ebook img

Constraining large scale HI bias using redshifted 21-cm signal from the post-reionization epoch PDF

0.56 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Constraining large scale HI bias using redshifted 21-cm signal from the post-reionization epoch

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed20January2012 (MNLATEXstylefilev2.2) Constraining large scale HI bias using redshifted 21-cm signal from the post-reionization epoch 2 Tapomoy Guha Sarkar1⋆, Sourav Mitra1†, Suman Majumdar2,3‡ 1 0 Tirthankar Roy Choudhury1§ 2 1Harish-ChandraResearchInstitute,ChhatnagRoad,Jhusi,Allahabad,211019India. n 2DepartmentofPhysics&Meteorology,IIT,Kharagpur721302,India. a J 3CentreforTheoreticalStudies,IIT,Kharagpur721302,India. 9 1 20January2012 ] O C ABSTRACT Intheabsenceofcomplexastrophysicalprocessesthatcharacterizethereionizationera,the . h 21-cmemission fromneutralhydrogen(HI)in the post-reionizationepochis believedto be p an excellent tracer of the underlyingdark matter distribution. Assuming a backgroundcos- - o mology,itismodelledthrough(i)abiasfunctionb(k,z),whichrelatesHItothedarkmatter r distributionand(ii)ameanneutralfraction(x¯HI)whichsetsitsamplitude.Inthispaper,we st investigatethenatureoflargescaleHIbias.Thepost-reionizationHIismodelledusinggrav- a ityonlyN-Bodysimulationsanda suitableprescriptionforassigninggastothedarkmatter [ halos. Using the simulated bias as the fiducialmodelfor HI distribution at z ≤ 4, we have 2 generated a hypotheticaldata set for the 21-cm angular power spectrum (Cℓ) using a noise v modelbasedonparametersofanextendedversionoftheGMRT.ThebinnedCℓ isassumed 2 tobemeasuredwithSNR&4intherange400≤ℓ≤8000atafiducialredshiftz =2.5.We 5 explorethe possibility of constrainingb(k) using the PrincipalComponentAnalysis (PCA) 5 onthissimulateddata.Ouranalysisshowsthatintherange0.2 < k < 2Mpc−1,thesimu- 5 lateddatasetcannotdistinguishbetweenmodelsexhibitingdifferentkdependences,provided 9. 1 . b(k) . 2 whichsets the 2-σ limits. Thisjustifies theuse of linearbiasmodelon large 0 scales. The largely uncertain x¯HI is treated as a free parameter resulting in degradation of 1 thebiasreconstruction.Thegivensimulateddataisfoundto constrainthefiducialx¯HI with 1 an accuracy of ∼ 4% (2-σ error). The method outlined here, could be successfully imple- v: mentedonfutureobservationaldatasetstoconstrainb(k,z)andx¯HIandtherebyenhanceour understandingofthelowredshiftUniverse. i X Keywords: cosmology:theory–large-scalestructureofUniverse-cosmology:diffusera- r a diation 1 INTRODUCTION constant with Ω ∼ 0.001 (Lanzetta,Wolfe&Turnshek1995; HI Storrie-Lombardi,McMahon&Irwin1996; Following the epoch of reionization (z ∼ 6), the low den- Rao&Turnshek2000;Pe´rouxetal.2003). sity gas gets completely ionized (Becker,Fan&White2001; Fan,Carilli&Keating2006).However,asmallfractionofneutral The distribution and clustering properties of DLAs suggest hydrogen(HI)survives,andisconfinedtotheover-denseregions thattheyareassociatedwithgalaxies,whichrepresenthighlynon- oftheIGM.Atthisredshiftsthebulkoftheneutralgasiscontained linear matter over densities (Haehnelt,Steinmetz&Rauch2000). incloudswithcolumndensitygreaterthan2×1020atoms/cm2.Ob- These clumped HI regions saturate the Gunn-Peterson optical servationsindicatethattheseregionscanbeidentifiedasDamped depth (Gunn&Peterson1965) and hence cannot be probed Ly-α (DLA) systems (Wolfe,Gawiser&Prochaska2005), which using Ly-α absorption. They are, however the dominant source areself-shieldedfromfurtherionizationandhouse∼ 80%ofthe for the 21-cm radiation. In the post reionization epoch, Ly-α HIat1<z <4.Inthisredshiftrangetheneutralfractionremains scatteringandtheWouthuysen-Fieldcoupling(Wouthuysen1952; Purcell&Field1956; Furlanetto,Oh&Briggs2006) increases the population of the hyperfine triplet state of HI. This makes ⋆ E-mail:[email protected] the spin temperature T much greater than the CMB tem- † E-mail:[email protected] s ‡ E-mail:[email protected] perature Tγ, whereby the 21-cm radiation is seen in emis- § E-mail:[email protected] sion (Madau,Meiksin&Rees1997; Bharadwaj&Ali2004; 2 GuhaSarkar,Mitra,Majumdar& Choudhury Loeb&Zaldarriaga2004). The 21-cm flux from individual HI ofHIasatraceroftheunderlyingdarkmatterfield.Thiswouldbe cloudsistooweak(< 10µJy)fordetectioninradioobservations usefulfor bothanalyticalandnumerical workinvolvingthepost- withexistingfacilities,unlesstheeffectofgravitationallensingby reionizationHIdistribution. intervening matterenhances theimage oftheclouds significantly The paper is organized as follows – in the next section we (Saini,Bharadwaj&Sethi2001). The redshifted 21-cm signal discuss the simulation of HI distribution and the general features however forms a diffuse background in all radio observations at of the bias function. Following that, we discuss the HI multi- z < 6 (frequencies > 203 MHz). Several radio telescopes, like frequency angular power spectrum (MAPS), a statistical quanti- thepresentlyfunctioningGMRT1,andfutureinstrumentsMWA2 fier directly measurable from radio-interferometric experiments. andSKA3aimtodetectthisweakcosmologicalsignalsubmerged Finallyweusetheprincipalcomponentanalysistoinvestigatethe inlargeastrophysical foregrounds (Santos,Cooray&Knox2005; possibility of constraining the bias model with simulated MAPS McQuinnetal.2006;Ali,Bharadwaj&Chengalur2008). (Datta,Choudhury&Bharadwaj2007)data. The study of large scale structures in redshift surveys and numericalsimulationsrevealthatthegalaxies(forthatmatterany non linearstructure) tracetheunderlying dark matterdistribution 2 SIMULATIONRESULTS-THEBIASMODEL with a possible bias (Mo&White1996; Dekel&Lahav1999). Associating the post-reionization HI with dark matter halos We have obtained the dark matter distribution using the PM N- implies that the gas traces the underlying dark matter distribu- bodycodedevelopedbyBharadwaj&Srikant(2004),assuminga tion with a possible bias function b(k) = [PHI(k)/P(k)]1/2, fiducial cosmological model (used throughout the paper) Ωm = where PHI(k) and P(k) denote the power spectra of HI and 0.2726,ΩΛ =0.726,Ωb =0.0456,h=0.705,Tcmb =2.728K dark matter density fluctuations respectively. This function is σ = 0.809, n = 0.96 (all parameters from WMAP 7 year 8 s believed to quantify the clustering property of the neutral gas. It data (Komatsu&etal.2011; Jarosik&etal.2011)). We simulate isbelievedthatonsmallscales(belowtheJean’slength),thebias 6083 particles in 12163 grids with grid spacing 0.1Mpc in a is a scale dependent function. However, it is reasonably scale- 121.6Mpc3 box. The mass assigned to each dark matter parti- independent on large scales (Fangetal.1993). Further, the bias cleis m = 2.12×108M h−1. The initial particle distribu- part ⊙ depends on the redshift. The use of the post-reionization 21-cm tion and velocity field generated using Zel’dovich approximation signal (Bharadwaj&Sethi2001; Bharadwaj,Nath&Sethi2001; (at z ∼ 25) are evolved only under gravity. The particle posi- Wyithe&Loeb2007;Loeb&Wyithe2008;Wyithe&Loeb2008; tion and velocities are then obtained as output at different red- Visbal,Loeb&Wyithe2009) as a tracer of dark matter shifts 1.5 ≤ z ≤ 4 at intervals of δz = 0.5. Wehave used the opens up new avenues towards various cosmological in- Friends-of-Friends algorithm (Davisetal.1985) to identify dark vestigations (Wyithe,Loeb&Geil2007; Changetal.2008; matter over-densities as halos, taking linking length b = 0.2 (in Bharadwaj,Sethi&Saini2009; Maoetal.2008) and cross- unitsofmeaninter-particledistance).Thisgivesareasonablygood correlation studies (GuhaSarkar,Datta&Bharadwaj2009; matchwiththetheoreticalhalomassfunction(Jenkinsetal.2001; GuhaSarkar2010; GuhaSarkaretal.2011). The underlying bias Sheth&Tormen2002) for masses as small as = 10m . The part model is crucial while forecasting or interpreting some of these halomassfunctionobtainedfromsimulationisfoundtobeinex- results. cellentagreementwiththeSheth-Tormenmassfunctioninthemass In this paper we have investigated the nature of HI bias in range109 ≤M ≤1013h−1M . ⊙ the post-reionization epoch. The HI fluctuations are simulated at WefollowtheprescriptionofBagla,Khandai&Datta(2010), redshifts z < 6 and HI bias is obtained at various redshifts to populate the halos with neutral hydrogen and thereby identify from the simulated dark matter and HI power spectra. This is themasDLAs.Equation(3)ofBagla,Khandai&Datta(2010)re- similartotheearlierworkbyBagla,Khandai&Datta(2010)and lates the virial mass of halos, M with its circular velocity v . circ Mar´ınetal.(2010). Thesimulatedbiasfunction isassumed tobe The neutral gas in halos can self shield itself from ionizing radi- our fiducial model for HI distribution at low redshifts. We have ationonly if thecircular velocity isabove athreshold of v = circ studiedthefeasibilityofconstrainingthisfiducialmodelwithob- 30km/sec at z ∼ 3. This sets a lower cutoff for the halo mass serveddata.Herewehavefocusedonthemultifrequencyangular M .Further,halosarepopulatedwithgasinaway,suchthatthe min power spectrum(MAPS)(Datta,Choudhury&Bharadwaj2007)– verymassivehalosdonotcontainanyHI.Anupper cut-offscale measurable directly from observed radio data and dependent to halo mass M is chosen using v = 200km/sec, above max circ on the bias model. Assuming a standard cosmological model which we do not assign any HI to halos. This is consistent with and a known dark matter power spectrum we have used the theobservationthatverymassivehalosdonotcontainanygasin Principal Component Analysis (PCA) on simulated MAPS data neutralform(Pontzenetal.2008).Thetotalneutralgasisthendis- for a hypothetical radio-interferometric experiment to put con- tributed such that the mass of the gas assigned is proportional to straints on the bias model. The method is similar to the themassofthehalobetweenthesetwocut-offlimits.Wenotethat one used for power spectrum estimation using the CMB there is nothing canonical about this scheme. However, with the data (Efstathiou&Bond1999; Hu&Holder2003; Leach2006) basicphysicalpictureinthebackgroundthisisthesimplestmodel. and constraining reionization (Mitra,Choudhury&Ferrara2011; ResultsobtainedusingalternativeHIassignment schemesarenot Mitra,Choudhury&Ferrara2012). Stringent constraints on the expectedtobedrasticallydifferent(Bagla,Khandai&Datta2010). bias function withfuture data sets would be crucial inmodelling Figure 1 shows the simulated power spectra of dark matter the distributionof neutral gas at low redshifts and justifythe use andHIdistributionatafiducialredshiftz = 2.5.Thedarkmatter powerspectrumisseentobeconsistentwiththetransferfunction givenbyEisenstein&Hu(1998)andthescaleinvariantprimordial 1 http://www.gmrt.ncra.tifr.res.in/ power spectrum (Harrison1970; Zeldovich1972). The HI power 2 http://www.mwatelescope.org/ spectrumhasagreateramplitudethanitsdarkmattercounterpart 3 http://www.skatelescope.org/ in the entire k-range allowed by the simulation parameters. Fig- ConstraininglargescaleHIbiasusingredshifted21-cm signalfromthepost-reionizationepoch 3 100 25 z = 2.5 6 k=0.2Mpc−1h 20 z) 4 10 ( 2 ) b 2 2 π 15 2 ( ) 0 / 1 k 1 2 3 4 k) 2( z ( b 10 P 3 k 0.1 5 0.01 0 0.1 1 10 0.1 1 10 k(Mpc−1h) k(Mpc−1h) Figure1.Thesimulatedpowerspectrafordarkmatterdistribution(solid Figure2.Thesimulatedbiasfunctionforz=1.5,2.0,2.5,3.0,3.5and4.0 line)andtheHIdensityfield(dashedline)atredshiftz=2.5. (bottomtotop)showingthescaledependence.Theinsetshowsthevariation ofthelarge-scalelinearbiasasafunctionofredshift. ure2 shows thebehaviour of thebias function b(k,z) .Wehave obtainedthescaledependenceoftheHIbiasforvariousredshifts z c3 c2 c1 c0 intherange 1.5 ≤ z ≤ 4. At theseredshifts, the biasisseento begreaterthanunity,afeaturethatisobservedintheclusteringof 1.5 0.0029 0.0365 -0.1561 1.1402 highredshiftgalaxies(Mo&White1996;Wyithe&Brown2009). 2.0 0.0052 0.0177 0.0176 1.5837 2.5 0.0101 -0.0245 0.3951 2.1672 Onlargecosmologicalscalesthebiasremainsconstantandgrows 3.0 0.0160 -0.0884 1.0835 2.9287 monotonicallyatsmallscales,wherenon-lineareffectsareatplay. 3.5 0.0234 -0.1537 2.1854 3.8050 This is a generic feature seen at all redshifts. The k-range over 4.0 0.0248 -0.1655 3.6684 4.9061 whichthebiasfunctionremainsscaleindependent islargeratthe lowerredshifts.Thelinearbiasmodelishenceseentoholdreason- ablywellonlargescales.Thescaledependenceofbiasforagiven Table1.Thefitparametersforbiasfunctionoftheformb2(k)=c3k3+ redshiftisfittedusingacubicpolynomialwithparameterssumma- c2k2+c1k+c0forvariousredshifts1.5≤z≤4.0. rized in Table 1. The inset inFigure 2 shows the redshift depen- denceofthelinearbiaswhichindicatesamonotonicincrease.This MAPS, defined as C (∆z) = ha (z)a∗ (z + ∆z)i, where ℓ ℓm ℓm isalsoconsistentwiththeexpectedz-dependenceofhighredshift aℓm(z) = dΩnˆYℓ∗m(nˆ)T(nˆ,z). This measures the correlation galaxybias.Thebehaviourofthelinearbiasforsmallk-valuesas of the spherical harmonic components of the temperature fieldat afunctionofredshiftisnon-linearandcanbefittedbyanapproxi- two redshiftRslices separated by ∆z. In the flat-sky approxima- matepowerlawoftheform∼z2.Thisscalingrelationshipofbias tionandincorporatingtheredshiftspacedistortioneffectwehave with is found to be sensitive to the mass resolution of the simu- (Datta,Choudhury&Bharadwaj2007) lation. The similardependence of HI bias withk and z hasbeen ∞ observedearlierbyBagla,Khandai&Datta(2010)withacompu- T¯2 C = dk cos(k ∆r)Ps (k) (1) tationallyrobustTreeN-body code.Hereweshow that,thesame ℓ πr2 k k HI Z generic features and similar scaling relations for bias can be ob- 0 tainedbyusingasimplerandcomputationallylessexpensivePM for correlationbetween HI at comoving distances r and r+∆r, N-bodycode.Ouraimistousethisscaleandredshiftdependence T¯ = 4mK(1+z)2 Ωbh2 H0 0.7 , k = ℓ 2+k2 and ofbias,obtainedfromoursimulationasthefiducialmodelforthe 0.02 H(z) h r k postreionizationHIdistribution.Weshallsubsequentlyinvestigate PHsIdenotestheredsh(cid:16)iftspac(cid:17)eHIpo(cid:0)wer(cid:1)spectrumqg(cid:0)ive(cid:1)nby thefeasibilityof constraining thismodel using Principal Compo- k 2 2 nentAnalysis(PCA)onsimulatedMAPSdata. PHsI(k)=x¯2HIb2(k,z)D+2 "1+β(cid:18) kk(cid:19) # P(k) (2) wherethemeanneutralfractionx¯ isassumedtohaveafiducial HI value 2.45×10−2, β = f/b(k,z), f = dlnD /dlna where, 3 HI21-CMANGULARPOWERSPECTRUM- + D representsthegrowingmodeofdensityperturbations,aisthe SIMULATEDDATA + cosmologicalscalefactorandP(k)denotesthepresentdaymatter Redshifted 21-cm observations have an unique advantage over powerspectrum. other cosmological probes sinceit maps the3D density fieldand WeuseMAPSasanalternativetothemorecommonlyused gives a tomographic image of the Universe. In this paper we 3Dpowerspectrumsinceithasafewfeaturesthatmakesitsmea- have quantified the statistical properties of the fluctuations in the surement more convenient. Firstly we note that as a function of redshifted 21-cm brightness temperature T(nˆ,z) on the sky is ℓ (angular scales) and ∆z (radial separations) the MAPS encap- quantified through the multi frequency angular power spectrum sulate the entire three dimensional information regarding the HI 4 GuhaSarkar,Mitra,Majumdar& Choudhury distribution.Inthisapproach,thefluctuationsinthetransversedi- poratethecorrelationfor∆ν < ∆ν .Weplantotakethisupina c rectionare Fouriertransformed, whiletheradial direction iskept futurework. unchangedintherealfrequencyspace.Nocosmologicalinforma- Figure3showsthe3DHIpowerspectrumatthefiducialred- tionishowever lost.Secondly,21-cmsignalisdeeplysubmerged shift z = 2.5 obtained using the dark matter power spectrum of inastrophysicalforegrounds.Theseforegroundsareknowntohave Eisenstein&Hu(1998).WehaveusedtheWMAP7yearcosmo- a smooth and slow variation with frequency, whereas the signal logicalmodelthroughout.Figure4showsthecorrespondingHIan- is more localized along the frequency axis. The distinct spectral gularpowerspectrum.TheshapeofC isdictatedbytheshapeof ℓ (∆z)behaviourhasbeenproposedtobeanusefulmethodtosep- thematterpowerspectrum,thebiasfunction,andthebackground arate the cosmological signal from foreground contaminants. In- cosmologicalmodel.Theamplitudeissetbyvariousquantitiesthat factithasbeenshownthatforegroundscanbecompletelyremoved dependonthecosmologicalmodelandthegrowthoflinearpertur- by subtracting out a suitable polynomial in ∆ν from C (∆ν) bations.Theglobal meanneutralfractionalsoappearsintheam- ℓ (Ghoshetal.2011).ItishenceadvantageoustouseMAPSwhich plitudeandplaysacrucial roleindeterminingthemeanlevelfor maintainsthedifferencebetweenthefrequencyandangularinfor- 21-cmemission. Hence, for afixedcosmological model, thebias mationinanobservation.The3Dpowerspectrumonthecontrary and the neutral fraction, solely determine the fluctuations of the mixes up frequency and transverse information through the full post-reionizationHIdensityfield.Wehaveusedthebiasmodelob- 3D Fourier transform. Further, for a large band width radio ob- tained from numerical simulations in the last section to evaluate servation,coveringlargeradialseparationslightconeeffectisex- theC .Weassumethatthebinnedangularpowerspectrumismea- ℓ pectedtoaffectthesignal.Thiscanalsobeeasilyincorporatedinto suredatsevenℓbins−thedatabeinggeneratedusingEquation1 MAPS unlike the 3D power spectrum which mixes up the infor- usingthefiducialbiasmodel. mationfromdifferenttimeslices.Thekeyadvantage,however,in The noise estimates are presented using the formalism usingtheangularpowerspectrumisthatitcanbeobtaineddirectly used by Maoetal.(2008) for the 3D power spectrum and from radio data. The quantity of interest in radio-interferometric Bharadwaj&Ali(2005) and Bagla,Khandai&Datta(2010) for experimentsisthecomplexVisibilityV(U,ν)measuredforapair theangularpowerspectrum.Wehaveusedhypotheticaltelescope of antennas separated by a distance d as a function of baseline parameters for these estimates. We consider radio telescope with U = d/λ and frequency ν. The method of Visibility correla- 60GMRTlikeantennae(diameter45m)distributedrandomlyover tiontoestimatetheangular power spectrum hasbeen wellestab- aregion1km×1km.WeassumeT ∼ 100K. Weconsider a sys lished(Bharadwaj&Sethi2001;Bharadwaj&Ali2005).Thisfol- aradio-observationatfrequencyν = 405MHzwithabandwidth lows from the fact that hV(U,ν)V∗(U,ν + ∆ν)i ∝ Cℓ(∆ν). B=32MHzforanobservationtimeof1000hrs. Here the angular multipole ℓ is identified with the baseline U as Inordertoattaindesiredsensitivitieswehaveassumedthatthe ℓ=2πUandonehasassumedthattheantennaprimarybeamisei- dataisbinnedwherebyseveralnearbyℓ−modesarecombinedto therde-convolvedorissufficientlypeakedsothatitmaybetreated incresasetheSNR.Furthur,intheradialdirection,thesignalisas- as a Dirac delta function. Further the constant of proportionality sumedtodecorrelatefor∆ν >0.5MHz,sothatwehave64inde- takescareoftheunitsanddependsonthevarioustelescopeparam- pendentmeasurementsofC forthegivenbandwidthof32MHz. ℓ eters. The7-ℓbinschosenhereallowsthebinnedpowerspectrumtobe The angular power spectrum at a multipole ℓ is obtained by measured at a SNR & 4 in the entire range 400 ≤ ℓ ≤ 8000. projectingthe3Dpowerspectrum.TheintegralinEquation1,sums Onewouldideallyexpecttomeasurethepowerspectrumatalarge over the modes whose projection on the plane of the sky is ℓ/r. number of ℓvalues whichwould necessarilycompromise theob- Hence,C hascontributionsfrommatterpowerspectrumonlyfor tainedsensitivities.Withthegivensetofobservationalparameters, ℓ k > ℓ/r.The shape of C isdictated by thematter power spec- onemay,inprinciplechooseafinerbinning. Itshallhowever de- ℓ trum P(k) and the bias b(k). The amplitude depends on quanti- gradetheSNRbelowthelevelofdetectability.Choosingarbitrarily tiesdependent onthe background cosmological model as wellas fineℓ−binsandsimulataneouslymaintainingthesameSNRwould theastrophysical propertiesoftheIGM.Weemphasize herethat, require improved observational parameters which may be unrea- the mean neutral fraction and the HI bias are the only two non- sonableifnotimpossible.Thesamereasoningappliestonoisees- cosmological parameters in our model for the HI distribution at timationfor the3D power spectrum where for agiven set of ob- lowredshifts.PredictingthenatureofC inagivencosmological servational parameters, the choice of k− bins is dictated by the ℓ paradigmisthencruciallydependentontheunderlyingbiasmodel requirement of sensitivity. Inthefigure3,showing the3D power andthevalueoftheneutralfraction. spectruma4−σdetectionofP (k)inthecentralbinrequiresthe HI The∆νdependanceoftheMAPSC (∆ν)measuresthecor- fullk−rangetobedividedinto18equallogarithmicbinsforthe ℓ relationbetweenthevarious2Dmodesasafunctionofradialsep- sameobservationalparameters. aration∆r(∆ν).Thesignalisseentodecorrelateforlargeradial ThenoiseinCℓandPHI(k)isdominatedbycosmicvariance separations, thedecorrelationbeing fasterfor largerℓvalues. For atsmallℓ/k(largescales),whereas,instrumentalnoisedominates agivenℓ,onegetsindependent estimatesofC forradialsepara- atlargeℓ/kvalues(smallscales).Wepointoutthattheerroresti- ℓ tionsgreaterthanthecorrelationlength.Projectionofthe3Dpower matespredictedforahypotheticalobservationarebasedonreason- spectrumleadstheavailabilityof fewerFouriermodes. However, abletelescopeparametersandfutureobservationsareexpectedto for a given band width B, one may combine the signals emanat- reflectsimilarsensitivities. ing from epechs separated by the correlation length ∆ν in the Wenoteherethatseveralcrucialobservationaldifficultieshin- C radial direction. Noting that the amplitude of the signal does not derC tobemeasuredatahighSNR.Separatingtheastrophysical ℓ change significantly over the radial separation corresponding to foregrounds,whichareseveralorderlargerinmagnitudethanthe thebandwidth,onehas∼ B/∆ν independent measurementsof signal is a major challenge (Santos,Cooray&Knox2005; c C (∆z = 0). We have adopted the simplified picture where the McQuinnetal.2006; Ali,Bharadwaj&Chengalur2008; ℓ noise in C (∆z = 0) gets reduced owing to the combination of Ghoshetal.2010; Ghoshetal.2011). Several methods have ℓ theseB/∆ν realizations.Amorecompleteanalysiswouldincor- been suggested for the removal of foregrounds most of which c ConstraininglargescaleHIbiasusingredshifted21-cm signalfromthepost-reionizationepoch 5 104 10-5 z = 2.5 z = 2.5 ⊙ 103 ⊙⊙ ⊙ ⊙ ⊙ ⊙⊙ 10-6 ⊙ ⊙ 102 ⊙ ) k) ⊙⊙ 2K ⊙ (PHI 101 ⊙⊙⊙⊙ C (ml ⊙ ⊙⊙ 10-7 ⊙ ⊙ ⊙ ⊙ 100 10-1 10-8 10-1 100 103 104 k (Mpc-1) l Figure3.Thetheoretical3DHIpowerspectrumPHsI(k)forz = 2.5as Figure4. Thetheoretical angular powerspectrum Cℓ forz = 2.5as a afunctionofk,atµ = 0.5.Thepointswith2-σerror-barsrepresentthe functionofaℓ.Thepointswith2-σerror-barsrepresentthehypothetical hypotheticalbinneddata. data. We have chosen n = 61 and a k−range 0.13 ≤ k ≤ 5.3 uses the distinct spectral property of the 21 cm signal as against bin Mpc−1. Our choice is dictated by the fact that for k < 0.13 thatoftheforegroundcontaminants.Themultifrequencyangular Mpc−1, the C corresponding to the smallest ℓ is insensitive to power spectrum (MAPS) C (∆ν) is itself useful for this pur- ℓ ℓ b(k)andfork > 5Mpc−1 thereisnodataprobingthosescales. pose (Ghoshetal.2010; Ghoshetal.2011). Whereas this signal This truncation is also justified as the Fisher information matrix, C (∆ν) decorrelates over large ∆ν, the foregrounds remain ℓ weshallsee,tendstozerobeyondthisk−range. correlated − a feature that maybe used to separate the two. In TheFishermatrixisconstructedas our subsequent discussions we assume that the foregrounds have beenremoved. Asmentioned earlier,theangular power spectrum 1 ∂Cth ∂Cth F = ℓobs ℓobs , (4) candirectlybemeasuredfromrawvisibilitydata.Onerequiresto ij σ2 ∂bfid(k )∂bfid(k ) incorporate the primary beam of the antenna in establishing this ℓXobs ℓobs i j connection(Bharadwaj&Ali2005).Inthispaperweassumethat whereCth isthetheoretical(Eq.1)C evaluatedatℓ=ℓ using ℓobs ℓ obs such difficultiesareovercome and theangular power spectrum is thefiducialbiasmodelbfid(k)andσ isthecorrespondingob- ℓobs measuredwithsufficientlyhighSNR. servationalerror.Thedataisassumedtobesuchthatthecovariance In the next section we use the Cℓ data generated with these matrixisdiagonalwherebyonlythevarianceσℓobs suffices. assumptions to perform the PCA. If the 3D HI power spectrum The fiducial model for bias is, in principle, expected to be ismeasured at some(k,µ)itwould bepossible todeterminethe closetotheunderlying “true”model. Inthisworkwehavetaken biasdirectlyfromaknowledgeofthedarkmatterpowerspectrum. bfid(k) to be the fitted polynomial obtained in the earlier section The bias would be measured at the k− values where the data is whichmatchesthesimulatedbiasuptoanacceptableaccuracy. available.Theresultsforthe3Danalysisissummarizedinsection InthemodelforHIdistributionatlowredshifts,themeanneu- 5. tral fraction crucially sets the amplitude for the power spectrum. However, a lack of precise knowledge about this quantity makes theoverall amplitudeof C largelyuncertain. Toincorporate this ℓ 4 PRINCIPALCOMPONENTANALYSIS we have treated the quantity x¯HI as an additional free parameter over which the Fisher matrixis marginalized. The corresponding Inthissection,wediscusstheprincipalcomponentmethodtowards degradedFishermatrixisgivenby constrainingthebiasfunctionusingC data.Weconsiderasetof n observational data points labeledℓ by C where ℓ runs Fdeg =F−BF′−1BT (5) obs ℓobs obs overthedifferentℓvaluesforwhichCℓisobtained(Fig.4). whereFistheoriginalnbin×nbinFishermatrixcorrespondingto Inour attempt toreconstruct b(k)intherange[kmin,kmax], theparametersbi,F′isa1×1Fishermatrixfortheadditionalpa- we assume that the bias which isan unknown function of k, can rameterx¯ ,andBisan ×1-dimensionalmatrixcontainingthe HI bin berepresentedbyasetofnbindiscretefreeparametersbi =b(ki) cross-terms.WeshallhenceforthrefertoFdeg astheFishermatrix wheretheentirek-rangeisbinnedsuchthatki correspondstothe andimplicitlyassumethatthemarginalizationhasbeenperformed. ithbinofwidthgivenby TheFishermatrixobtainedusingEq.4andEq.5isillustrated lnk −lnk inFigure5asashadedplotinthek−kplane.Thematrixshows ∆lnki= mnax −1 min (3) a band diagonal structure with most of the information accumu- bin 6 GuhaSarkar,Mitra,Majumdar& Choudhury Figure5.ThedegradedFishermatrixFdeginthek−kplane. ij latedindiscreteregionsespeciallycorrespondingtothek−modes structionwouldbepoorforwidediscrepanciesbetweenthetwo.In forwhichthedataisavailable.Intheregionk > 2andk < 0.2 ouranalysis,thesimulatedbiasservesastheinput.Intheabsence Mpc−1,thevalueofF isrelativelysmall,implyingthatonecan- ofmanyalternativemodelsforlargescaleHIbias,thisservesasa ij notconstrainb(k)inthosek−binsfromthedatasetwehavecon- reasonablefiducialmodel. sideredinthiswork. Weassumethatonecanthenreconstructthefunctionδb us- i A suitable choice of basis ensures that the parameters are ing only the first M ≤ n modes (see Eq. 6). Considering all bin not correlated. This amounts to writing the Fisher matrix in its then modesensuresthatnoinformationisthrownaway.How- bin eigen basis. Once the Fisher matrix is constructed, we determine everthisisachievedatthecostthaterrorsintherecoveredquan- itseigenvaluesandcorrespondingeigenvectors.Theorthonormal- tities would be very large owing to the presence of the negligi- ityandcompletenessoftheeigenfunctions,allowsustoexpandthe bly small eigenvalues. On the contrary, lowering the number of deviationofb(ki)fromitsfiducialmodel,δbi =b(ki)−bfid(ki), modes canreduce theerror but may introduce largebiasesinthe as recovered quantities. An important step in this analysis is there- nbin fore,todecideonthenumberofmodesM tobeused.Inorderto δbi= mpSp(ki) (6) test this we consider a constant bias model to represent the true p=1 model as against the fiducial model. For a given data, figure 8 X whereS (k )aretheprincipalcomponentsofb(k )andm arethe shows how the true model is reconstructed through the inclusion p i i p suitableexpansioncoefficients.Theadvantageisthat,unlikeb(k ), of more and more PCAmodes. Thereconstruction isdirectlyre- i thecoefficientsm areuncorrelated. lated to the quality of the data. In the k-range where data is not p Figure6showstheinverseofthelargesteigenvalues.Beyond available,thereconstructionispoorandthefiducialmodelisfol- thefirstsix,alltheeigenvaluesareseentobenegligiblysmall.It lowed.Thereconstruction isalsopoor for largedeparturesof the isknownthatthelargesteigenvaluecorrespondstominimumvari- truemodelfromthefiducialmodel.Weseethataresonablerecon- ance set by the Cramer-Rao bound and vice versa. This implies structionisobtainedusingthefirst5modesfork < 1wherethe that theerrorsinb(k) would increasedrasticallyif modes i > 6 dataisavailable. InordertofixthevalueofM,wehaveusedthe areincluded.Hence,mostoftherelevantinformationisessentially Akaikeinformation criterion(Liddle2007) AIC = χ2min +2M, containedinthefirstsixmodeswithlargereigenvalues.Thesenor- whosesmallervaluesareassumedtoimplyamorefavoredmodel. malizedeigenmodes areshownintheFigure7.Onecanseethat, Following the strategy used by Clarkson&Zunckel(2010) and all these modes almost tend to vanish for k > 2 and k < 0.2 Mitra,Choudhury&Ferrara(2012),wehaveuseddifferentvalues Mpc−1,astheFishermatrixisvanishinglysmallintheseregions. ofM (2to6)forwhichtheAICisclosetoitsminimumandamal- Thepositionsofthespikesandtroughsinthesemodesarerelated gamatedthemequallyattheMonteCarlostagewhenwecompute tothepresenceofdatapointsandtheiramplitudesdependonthe theerrors.Inthisway,weensurethattheinherentbiaswhichexists correspondingerror-bars(smallertheerror,largertheamplitude). inanyparticularchoiceofM isreduced. The fiducial model adopted inour analysis maybe different We next perform the Monte-Carlo Markov Chain (MCMC) from the true model which dictates the data. Clearly, the recon- analysisovertheparameterspaceoftheoptimumnumberofPCA ConstraininglargescaleHIbiasusingredshifted21-cm signalfromthepost-reionizationepoch 7 105 4 104 fiducial constant 103 M=3 3 M=5 M=7 102 1 -λi 101 ∙ ∙ )k(b 2 ∙ 100 ∙ ∙ ∙ 1 10-1 10-2 0 2 4 6 8 0.2 1.0 5.0 mode i k(Mpc-1) Figure6.Theinverseofeigenvalues ofthedegradedFishermatrixFdeg ij whichessentiallymeasuresthevarianceonthecorrespondingcoefficient. Figure8.Thefiducialandconstant(true)biasmodelsareshown.There- construction ofthetruemodelisshownforcaseswherenumberofPCA modesconsideredareM =3,5,7 1 0 -1 1 4 0 mean -1 fiducial 1 3 constant 0 -1 ) 1 k( 2 b 0 -1 1 1 0 -1 1 0 0.2 1.0 5.0 0 k(Mpc-1) -1 0.2 1.0 5.0 k (Mpc-1) Figure9.Themarginalizedposterioridistributionofthebinnedbiasfunc- Figure7.Thefirst6eigenmodesofthedegradedFishermatrix. tionobtainedfromtheMCMCanalysisusingtheAICcriterionuptofirst6 PCAeigenmodes.Thesolidlinesshowsthemeanvaluesofbiasparameters whiletheshadedregionsrepresentthe2-σconfidencelimits.Inaddition, weshowthefiducialandconstantbiasmodels. amplitudes{m }andx¯ .Othercosmologicalparametersareheld p HI fixedtotheWMAP7best-fitvalues(seeSection2).Wecarryout theanalysisbytakingM = 2toM = 6forwhichtheAICcrite- suitable thinning conditions for each chain to obtain statistically rionissatisfied.ByequalchoiceofweightsforM andfoldingthe independentsamples. correspondingerrorstogetherwereconstructb(k)andtherebyC ℓ alongwiththeireffectiveerrors.Wehavedevelopedacodebased on the publicly available COSMOMC (Lewis&Bridle2002) for 5 RESULTSANDDISCUSSION thispurpose.AnumberofdistinctchainsarerununtiltheGelman andRubinconvergencestatisticssatisfiesR−1<0.001.Wehave The reconstructed bias function obtained using the analysis de- alsousedtheconvergencediagnosticofRaftery&Lewistochoose scribed in the last section is shown in Figure 9. The solid line 8 GuhaSarkar,Mitra,Majumdar& Choudhury Parameters 2-σerrors 10-5 x¯HI 1.06×10−3 blin 0.453 mean ⊙ fiducial Table2.The2-σerrorsforx¯HIandblin(k=0.3Mpc−1)obtainedfrom thecurrentanalysisusingAICcriterion. 10-6 ⊙ constant ) 2K ⊙ m rors decrease drastically for k > 2 and k < 0.2 Mpc−1. This ( ⊙ isexpectedfromthenatureoftheFishermatrixwhichshowsthat C there is practically no information in the PCA modes from these 10-7 ⊙ ⊙ k−regions.Therefore,allmodelsshowatendencytoconvergeto- ⊙ wardsthefiducialone.Thisisadirectmanifestationoflackofdata pointsprobingthesescales.Thus,mostoftheinformationiscon- centratedintherange0.2 < k < 2Mpc−1 withinwhichrecon- structionofthebiasfunctionisrelevantwiththegivendataset. 10-8 Themeanreconstructedbiassimplyfollowsthefiducialmodel 103 104 for0.2<k<2Mpc−1.ThisisexpectedasthesimulatedC data ℓ isgeneratedusingthefiducialbiasmodelitself(Section3).Inthe caseofanalysisusingrealobserveddatathismatchingwouldhave statisticalsignificance,whereasherethisjustservesasaninternal Figure10.ThereconstructedC withits2-σconfidencelimits.Thepoints consistencycheck.Theshadedregiondepictingtheerrorsaround ℓ witherror-barsdenotetheobservationaldata.Thesolid,short-dashedand the mean is however meaningful and tells us how well the given long-dashed lines represent C for the mean, fiducial and constant bias datacanconstrainthebias.Theoutlineofthe2-σconfidencelim- ℓ modelsrespectively. itsshowsajaggedfeaturewhichisdirectlyrelatedtothepresence ofthedatapoints.Weobservethatapartfromthefiducialmodel,a constantbiasmodelisalsoconsistentwiththedatawithinthe2-σ limits.Infact,otherthanimposingroughbounds 1 . b(k) . 2, thepresentdatacanhardlyconstrainthescale-dependenceofbias. 104 ItisalsonotpossiblefortheC datawithitserror-barstostatisti- ℓ callydistinguishbetweenthefiducialandtheconstantbiasmodel mean ⊙ in 0.2 < k < 2 Mpc−1. Figure 10 illustrates the recovered an- 103 ⊙⊙ fiducial gularpowerspectrumwithits95%confidencelimits.Superposed ⊙ ⊙ ⊙ onitaretheoriginaldatapointswitherror-bars.Wealsoshowthe ⊙ ⊙ angularpowerspectrumcalculatedforthefiducialandtheconstant 102 ⊙ ) ⊙ biasmodels.The2-σcontourfollowsthepatternoftheerror-bars k ⊙ (HI ⊙⊙ otinveth(weidthaitnaiptsoienrtrso.r-Ibtairss)evtoidtehnetdthifafetrtehnetbdiaatsamisoldaerlgse.lHyeinncseentshie- P 101 ⊙⊙ k−dependence ofbiasonthesescalesdoesnotaffecttheobserv- ⊙ ⊙ ablequantityC withintheboundsofstatisticalprecision. ⊙ ℓ While constructing the Fisher matrix, we had marginalized 100 overthelargelyunknownparameterx¯ .Treatingitasanindepen- HI dent free parameter, we have investigated the possibility of con- strainingtheneutral fractionusing thesimulated C data. The2- ℓ 10-1 σ error in this parameter obtained from our analysis is shown in 10-1 100 Table 2. We had used the fiducial value x¯ = 2.45×10−2 in HI k (Mpc-1) calculatingC .Itisnot surprising thatour analysis givesamean ℓ x¯ =2.44×10−2whichisinexcellentagreementwiththefidu- HI cialvalue.Itishowevermoreimportanttonotethatthegivendata Figure11.ThereconstructedPHI(k)withits2-σconfidencelimits.The actuallyconstrainsx¯HIreasonablewellat∼4%. pointswitherror-barsdenotetheobservationaldata.Wehavetakenµ=0.5 Notingthat,onlargescales(k.0.3Mpc−1),onecannotdis- andz=2.5 tinguishbetweenthemean,fiducialandtheconstantbiasmodels, weuseb (=1.496)todenotethebiasvalueonthesescales.The lin 2-σ erroronb isevaluatedatk = 0.3Mpc−1 (showninTable lin represents the mean model while the shaded region corresponds 2). to 95% confidence limits(2-σ). We have also shown the fiducial Inthek−rangeofourinterest,thefiducialmodeldoesnotre- model (short-dashed) aswellasthepopularly usedconstant bias, flectsignificantdeparturefromtheconstantbias.Further,thecon- b ∼ 1.5 model (long-dashed) for comparison. We find that the fidence interval obtained from the data also reflects that the ob- fiducial model is within the 95% confidence limits for the entire served C is insensitive to the form of bias function b(k) in this ℓ k−range considered, while the constant bias is within the same range - provided that it is bound between approximate cut-offs confidence limitsonly uptok ≈ 2Mpc−1.Wenotethattheer- (1.b(k).2).Moreover,thebiaslargelyaffectstheamplitudeof ConstraininglargescaleHIbiasusingredshifted21-cm signalfromthepost-reionizationepoch 9 theangular power spectrumandhasonlyaweakcontributionto- BharadwajS.,AliS.S.,2004,MNRAS,352,142 wardsdeterminingitsshape.Ascaleindependent large-scalebias BharadwajS.,AliS.S.,2005,MNRAS,356,1519 seemstobesufficientinmodellingthedata.Themeanneutralfrac- BharadwajS.,NathB.B.,SethiS.K.,2001,JournalofAstrophysicsand tion which globally sets the amplitude of the power spectrum is Astronomy,22,21 hence weakly degenerate with the bias. Thisis manifested in the BharadwajS.,SethiS.K.,2001,JournalofAstrophysicsandAstronomy, 22,293 factthatthoughx¯ isratherwellconstrained,thebiasreconstruc- HI BharadwajS.,SethiS.K.,SainiT.D.,2009,PRD,79,083538 tion which uses the degraded Fisher information (after marginal- BharadwajS.,SrikantP.S.,2004,JournalofAstrophysicsandAstronomy, izing over x¯ ) is only weakly constrained from the same data. HI 25,67 Apriorindependentknowledgeaboutthepostreionizationneutral ChangT.,PenU.,PetersonJ.B.,McDonaldP.,2008,PhysicalReviewLet- fraction would clearly ensure a more statistically significant bias ters,100,091303 reconstructionwithsmallererrors. ClarksonC.,ZunckelC.,2010,PhysicalReviewLetters,104,211301 Figure 11 shows the reconstructed 3D HI power spectrum. DattaK.K.,ChoudhuryT.R.,BharadwajS.,2007,MNRAS,378,119 The direct algebraic relationship between the observable PHI(k) DavisM.,EfstathiouG.,FrenkC.S.,WhiteS.D.M.,1985,ApJ,292,371 andthebiasb(k)makesthe3Danalysisrelativelystraightforward. DekelA.,LahavO.,1999,ApJ,520,24 ThisisspecificallyevidentsincetheFishermatrixelementsinthis EfstathiouG.,BondJ.R.,1999,MNRAS,304,75 case are non-zero only along the diagonal at specific k− values EisensteinD.J.,HuW.,1998,ApJ,496,605 corresponding tothedatapoints.Theentireroutinerepeatedhere FanX.,CarilliC.L.,KeatingB.,2006,AnnualReview ofAstronomy& yieldssimilargenericfeatures.However,thekeydifferenceisthat Astrophysics,44,415 FangL.,BiH.,XiangS.,BoernerG.,1993,ApJ,413,477 we have a larger number of bins with high sensitivity leading to FurlanettoS.R.,OhS.P.,BriggsF.H.,2006,PhysicsReport,433,181 animprovedconstrainingof bias1.3 < b(k) < 1.7intherange GhoshA.,BharadwajS.,AliS.S.,ChengalurJ.N.,2010,ArXive-prints 0.2<k<0.7Mpc−1. GhoshA.,Bharadwaj S.,SaiyadAliS.,Chengalur J.N.,2011,ArXive- Intheabsenceofrealobserveddata,ourproposedmethodap- prints pliedonasimulateddataset,reflectsthepossibilityofconstrain- GuhaSarkarT.,2010,JournalofCosmologyandAstro-ParticlePhysics,2, inglarge-scaleHIbias.Themethodisexpectedtoyieldbetterre- 2 sultsifonehaspreciseknowledgeabouttheneutralcontentofthe GuhaSarkarT.,BharadwajS.,ChoudhuryT.R.,DattaK.K.,2011,MN- IGMandtheunderlyingcosmologicalparadigm.Wenotethatthe RAS,410,1130 problemofconstraininganunknownfunctiongivenaknowndata GuhaSarkarT.,DattaK.K.,Bharadwaj S.,2009,JournalofCosmology dealt in this work is fairly general and several alternative meth- andAstro-ParticlePhysics,8,19 odsmaybeused.Thechiefadvantageofthemethodadoptedhere, GunnJ.E.,PetersonB.A.,1965,ApJ,142,1633 apartfromitseffectivedatareduction,isitsmodelindependence. HaehneltM.G.,SteinmetzM.,RauchM.,2000,ApJ,534,594 HarrisonE.R.,1970,PRD,1,2726 Thenon-parametricnatureoftheanalysisisspeciallyusefulinthe HuW.,HolderG.P.,2003,PRD,68,023001 absenceofanyspecificpriorinformation.Astraightforwardfitting JarosikN.,etal.2011,TheAstrophysicalJournalSupplement,192,14 of a polynomial and estimating the coeffecients may turn out to Jenkins A.,FrenkC.S.,WhiteS.D.M.,ColbergJ.M.,ColeS.,Evrard beeffectivebutthereisnoapriorireasontobelievethatitwould A.E.,CouchmanH.M.P.,YoshidaN.,2001,MNRAS,321,372 work.Itislogicallymorereasonablenottoimposeamodel(with KomatsuE.,etal.2011,TheAstrophysicalJournalSupplement,192,18 itsparameters)uponthedata,andinstead,letthedatareconstruct LanzettaK.M.,WolfeA.M.,TurnshekD.A.,1995,ApJ,440,435 themodel. LeachS.,2006,MNRAS,372,646 Withtheanticipationofupcomingradioobservationstowards LewisA.,BridleS.,2002,PRD,66,103511 measurementofHIpowerspectrum,ourmethodholdsthepromise LiddleA.R.,2007,MNRAS,377,L74 forpinningdownthenatureofHIbiastherebythrowingvaluable LoebA.,WyitheJ.S.B.,2008,PhysicalReviewLetters,100,161301 lightonourunderstandingoftheHIdistributioninthediffuseIGM. LoebA.,ZaldarriagaM.,2004,PhysicalReviewLetters,92,2 MadauP.,MeiksinA.,ReesM.J.,1997,ApJ,475,429 MaoY.,TegmarkM.,McQuinnM.,ZaldarriagaM.,ZahnO.,2008,PRD, 78,023529 ACKNOWLEDGEMENTS Mar´ınF.A.,GnedinN.Y.,SeoH.-J.,VallinottoA.,2010,ApJ,718,972 McQuinnM.,ZahnO.,ZaldarriagaM.,HernquistL.,FurlanettoS.R.,2006, Computational work for this study was carried out at the Centre ApJ,653,815 forTheoreticalStudies,IIT,Kharagpurandtheclustercomputing MitraS.,ChoudhuryT.R.,FerraraA.,2012,MNRAS,419,1480 facilityof Harish-Chandra Research Institute4.Suman Majumdar MitraS.,ChoudhuryT.R.,FerraraA.,2011,MNRAS,413,1569 would like acknowledge Council of Scientific and Industrial Re- MoH.J.,WhiteS.D.M.,1996,MNRAS,282,347 search (CSIR), India for providing financial assistance through a Pe´rouxC.,McMahonR.G.,Storrie-LombardiL.J.,IrwinM.J.,2003,MN- SeniorResearchFellowship(FileNo.9/81(1099)/10-EMR-I).The RAS,346,1103 authors would like to thank Prof. Somnath Bharadwaj for useful PontzenA.,GovernatoF.,PettiniM.,BoothC.M.,StinsonG.,WadsleyJ., discussionsandhelp. BrooksA.,QuinnT.,HaehneltM.,2008,MNRAS,390,1349 PurcellE.M.,FieldG.B.,1956,ApJ,124,542 RaoS.M.,TurnshekD.A.,2000,TheAstrophysicalJournalSupplement, 130,1 REFERENCES SainiT.D.,BharadwajS.,SethiS.K.,2001,ApJ,557,421 AliS.S.,BharadwajS.,ChengalurJ.N.,2008,MNRAS,385,2166 SantosM.G.,CoorayA.,KnoxL.,2005,ApJ,625,575 BaglaJ.S.,KhandaiN.,DattaK.K.,2010,MNRAS,407,567 ShethR.K.,TormenG.,2002,MNRAS,329,61 BeckerR.H.,FanX.,WhiteR.L.e.a.,2001,ApJ,122,2850 Storrie-LombardiL.J.,McMahonR.G.,IrwinM.J.,1996,MNRAS,283, L79 Visbal E., Loeb A., Wyithe S., 2009, Journal of Cosmology and Astro- 4 http://cluster.hri.res.in/index.html ParticlePhysics,10,30 10 GuhaSarkar,Mitra,Majumdar&Choudhury WolfeA.M.,GawiserE.,ProchaskaJ.X.,2005,AnnualReviewofAstron- omy&Astrophysics,43,861 WouthuysenS.A.,1952,ApJ,57,31 WyitheS.,BrownM.J.I.,2009,ArXive-prints WyitheS.,LoebA.,2007,ArXive-prints WyitheS.,LoebA.,2008,ArXive-prints WyitheS.,LoebA.,GeilP.,2007,ArXive-prints ZeldovichY.B.,1972,MNRAS,160,1P

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.