dx, with θ = arcsin(rout/r), x1 = rout/rc and x2 = methodillustratedinFig.2.Usingjusttheresultsobtainedon 10Mpc/rc,(β,rc)arethebest-fitparametersoftheβ−model the χ2B distribution,we obtain a best-fit solution thatrequires and we assume np = 0.82ne in the ionized intra-cluster thefollowingupperlimitsat2σlevel(oneinterestingparame- plasma. After 1000 random selections of a temperature, nor- ter),Ω <0.64andΩ <1.69(cf.Figure7). m Λ malizationandsurfacebrightnessprofile(drawnfromGaussian distributionswithmeanandvarianceinaccordancetothebest- 5. SYSTEMATICUNCERTAINTIES fitresults),weobtainadistributionoftheestimatesofthegas andtotalmassandofthegasmassfraction.Weadoptforeach The intrinsic scatter in the distribution of the f values of gas cluster the median value and the 16th and 84th percentile as approximately20percentisthemostrelevantstatisticaluncer- centraland1σvalue,respectively(seeTable2). taintyaffectingourcosmologicalconstraints.Wediscussinthis InFigure6,weplotf oftheclustersinexamasafunc- sectionhowanumberofsystematicuncertaintiescontributeto gas tion of redshift, as computed in an Einstein-de Sitter (filled alesserextent. dots)andalowdensity(Ω = 1−Ω = 0.3)universe(open m Λ – We have assumed that the intracluster medium is in hy- squares). drostatic equilibrium, distributed with a spherical geome- try,withnosignificant(i)clumpinessintheX-rayemitting 4.2. Theanalysis plasma, (ii) depletion of the cosmic baryon budget at the reference radius, and (iii) contribution from non-thermal We compare our local estimate of the gas mass fraction with components.Thehydrostaticequilibriuminasphericalpo- thevaluesobservedintheobjectsatz > 0.7withinthesame tentialiswidelyverifiedtobeacorrectassumptionforlocal densitycontrast∆=M (<r )/(4πρ r3),whereM (< tot ∆ c,z ∆ tot clusters,butitcannotbethecase(inparticularonthegeom- r )isestimatedfromtheβ−model.Initially,weestimatethe ∆ etryoftheplasmadistribution,butseeBuote&Canizares gasfractionforalltheclustersat∆ =1500inanEinstein-de 1996, Piffaretti, Jetzer & Schindler 2002) for high red- Sitteruniverse.Then,weproceedasdescribedinSection2. shift clusters. The level of clumpiness in the plasma ex- As discussed above, we consider a set of parameters pectedfromnumericalsimulations(e.g.Mohretal.1999) (Ω ,Ω ) in the range [0,1] and [0,2], respectively, both fix- m Λ induce an overestimate of the gas fraction. On the other ing w equals to −1 as prescribed for the “cosmological con- hand, the expected baryonic depletion (still from simula- stant” case and exploringthe range w ∈ [−1,0](in this case, tions; e.g. Frenk et al. 1999) underestimates the observed werequireΩ =0),andevaluatethedistribution k cluster baryonbudgetby an amountthatcan be compara- ble (but of opposite sign) to the effect of the clumpiness 2 f (Ω ,Ω )−f χ2B =Xj (cid:2) gas,jǫ2gams,j+Λǫgas2 gas(cid:3) , (8) (jescetesdoibssceursvseiodnwiinthEintto∆r=i12500001,).aFlaorrgtehreclhuimghpirneedssshcifatnobbe- 8 S.Ettorietal.:CosmologicalconstraintsfromtheClusterGasFraction fore, does not affect the estimate of the total gravitating mass.However,thepresenceofagradientinthetempera- tureprofilewouldreducethetotalmassmeasurementsand increase,consequently,thederivedgasmassfraction. – We assume that relaxed nearby and high-z clusters, both with T > 4 keV,representa homogeneousclass ofob- gas jects. If we relaxthis assumptionand includenon-relaxed nearbysystems(orequivalentlyno-cooling-flowclustersin the sample of Ettori et al. 2002),we obtain the same cos- mologicalconstraintsthoughthescatterinthedistribution ofthegasfractionvaluesbecomeslarger(e.g.,at∆=1500, thescatteris0.025forrelaxedsystemsonlyand0.033for thecompletesample). Inconclusion,wecheckourresultsagainsttwoeffects:(i) by increasing the gas mass fraction in the high−z sample by a factor 1.15, and (ii) by changing the slope of the radial de- pendenceoff (r) (cfr.factorF inSection2)by±0.1.All gas 2 thesecorrectionsdonotchangesignificantlytheresultsquoted inthenextsectiononΩ duetoheavierstatisticalweightgiven m from the first method,that is the one less (or completelynot) Fig.7.Maximumlikelihooddistributionsinthe“Ωm +ΩΛ + affectedfromtheabovementionedeffects.Ontheotherhand, Ωk = 1” region obtained from the application of the method theymostlyaffectthesecondmethodinsuchawaythat(i)gas thatrequires“fgas=constant”(cf.Section4;shadedregion:no- fractionvaluesathigh−z higherby15percentreducethe2σ big-bang solution, dotted line: “Ωk = 0” region). The con- upper limit on ΩΛ by 10 per cent, but increase the one on w tours enclose the regions with ∆χ2 =2.30, 6.17, 11.8 (with by 50 per cent, (ii) steeper radial f profiles (i.e. larger de- gas respect to the minimum of 11.7 with eight objects in exam), pendence upon the density contrast ∆) raise the limit on Ω , Λ correspondingto1,2,3σ,respectively,foradistributionwith but have not relevant effects on w. In details, when the slope twointerestingparameters. changes from 0 to −0.1 and −0.2, the upper limit on Ω in- Λ creasesfrom25to5percent,respectively. present as consequence of on-going process of formation 6. CONCLUSIONS that,ontheotherhand,mightstillpartiallycompensatefor aresidualdepletionsofbaryonsobservedinthesimulations We showhowthecombinedlikelihoodanalysisof(i)therep- in the range 4–6 keV (cfr. Figure 5). The combination of resentative value of f in clusters of galaxies and (ii) the gas these effectsinducehoweveranuncertaintyin therelative requirement that f (z) =constant for an assumed homoge- gas amountofbaryonsoflessthan10percent,percentagethat neousclassofobjectswithT > 4keVcansetstringentlimits isbelowtheobservedstatisticaluncertainties. on the darkmatter density and any furthercontributionto the Moreover, the radial dependence of fgas can be slightly cosmicenergy,i.e.ΩmandΩΛrespectively. steeper in the inner cluster regions due to the relative First, a total χ2 distribution is obtained by combiningthe broaderdistributionofthegaswithrespecttothedarkmat- two distributions presented in eqn. 6 and 8, i.e. χ2 = χ2 + A ter (but see Allen et al. 2002 for fgas profiles observed χ2. The resultinglikelihoodcontours(Figure8) are obtained B flat within ∆=2500). Finally, from the remarkable match marginalizing over the range of parameters not investigated. between the gravitational mass profiles obtained indepen- WithfurtheraprioriassumptionsonΩ andH ,andassuming b 0 dentlyfromX-rayandlensinganalysis(e.g.Allen,Schmidt aflatgeometryoftheuniverse,weconstrain(seerightpanelin & Fabian2001),itseemsnegligibleanynon-thermalcon- Figure8)thedarkenergypressure-to-densityratiotobe tributiontothetotalmassapartfromapossibleroleplayed intheinnerregions. w <−0.82(1σ),−0.49(2σ),−0.17(3σ). (9) – The high redshift sample has been analyzed using an isothermalβ−model.Fromrecentanalysesofnearbyclus- Thisconstraintisinexcellentagreementwiththeboundonw terswithspatiallyresolvedtemperatureprofiles,itappears obtained with independentcosmologicaldatasets, such as the thatthismethodcanstillprovideareasonableconstrainton angular power spectra of the Cosmic Microwave Background the gas density, but surely affect the estimate of the total (e.g. Baccigalupi et al. 2002), the magnitude-redshiftrelation mass,inparticularintheoutskirtsand,moredramatically, probedbydistanttypeIaSupernovaeandthepowerspectrum when an extrapolation is performed. On the other hand, obtainedfrom the galaxydistribution in the two-degrees-field thephysicalpropertiesofnearbyclustersatoverdensityof (foracombinedanalysisofthesedatasets,see,e.g.,Hannestad 1500 (e.g. Ettori et al. 2002) guarantee that the expected & Mo¨rtsell2002and referencetherein).Moreover,this upper gradientintemperatureisnotsignificantlysteepand,there- bound is completely in agreement with w = −1 as required S.Ettorietal.:CosmologicalconstraintsfromtheClusterGasFraction 9 Fig.8. (Left)Maximumlikelihooddistributionsinthe“Ω +Ω +Ω = 1”region.Contourplots(thicksolidlines)fromthe m Λ k combinationofthetwolikelihooddistributions(A:clusterbaryoniccontent,B:gasfractionconstantwithredshift;dashedlines indicatetheconstraintsfromthesecondmethodonly,seeFig.7;thecrossindicatesthebest-fitresultatΩ =0.34,Ω =1.30) m Λ with overplottedthe constraintsfromthemagnitude-redshiftmethodappliedto a setofSN Ia (cf.Leibundgut2001,thinsolid lines).(Right)Constraintsontheparameterwofthecosmologicalequationofstate(thicksolidlinesfromthecombinationofthe methodAandB;dashedlinesfromthesecondmethodonly;thecrossesshowthebest-fitresults,thatislocatedatΩ = 0.35 m andw = −1forthecombinedprobabilitydistribution).ThethinsolidlinesindicatetheconstraintsfromSN Ia(P.Garnavich, priv. comm.; updated version of Garnavich et al. 1998 combining Riess et al. 1998 and Perlmutter et al. 1999 dat sets). The contoursenclose the regionswith ∆χ2 =2.30,6.17,11.8,correspondingto 1, 2, 3 σ, respectively,fora distribution with two degrees-of-freedom. fortheequationofstateofthe“cosmologicalconstant”.Fixing the constraints in Figure 8 between the allowed regions from w =−1,weobtain(foroneinterestingparameter) the gas mass fraction and the magnitude–redshiftrelation for SN-Ia, we obtain (2 σ statistical error) Ω = 0.34+0.07 and ΩΩm==10..3304++−000...300033((11σσ)),, ++−000...410415((22σσ)),, ++−000...510278((33σσ)). (10) ΩΛ = 0.94+−00..2382. These values are 0.5 anmd 0.6 σ h−ig0h.0e5r, re- Λ −0.46 −1.09 ... spectively, than the CMB constraints obtained with the SN- Ia prior (see Table 4 in Netterfield et al. 2002). Moreover,by Finally,imposingaflatUniverse(i.e.Ω =0)astherecent k combiningf andSN-Iameasurementswecanobtainavery constraintsfromtheangularpowerspectrumofthecosmicmi- gas tightconstraintonw(rightpanelinFigure8):w <−0.89and crowavebackgroundindicate(e.g.deBernardisetal.2002and Ω =0.32+0.05atthe95.4percentconfidencelevel. referencestherein),weobtainthatΩ =1−Ω =0.33+0.07 m −0.05 m Λ −0.05 at95.4percentconfidencelevel. Ourlimitsoncosmologicalparametersfitnicelyinthecos- mic concordance scenario (Bahcall et al. 1999, Wang et al. Wehavedemonstratedhowthemeasurementsofthecluster 2000),witharemarkablegoodagreementwithindependentes- gasmassfractionrepresentapowerfultooltoconstrainthecos- timates derived from the angular power spectrum of Cosmic mologicalparametersand,inparticular,thecosmicmatterden- MicrowaveBackground(Netterfield et al. 2002,Sieverset al. sity,Ω .Nonetheless,thelimitsonΩ andw,thoughweaker, m Λ 2002), the magnitude–redshiftrelation for distant supernovae provide a complementary and independent estimate with re- type Ia (Riess et al. 1998, Perlmutter et al. 1999; the like- specttothemostrecentexperimentsinthisfield.Onthisitem, lihood region from a sample of SN type Ia as described in it isworthnoticingthatourconstraintsonΩ are mostlydue Λ Leibundgut 2001 is shown in Figure 8, panel at the bottom- tothed dependenceoff (cf.Fig.1).Thus,alargersam- ang gas left), the power spectrum from the galaxy distribution in the pleofhigh−z clusterswithaccuratemeasurementsofthegas 2dFGalaxyRedshift Survey(e.g.,Efstathiouet al. 2002)and massfractionwillsignificantlyshrinktheconfidencecontours, fromgalaxyclusters(e.g.Schueckeretal.2002),theevolution asweshowinFigure9.Compilationsofsuchdatasetswillbe oftheX-raypropertiesofclustersofgalaxies(e.g.Borganiet possibleinthenearfutureusingmoderate-to-largeareasurveys al. 2001, Arnaud, Aghanim & Neumann 2002, Henry 2002, obtained from observations with Chandra and XMM-Newton Rosati, Borgani & Norman 2002). For example, combining satellites. 10 S.Ettorietal.:CosmologicalconstraintsfromtheClusterGasFraction BuoteD.A.,CanizaresC.R.,1996,ApJ,457,565 BurlesS.,NollettK.M.,TurnerM.S.,2001,ApJ,552,L1 Caldwell R.R., Dave R., Steinhardt P.J., 1998, Phys. Rev. Lett., 80, 1582 CavaliereA.,Fusco-FemianoR.,1976,A&A,49,137 CarrollS.M.,PressW.H.,TurnerE.L.,1992,ARAA30,499 CoorayA.R.,1998,A&A333,L71 DanosR.,Ue-LiPen,1998,astro-ph/9803058 DavidL.P.,JonesC.,FormanW.,1995,ApJ,445,578 DickeyJ.M.,Lockman,F.J.,1990,ARA&A,28,215 Efstathiou G., Bridle S.L., Lasenby A.N., Hobson M.P., Ellis R.S., 1999,MNRAS303,47 EfstathiouG.etal.,2002,MNRAS,330,L29 ElgaroyO.etal.,2002,Phys.Rev.Lett.,89,061301 Erdogdu P., Ettori S., Lahav O., 2002, MNRAS, in press (astro-ph/0202357) EttoriS.,FabianA.C.,1999a,MNRAS305,834 EttoriS.,FabianA.C.,1999b,proceedingsoftheRingbergworkshop on“DiffuseThermalandRelativisticPlasmainGalaxyClusters”, H. Bo¨hringer, L. Feretti, P. Schuecker (eds.), MPE Report No. 271,MPEGarching EttoriS.,2000,MNRAS,311,313 EttoriS.,2001,MNRAS,323,L1 Fig.9. Constraints in the Ω − Ω plane as in Fig. 7 for m Λ EttoriS.,DeGrandiS.,MolendiS.,2002,A&A,391,841 simulated sets of gas mass fraction measurements. The con- EvrardA.E.,1997,MNRAS292,289 toursare at 1 σ confidencelevel. A cosmologicalmodelwith FreedmanW.etal.,2001,ApJ,553,47 Ω = 1−Ω = 0.34 is assumed and only the d3/2 depen- FrenkC.S.etal.,1999,ApJ,525,554 m Λ ang denceisconsidered.Intheredshiftrange[1,2],theincreaseby FukugitaM.,HoganC.J.,PeeblesP.J.E.,1998,ApJ,503,518 a factoroftwo of thesample allowstoreducethe upperlimit GarnavichP.etal.,1998,ApJ,509,74 GerkeB.F.,EfstathiouG.,2002,MNRAS,335,33 onΩ byabout10percent. Λ GioiaI.M.,HenryJ.P.,MaccacaroT.,MorrisS.L.,StockeJ.T.,Wolter A.,1990,ApJS,72,567 ACKNOWLEDGEMENTS GioiaI.M.,HenryJ.P.,MullisC.R.,EbelingH.,WolterA.,1999,AJ, 117,2608 We thank Stefano Borgani and Peter Schuecker for very use- HannestadS.,Mo¨rtsellE.,2002,Phys.Rev.D,66,045002 ful discussions. Bruno Leibundgut and Peter Garnavich are HannestadS.,2002,astro-ph/0205223 thanked for proving us the likelihood distributions from su- HenryJ.P.,GioiaI.M.,MullisC.R.,VogesW.,BrielU.G.,Bo¨hringer pernovaetype Ia plotted in Figure 8. Pat Henry gaveus a list H.,HuchraJ.P.,2001,ApJL,553,L109 of formulain advanceofpublicationthatwasusefulto check Henry J.P., 2002, “Matter and Energy in Clusters of Galaxies”, eds. Hwang Y. and Bowyer S., ASP Conf. Series, in press ourdefinitionofthedensitycontrast.Theanonymousrefereeis (astro-ph/0207148) thankedforusefulcomments.PTacknowledgessupportunder Holden B.P., Stanford S.A., Squires G.K., Rosati P., Tozzi P., theESOvisitorprograminGarching. EisenhardtP.,SpinradH.,2002,AJ,124,33 HutererD.,TurnerM.S.,2001,Phys.Rev.D,64,123527 References JeltemaT.E.,CanizaresC.C.,BautzM.W.,MalmM.R.,DonahueM., GarmireG.P.,2001,ApJ,562,124 AllenS.W.,SchmidtR.W.,FabianA.C.,2001,MNRAS,328,L37 KingI.R.,1962,AJ,67,471 AllenS.W.,SchmidtR.W.,FabianA.C.,2002,MNRAS,334,L11 LeibundgutB.,2001,ARAA,39,67 Anders E., Grevesse N., 1989, Geochimica et Cosmochimica Acta, LokasE.,HoffmanY.,2001,MNRAS,submitted(astro-ph/0108283) 53,197 MarkevitchM.,VikhlininA.,2001,ApJ,563,95 Arnaud K.A., 1996, ”Astronomical Data Analysis Software and MaughanB.J.,JonesL.R.,EbelingH.,PerlmanE.,RosatiP.,FryeC., SystemsV”,eds.JacobyG.andBarnesJ.,ASPConf.Seriesvol. MullisC.,2002,ApJ,submitted 101,17 MohrJ.J.,MathiesenB.,EvrardA.E.,1999,ApJ,517,627 ArnaudM.,AghanimN.,NeumannD.M.,2002,A&A,389,1 NavarroJ.F.,FrenkC.S.,WhiteS.D.M.,1997,ApJ,490,493 BaccigalupiC.,BalbiA.,MatarreseS.,PerrottaF.,VittorioV.,2002, NetterfieldC.B.etal.,2002,ApJ,571,604 Phys.Rev.,D65,063520 PeeblesP.J.E.,RatraB.,2002,astro-ph/0207347 Bahcall N.A.,Ostriker J.P.,PerlmutterS.,Steinhardt P.J.,1999, Sci, PercivalW.J.etal.,2001,MNRAS,327,1297 284,1481 Perlman E.S., Horner D.J., Jones L.R., Scharf C.A., Ebeling H., deBernardisetal.,2002,ApJ,564,559 WegnerG.,MalkanM.,2002,ApJS,140,265 BialekJ.J.,EvrardA.E.,MohrJ.J.2001,ApJ,555,597 PerlmutterS.etal.,1999,ApJ,517,565 BorganiS.,RosatiP.,TozziP.,etal.,2001,ApJ,561,13 Piffaretti R., Jetzer Ph., Schindler S., 2002, A&A in press Borgani S.,Governato F.,WadsleyJ.,Menci N.,Tozzi P.,QuinnT., (astro-ph/0211383) StadelJ.,LakeG.,2002,MNRAS,336,409 Ponman,T.J.,Cannon,D.B.,Navarro,J.F.1999,Nature,397,135