Astronomy&Astrophysicsmanuscriptno.sz_bispectre (cid:13)c ESO2017 February1,2017 Constraining galaxy cluster velocity field with the tSZ-kSZ-kSZ bispectrum. G.Hurier1,2 1 CentrodeEstudiosdeFísicadelCosmosdeAragón(CEFCA),PlazadeSanJuan,1,planta2,E-44001,Teruel,Spain 2 Institutd’AstrophysiqueSpatiale,CNRS(UMR8617)UniversitéParis-Sud11,Bâtiment121,Orsay,France e-mail:[email protected] Received/Accepted 7 1 Abstract 0 2 TheSunyaev-Zel’dovich(SZ)effectsareproducedbytheinteractionofcosmicmicrowavebackground(CMB)photonswiththeion- izedanddiffusegasofelectronsinsidegalaxyclustersintegratedalongthelineofsight.ThetwomaineffectsarethethermalSZ(tSZ) n producedbythermalpressureinsidegalaxyclustersandthekineticSZ(kSZ)producebypeculiarmotionofgalaxyclusterscompared a toCMBrest-frame.ThekSZeffectisparticularlychallengingtomeasureasitfollowsthesamespectralbehaviorastheCMB,and J consequentlycannotbeseparatedfromtheCMBusingspectralconsiderations.Inthispaper,weexplorethefeasibilityofdetect- 1 ingthekSZthroughthecomputationofthetSZ-CMB-CMBcross-correlationbispectrumforcurrentandfutureCMBexperiments. 3 WeconcludethatnextgenerationofCMBexperimentswillofferthepossibilitytodetectathighS/NthetSZ-kSZ-kSZbispectrum. Thismeasurementwillconstraintstheintra-clusterdynamicsandthevelocityfieldofgalaxyclusterthatisextremelysensitivetothe ] growthrateofstructuresandthustodarkenergyproperties.Additionally,wealsodemonstratethatthetSZ-kSZ-kSZbispectrumcan O beusedtobreakthedegeneraciesbetweenthemass-observablerelationandthecosmologicalparameterstosettightconstraints,up C to4%,ontheY−Mrelationcalibration. h. Keywords.Cosmology:Observations–Cosmicbackgroundradiation–Sunyaev-Zel’dovicheffect p - o 1. Introduction of b = 0.3−0.5. Thus, methodology to break the degeneracy r t betweencosmologicalparametersandthemass-observablerela- s Present CMB experiments such as ACTT (Sievers et al. 2013), a tionneedstobeinvestigatedfurthertotesttheconsistencyofthe [ SPT (Bleem et al. 2015), and Planck (Planck Collaboration ΛCDMcosmologicalmodel. 2015ResultsI2015)havemappedthecosmicmicrowaveback- 1 ground (CMB) primary temperature anisotropies with an un- After the tSZ effect, the second dominant sources of v precedented precision, and constrained cosmological parame- arcminute-scale anisotropies is the kinematic SZ (kSZ) effect 2 ters from the CMB angular power-spectrum analyses (see e.g., (Ostriker & Vishniac 1986), produced by the peculiar motion 7 Sievers et al. 2013; Planck Collaboration 2015 Results XIII of galaxy clusters with respect to CMB rest-frame. The kSZ is 0 9 2015; de Haan et al. 2016). However, the measurement of sec- about ten times fainter than the tSZ effect and contrary to the 0 ondaryanisotropies,suchastheSunyaev-Zel’dovich(SZ)effects tSZ effect, it cannot be separated from the CMB signal using . (Sunyaev & Zeldovich 1972), is still limited by the noise level spectral considerations. Consequently, the measurement of this 1 andangularresolutionincurrentexperiments. kSZeffectissignificantlyharderthantheoneofthetSZeffect. 0 Thankstoit’sspectralbehavior,thetSZeffectcanbeisolated The kSZ effect is directly related to the peculiar velocity field 7 1 from the CMB and foregrounds emissions (Remazeilles et al. ofthematterdistributionandthebaryonicmatterdensity.Thus, : 2011;Hurieretal.2013).ThethermalSZ(tSZ)effect,produced this effect presents significantly different cosmological depen- v by thermal electron in intra-cluster medium, as been shown as danciesthanthetSZeffect,especiallywiththeuniversegrowth i X a powerful probe to detect galaxy clusters (Hasselfield et al. rate(Sugiyamaetal.2016),whichisapowerfulprobetounder- 2013; Bleem et al. 2015; Planck Collaboration 2015 Results standtheCMB-LSStensionforcosmologicalparameterestima- r a XXVII 2015), and to constrain cosmological parameters us- tion. ing large-scale structure matter distribution (Hasselfield et al. 2013; Mantz et al. 2015; Planck Collaboration 2015 Results Several approaches have been proposed to recover the kSZ XXIV2015;PlanckCollaboration2015ResultsXXII2015;de effect:(i)directmeasurementofanisotropiesintheCMBangu- Haan et al. 2016). However, cosmological constraints obtained lar power spectrum at high-(cid:96) (see Addison et al. 2013; George via the tSZ effect strongly depend on the mass-observable re- etal.2015,forrecentresults),(ii)thepairwisemomentumesti- lation. Assuming a value of b = 0.2 (Planck Collaboration mator, using the preferential motion of large-scale structure to- 2015 Results XXIV 2015) for the hydrostatic mass bias, the ward other large scale structure (Peebles 1980; Diaferio et al. observed number of galaxy clusters on the sky is only half of 2000),(iii)invertingthecontinuityequationrelatingdensityand thepredictednumberassumingCMB-derivedcosmologicalpa- velocity fields (Ho et al. 2009; Kitaura et al. 2012), (iv) cross- rameters(PlanckCollaboration2015ResultsXIII2015).CMB- correlation bispectrum between CMB and cosmic shear (Doré derivedcosmologicalparameter,favoursahydrostaticmassbias etal.2004)orgalaxysurveys(DeDeoetal.2005) 1 G.Hurier:ConstraininggalaxyclustervelocityfieldwiththetSZ-kSZ-kSZbispectrum. EvidenceofthekSZeffectangularpowerspectrumhasbeen 3. Powerspectra found using the CMB angular power spectrum (George et al. 3.1. Generalformalism 2015) and combining the tSZ angular power-spectrum and bis- pectrum (Crawford et al. 2014). The kSZ detection has been Theangularcrosspowerspectrumbetweentwomapsreads achieveintwocases:forindividualgalaxyclustersinternaldy- namics (Sayers et al. 2013; Adam et al. 2016), or for statisti- 1 (cid:88)1(cid:16) (cid:17) cal sample of galaxy clusters using pairwise momentum (Hand C(cid:96)XY = 2(cid:96)+1 2 x(cid:96)my∗(cid:96)m+x(cid:96)∗my(cid:96)m , (5) et al. 2012; Hernández-Monteagudo et al. 2015; Soergel et al. m 2016). Recent studies (see e.g., Hernández-Monteagudo et al. with x and y , the coefficients from the spherical harmonics 2015)achievestaticaldetectionatabout5σsignificancelevel. (cid:96)m (cid:96)m decomposition of the concerned two maps, and (cid:96) the multipole The kSZ effect produces a non-gaussian contribution to the ofthesphericalharmonicexpansion.Inthecontextoflargescale CMB anisotropies. High order statistics have been shown as a structuretracers,wemodelthiscross-correlation,aswellasthe powerful probe to detect the tSZ effect (see e.g., Wilson et al. auto correlation power spectra, assuming the following general 2012;Hill&Sherwin2013;PlanckCollaboration2015Results expression XXII 2015). In this paper, we explore the possibility to detect thetSZ-kSZ-kSZcross-correlationbispectrumforthenextgen- C(cid:96)XY =C(cid:96)XY−1h+C(cid:96)XY−2h, (6) eration of CMB experiments. First, in Sect. 2 we present tSZ andkSZeffects,inSect.3wedetailsthecomputationoftSZand whereC(cid:96)XY−1h is the Poissonian contribution andC(cid:96)XY−2h is the 2-halo term. These terms can be computed considering a mass kSZ power spectra. Then, in Sect. 4 we present the modeling function formalism. The mass function, d2N/dMdV, gives the ofthetSZandkSZbispectra.Finally,inSect.5wepresentour number of dark matter halos (in this paper we consider the forecastsfornextgenerationCMBexperiments. fitting formula from Tinker et al. (2008)) as a function of the halomassandredshift. 2. TheSZeffects The Poissonian term can be computed by assuming the The thermal Sunyaev-Zel’dovich effect is a distortion of the Fourier transform of normalized halo projected profiles of X CMBblackbodyradiationthroughinverseComptonscattering. andY,weightedbythemassfunctionandtherespectivefluxes CMBphotonsreceiveanaverageenergyboostbycollisionwith of the halo for X and Y observable (see e.g. Cole & Kaiser hot (a few keV) ionized electrons of the intra-cluster medium 1988;Komatsu&Seljak2002,foraderivationofthetSZauto- (see e.g. Birkinshaw 1999; Carlstrom et al. 2002, for reviews). correlationangularpowerspectrum). The thermal SZ Compton parameter in a given direction, n, on (cid:90) (cid:90) theskyisgivenby dV d2N CXY−1h=4π dz dM X Y x y , (7) (cid:90) (cid:96) dzdΩ dMdV 500 500 (cid:96) (cid:96) k T y(n)= n B eσ ds (1) emec2 T whereX500 andY500 aretheaveragefluxesofthehaloinX and wherek istheBoltzmannconstant,cthespeedoflight,m the Y maps that depend on the critical mass of the galaxy cluster, B e ealleocntgrothnemlianses-,oσf-Tsitghhet,Tnh,onmsaonndcTroassre-stehcetieolne,ctdrsonisntuhmedbiesrtadnecne- aMn5d00,dtVh/edrzedsΩhiftt,hze, acnodmcoavninbgevoobltuaimneedewleimthesncta.liTnghereFlaotiuorniesr, e e sityandtemperature,respectively.InunitsofCMBtemperature transform of a 3-D profile projected across the line-of-sight on the contribution of the tSZ effect for a given observation fre- the sphere reads, 4πrs (cid:82)∞dxx2p(x)sin((cid:96)x/(cid:96)s), where p(x) is the quencyνis halo3-Dprofilein Xls2or0Y maps, x = (cid:96)rx//r(cid:96)s,(cid:96) = D (z)/r ,r is ∆TCMB =g(ν)y, (2) thescaleradiusoftheprofile. s s ang s s T CMB whereT istheCMBtemperature,andg(ν)thetSZspectral Thetwo-halotermcorrespondstolargescalefluctuationsof CMB dependance.Neglectingrelativisticcorrectionswehave thedarkmatterfield,thatinducecorrelationsinthehalodistri- (cid:20) (cid:18)x(cid:19) (cid:21) butionoverthesky.Itcanbecomputedas(seee.g.Komatsu& g(ν)= xcoth −4 , (3) Kitayama1999;Diego&Majumdar2004;Taburetetal.2011) 2 0w)ith= 2x.72=6±0h.0ν0/(1kBKTC(MMBa).theArtetz al=. 1909,9),wthheeretSTZCMeffB(ezct i=s C(cid:96)XY−2h =4π(cid:90) dzddzdVΩ(cid:32)(cid:90) dMddM2NdVX500x(cid:96)b(M500,z)(cid:33) (8) negativebelow217GHzandpositiveforhigherfrequencies. (cid:32)(cid:90) (cid:33) d2N × dM Y y b(M ,z) P (k,z) The kinetic Sunyaev-Zel’dovich effect produces a shift of dMdV 500 (cid:96) 500 X,Y theCMBblackbodyradiationtemperaturebutwhiteoutspectral distortion.ContrarytotSZeffect,itthuspossesthesamespectral with b(M ,z) the time dependent linear bias, that relates the 500 energydistribution(SED)thantheCMBprimordialanisotropies powerspectrumbetween X andY distribution, P (k,z),tothe X,Y andcannotbeseparatedfromthem.ThekineticSZinducedtem- underlyingdarkmatterpowerspectrum.FollowingMo&White peratureanisotropiesinagivendirectionontheskyisgivenby (1996);Komatsu&Kitayama(1999)weadopt (cid:90) k(n)= n v·nσ ds, (4) b(M500,z)=1+(ν2(M500,z)−1)/δc(z), e c T (cid:104) (cid:105) withvthepeculiarvelocityvectorofthegalaxycluster.Thetotal with ν(M500,z) = δc(z)/ Dg(z)σ(M500) , Dg(z) is the linear kSZfluxfromaclusterisproportionaltothegasmass, M growthfactorandδ (z)istheover-densitythresholdforspheri- gas,500 c ofthecluster,andmodulatedbythescalarproductv·nthatrange calcollapse. from−vtov. 2 G.Hurier:ConstraininggalaxyclustervelocityfieldwiththetSZ-kSZ-kSZbispectrum. Table1.Scaling-lawparametersanderrorbudgetforbothY − By simplicity, to estimate the kSZ flux root-mean-square 500 M (PlanckCollaborationresultsXXIX2013)andY −T (overvelocities),K ,weconsidertherelation 500 500 500 500 (PlanckCollaborationresultsXXIX2013)relations k T (cid:18)σ (cid:19)−1 Y (cid:39) K B 500 v . (14) M500−Y500 M500−T500 500 500 mec2 c logY -0.19±0.02 logT -4.27±0.02 (cid:63) (cid:63) αsz 1.79±0.08 αT 2.85±0.18 K500 is proportional to Mgas,500, thus the K500 − M500 and βsz 0.66±0.50 βT 1 Mgas,500 − M500 intrinsic scatters are the identical. The extra- σ 0.075±0.010 σ 0.14±0.02 logY logT scatter induced by the velocities is accounted by the σ fac- v tor. We derived a K − M intrinsic scatter of σ = 500 500 logK 0.03±0.01fromthegalaxyclustersamplepresentedinPlanck 3.2. ThetSZandkSZscalingrelations Collaborationearlyresults.XI(2011). A key step in the modeling of the cross-correlation between Additionally,theY500−M500 and K500−M500 intrinsicscatters tSZ and kSZ is to relate the mass, M , and the redshift, z, arecorrelated.Theintrinsicscattersfollowtherelation 500 of a given cluster to tSZ flux, Y , and kSZ flux, K . The cross-correlation between tSZ an5d00kSZ effects is thus500highly σ2logYK =σ2logY +σ2logK −2ρσlogYσlogK, (15) dependent on the M −Y and the M −K relations in termsofnormalizatio50n0and5s0l0ope.Conseq5u0e0ntly,5w00eneedtouse whereσlogYK = 0.08±0.01istheintrinsicscatteroftheY500− the relations derived from a representative sample of galaxy K500(equivalenttothescatteroftheY500−Mgas,500)andρisthe clusters, with careful propagation of statistical and systematic correlationfactorbetweenY500−M500andK500−M500intrinsic uncertainties. However, such observational constraints are not scatters.Wederivedρ ∈ [0.5,1.0]1.Inthefollowingweassume available for the kSZ effect. We stress that for power spectrum ρ=0.75. analysis, the intrinsic scatter of such scaling laws has to be considered, because it will produce extra power that has to be 3.3. Log-normalscatterandn-pointscorrelationfunctions accountedforinordertoavoidbiases. Scalingrelationsshowninsect.3.2presentsanintrinsicphysical We used the M − Y scaling laws presented in Planck scatter(seetab.1).Thisscatterisgenerallyconsideredasalog- 500 500 CollaborationresultsXXIX(2013), normaldistribution.Whenenteringincorrelationfunctions,this log-normalscatterwillactasanadditionalsourceofpower.This E−βsz(z)1D02A−(4zM)Yp50c02=Y(cid:63)(cid:34)0h.7(cid:35)−2+αsz(cid:34)6(1×−1b0)1M4M50(cid:12)0(cid:35)αsz, (9) badetdwiteioenna<lpXonw>er,anfodrXa(cid:63)q,uwanhteirteyXX(cid:63),cisanthbeeloegx-pnroesrmseadlamseaarneloaftitohne X variable.Inthemostgeneralcase,then-thmomentum, M(n), withhthedimensionlessHubbleparameter,D theangulardis- expectationofasetofN variableX canbewritten A i tance, E(z) = Ωm(1 + z)3 + ΩΛ. The coefficients Y(cid:63), αsz, and βszfromPlanckCollaborationresultsXXIX(2013),aregivenin (cid:89)N Table1.Weusedb = 0.2forthebiasbetweenX-rayestimated M(n) =< Xni > i massandeffectivemassoftheclusters. i We also need to have an estimate of the cluster tempera- (cid:90) (cid:89)N ture, T . In this work, we used the scaling law from Planck < M(n) >= A XnidX 500 norm i i Collaborationearlyresults.XI(2011): i E(z)−βTY500 =T(cid:63)(cid:20) T500 (cid:21)αT, (10) exp−(cid:2)log(X)−log(X(cid:63))(cid:3)TC2−S1(cid:2)log(X)−log(X(cid:63))(cid:3), 6keV (16) wherethecoefficientsT ,α andβ aregiveninTable1. (cid:63) T T Tomodelthe K500−M500 relation,weconsidertherelation whereAnorm isthenormalisationfactorofthelog-normaldistri- fromDeDeoetal.(2005)forthevelocityfield: bution,C isthescalingrelationscattercovariancematrix,Xis S avectorofX variables,X isavectorcontainingthelog-normal H(z)D dln(D )δ i (cid:63) vk =i 1+zg dln(ag) kk, (11) evxarpieacbtlaetiXoniXn(cid:63)t,hiefomroemacehnvtuamriaMble(n)Xai,ndansdatnisifiyst(cid:80)heNonrd=erno.fIteaccahn i i i beeasilyshownthat andconsequentlyforthevelocitydispersion σv(M500,z)= H1(z+)Dzgddlnln((Dag))σ−1, (12) < M(n) >=exp(cid:32)nTC2Sn(cid:33) (cid:89)N X(cid:63)ni,i, (17) i with D thegrowthfactorandσ (z)isdefinedforanyinteger j g j wherenisavectorofn.Thiseffectproduceapowerenhance- as i mentof6%forthetSZbispectrum.Whichissignificantforhigh- σ (M )= 1 (cid:90) dkk2(1+j)P(k)W2(kR), (13) S/N measurement of tSZ bispectrum. For the the tSZ-kSZ-kSZ j 500 2π2 bispectrum, we derived a power enhancement of 1.8%. In the following,wecorrectallspectraforthiseffect. whereW(kR)= 3 (sin(kR)−kRcos(kR))istheFouriertrans- form of he real(kRs)p3ace top-hat window function, with R = 1 Forconsistency,weusedσlogY =0.10±0.01thathasbeenderived (cid:113) onthe galaxycluster samplefrom PlanckCollaboration earlyresults. 3M500,whereρ¯ isthecriticaldensityoftheuniverse. XI(2011) 4πρ¯ 3 G.Hurier:ConstraininggalaxyclustervelocityfieldwiththetSZ-kSZ-kSZbispectrum. Table2.AmplitudeofthedifferenttermscontributiontothetSZ andkSZpowerspectraandbispectra.P isthepowerspectrum B ofthemomentumfieldandP thematterpowerspectrum. m 1-halo 2-halo 3-halo CtSZ−kSZ 0 0 (cid:96) CkSZ−kSZ 1/3 P (cid:96) B btSZ−tSZ−kSZ 0 (0,0,0) 0 (cid:96)1(cid:96)2(cid:96)3 btSZ−kSZ−kSZ 1/3 (P ,P ,P /3) B (cid:96)1(cid:96)2(cid:96)3 B B m k bkSZ−kSZ−kSZ 0 (0,0,0) 0 (cid:96)1(cid:96)2(cid:96)3 3.4. Pressureanddensityprofiles ThetSZeffectisdirectlyproportionaltothepressureintegrated acrossthelineofsight.Inthiswork,wemodelthegalaxyclus- ter pressure profile by a generalized Navarro Frenk and White (GNFW, Navarro et al. 1997; Nagai et al. 2007) profile of the form P P(r)= 0 . (18) (c r)γ[1+(c r)α](β−γ)/α 500 500 Fortheparametersc ,α,β,andγ,weusedthebest-fittingval- 500 uesfromArnaudetal.(2010)presentedinTable.1.Theabsolute normalizationoftheprofile P issetassumingthescalinglaws 0 Y −M presentedinSect.3.2. 500 500 To model the kSZ profile, we need the density, n (r), pro- e file. Thus, we assume a polytropic equation of state (see, e.g., Komatsu&Seljak2001),P(r) = n (r)T (r),withn (r) ∝ T (r)δ e e e e whereδisthepolytropicindex.ConsideringthatthekSZvaries Figure1. Power density as a function of M500 (top panel) and withne,thekSZprofileisproportionaltoP(r)(cid:15)p,where(cid:15)p = δ+δ1 redshift (bottom panel) for tSZ power spectrum (dotted blue rangesfrom0.5to1.0for1.0<δ<∞. line),tSZbispectrum(solidblueline),kSZpowerspectrum(dot- The overall normalization of kSZ profile is deduced from the tedredline),andtSZ-kSZ-kSZbispectrum(solidredline). scalinglawK −M presentedinSect.3.2. . 500 500 3.5. tSZandkSZpowerspectra ThekSZeffectisdependentoftheorientationofthepeculiarve- locity vector. Consequently, power spectra have to be averaged over orientations. In Table 2, we present the multiplicative fac- 4.1. cross-correlationbispectra tors to be applied on kSZ related power spectra, where P is B thepowerspectrumofthemomentumfieldandPm isthepower Followingthesamehalomodelapproach,wecaneasilypredict spectrumofthematterfield.WenoticethatkSZeffectpresenta the SZ bispectra (see Bhattacharya et al. 2012a, for a detailed 2-halo term, induce by the large scale correlations between the description of the tSZ bispectrum). In halo model formalism, a velocitiesofdifferentclusters. bispectrum can be separated into 3 terms: one-halo, two-halo, OnFig.1,wepresentthepowerdensityasafunctionofM andthree-halo,as 500 andzfortSZandkSZpowerspectra,tSZbispectrum,andtSZ- kSZ-kSZcross-bispectrum.WeobservethattSZpowerspectrum samples higher mass and lower redshift than kSZ power spec- bXYZ =bXYZ−1h+bXYZ−2h+bXYZ−3h, (19) trum, this effect is a consequence of the slope of Y500 − M500 (cid:96)1(cid:96)2(cid:96)3 (cid:96)1(cid:96)2(cid:96)3 (cid:96)1(cid:96)2(cid:96)3 (cid:96)1(cid:96)2(cid:96)3 (1.7)andK −M (1).Wealsoobservethatbispectragives 500 500 moreweightstoverymassiveandnearbyobjects. The one-halo term, is produce by the auto-correlation of a clusterwithhimself, 4. bispectrum Combining tSZ and kSZ, it is possible to build two auto- (cid:90) (cid:90) dV d2N correlationbispectra,andtwocross-correlationbispectra.Inthis bXYZ−1h=4π dz dM X Y Z x y z , (20) (cid:96)1(cid:96)2(cid:96)3 dzdΩ dMdV 500 500 500 (cid:96)1 (cid:96)2 (cid:96)3 work we aim at predicting the tSZ-kSZ-kSZ bispectrum, thus ourmodelingonlyaccountsfornon-gaussianobjectsthecorre- latewiththetSZeffect.Consequently,weonlyconsiderthekSZ effectfromvirializedhalosandweneglectthekSZcontribution The two-halo involved two point from the same halo and producedbydiffusebaryonsathigherredshift. thethirdfromanotherone.Asaconsequence,thistermreceives 4 G.Hurier:ConstraininggalaxyclustervelocityfieldwiththetSZ-kSZ-kSZbispectrum. threecontributions, (cid:90) (cid:32)(cid:90) (cid:33) dV d2N bXYZ−2h=4π dz P (k,z) dM X Y x y b(M ,z) (cid:96)1(cid:96)2(cid:96)3 dzdΩ XY,Z dMdV 500 500 (cid:96)1 (cid:96)2 500 (cid:32)(cid:90) (cid:33) d2N × dM Z z b(M ,z) dMdV 500 (cid:96)3 500 (cid:90) (cid:32)(cid:90) (cid:33) dV d2N +4π dz P (k,z) dM X Z x z b(M ,z) dzdΩ XZ,Y dMdV 500 500 (cid:96)1 (cid:96)3 500 (cid:32)(cid:90) (cid:33) d2N × dM Y y b(M ,z) dMdV 500 (cid:96)2 500 (cid:90) (cid:32)(cid:90) (cid:33) dV d2N +4π dz P (k,z) dM Y Z y z b(M ,z) dzdΩ YZ,X dMdV 500 500 (cid:96)2 (cid:96)3 500 (cid:32)(cid:90) (cid:33) d2N × dM X x b(M ,z) dMdV 500 (cid:96)1 500 (21) The tree-halo involved the correlation of three different ha- los, (cid:90) (cid:32)(cid:90) (cid:33) dV d2N bXYZ−3h=4π dz B (k ,k ,k ,z) dM X x b (M ,z) (cid:96)1(cid:96)2(cid:96)3 dzdΩ X,Y,Z 1 2 3 dMdV 500 (cid:96)1 3 500 (cid:32)(cid:90) (cid:33) d2N × dM Y y b (M ,z) dMdV 500 (cid:96)2 3 500 (cid:32)(cid:90) (cid:33) × dM d2N Z z b (M ,z)Figure2.tSZ(toppanel)andtSZ-kSZ-kSZ(bottompanel)bis- dMdV 500 (cid:96)3 3 500 pectra1haloterm(blueline),2-haloterm(redline),and3-halo (22) term(greenline). . with B (k ,k ,k ,z)thebispectrumof X,Y,andZ distribu- X,Y,Z 1 2 3 tion and b (M ,z) the bias that relates dark-matter and halo 3 500 distributions. 4.2. ThetSZ-kSZ-kSZcross-bispectrum The tSZ-tSZ-kSZ bispectrum have a null expectation due to similardegeneraciesthanthetSZpowerspectrum,consequently the average over all the direction for the momentum field of itcannotbeusedtobreakdegeneraciesbetweencosmologyand galaxy clusters. Table 2 lists the relative amplitude of each astrophysicalprocesses. contributions. For the prediction of tSZ-kSZ-kSZ 2-halo term, we compute the momentum field power spectrum similarly to Shaw et al. On Fig. 1, we present the power density for tSZ and tSZ- (2012). The tSZ-kSZ-kSZ bispectrum 2-halo term involves kSZ-kSZ bispectra. We observe that bispectra are sensitive to three contributions. Two contributions where the two consid- highermassandlowerredshiftthanpowerspectra.Wenotethat ered halos receive contribution from the kSZ effect. These tSZ-kSZ-kSZbispectrumandtSZpowerspectrumpresentssim- terms involve the momentum field power spectrum. The third ilarpowerdensitydistributionasafunctionofmassandredshift. contributions involves the correlation between a halo weighted thetSZ-kSZ-kSZbispectrumisthussensitivetogalaxyclusters by his tSZ flux and a halo weighed by the square of the kSZ withmassrangingfrom1014and1015M(cid:12),atz<1. effect. Consequently, this third contribution involves the matter We present the tSZ and tSZ-kSZ-kSZ bispectra on Fig. 2. power spectrum that describes the distribution of halos over WeobservedthatforthetSZbispectrum1halotermistwoor- the sky, weighted by the average over momentum directions derofmagnitudeshigherthen2twohalo.Consequently,forthe (similarly to the kSZ power spectrum). For the 3-halo term tSZbispectrum2-haloand3-halotermscanbesafelyneglected. matter-momentum bispectrum we used the prescription from This is consistent with the tSZ angular power spectrum that (DeDeoetal.2005). only presents significant contribution from the 2-halo term at verylow-(cid:96).Whenusinghigherorderstatisticswefavourshigher We studied the cosmological parameter dependancies of mass,lower-zobjectsthatarelessfrequentoverthesky.Indeed, this cross bispectrum. We found that the tSZ-kSZ-kSZ bispec- the 1-halo term amplitude evolved with the number, N , that cl trum is proportional to Ω4m.1σ810.1H02.0, by comparison the tSZ significantly contributes to the spectra, where the 2-halo term bispectrumisproportionaltoΩ3.9σ12.9H−1.1 et(cid:96) (cid:39) 1000.Then, evolvesasN2 andthe3-halotermasN3. m 8 0 cl cl tSZ-kSZ-kSZmightbeapowerfulprobetobreakdegeneracies ContrarytothetSZbispectrum,thetSZ-kSZ-kSZbispectrum2- between cosmological parameters and scaling relations by haloand3-halotermpresentsignificantcontributionscompared providing similar cosmological dependancies than tSZ power tothe1-haloterms.Thishighercontributionisexplainedbythe spectrum with significantly different astrophysical processes factthatthekSZeffectfavourslower-massandhigher-zobjects dependancies. We also note that the tSZ bispectrum present thanthetSZeffect,asshownonFig.1. 5 G.Hurier:ConstraininggalaxyclustervelocityfieldwiththetSZ-kSZ-kSZbispectrum. 4.3. uncertaintiesandoptimalestimator 4.4. Foregroundcontamination TocomputethebispectrumbetweenthreemapsX,Y,andZ,we ThetwomainforegroundscontaminationinSZanalysesarethe consideredthefollowingformula CIBandextra-galacticradiosources. CIB leakage in component separated maps is composed by 1 (cid:88) high-z CIB sources that present a spectral behavior than the b(cid:96)1(cid:96)2(cid:96)3 = f X(cid:96)1Y(cid:96)2Z(cid:96)3, (23) thermaldustinourgalaxythatdrivethecomputationofweights sky n forILCbasedmethods.Asaconsequence,CIBinsuchmapsis almost gaussian and will not significantly bias the results. The where X , Y , Z are the real space map that only contain (cid:96) , (cid:96)1 (cid:96)2 (cid:96)3 1 level of CIB in the final bispectrum can be estimated through (cid:96)2,(cid:96)3multipolesofmapsX,Y,Zrespectively, fskyisthecovered thedifferentshapeofCIBandSZbispectraLacasa(2014). skyfraction,andnisthedirectionoverthesky. Radiosourceswithasignificantfluxareinsmallnumberonthe Thisestimatorisknowntoreducethevarianceofthebispectrum microwave sky. It in has been shown in tSZ bispectra analyses withoutbiasingtheexpectationofthebispectrum.Wenotethat, (Planck Collaboration results XXI 2013) that the results is not in the case of a cross-correlation bispectrum (cid:96) , (cid:96) , (cid:96) are not 1 2 3 biasedbyradiosources,thatwouldproduceanegativebiasdue commutativequantities. tothewayradiosourcesleakintSZmaps(Hurieretal.2013). Then the bispectrum variance in the weak non-Gaussianity limitcanbeexpressedas CXXCYYCZZ 5. Forecasts <b(cid:96)1(cid:96)2(cid:96)3,b(cid:96)1(cid:48)(cid:96)2(cid:48)(cid:96)3(cid:48) >= f(cid:96)s1kyN(cid:96)(cid:96)21,(cid:96)2,(cid:96)(cid:96)33 δ(cid:96)1(cid:96)1(cid:48)δ(cid:96)2(cid:96)2(cid:48)δ(cid:96)3(cid:96)3(cid:48) 5.1. Cosmicvariancelimitedexperiment + C(cid:96)Xf1sXkyCN(cid:96)Y(cid:96)2Z1(cid:96)C2(cid:96)(cid:96)Z33Yδ(cid:96)1(cid:96)1(cid:48)δ(cid:96)2(cid:96)3(cid:48)δ(cid:96)3(cid:96)2(cid:48) IitnedafibrystthsteepskwyeceosntitmaiantiendgthtSeZe,xpkeScZte,danSd/NCiMswBeaanriesojutrsotpliimes-. IndeedtSZcanbeextractedfromothercomponents(Hurieretal. CXYCYXCZZ + (cid:96)f1skyN(cid:96)(cid:96)21(cid:96)2(cid:96)(cid:96)33 δ(cid:96)1(cid:96)2(cid:48)δ(cid:96)2(cid:96)1(cid:48)δ(cid:96)3(cid:96)3(cid:48) 2p0ri1m3a),rybuatntihseotkrSopZiesisgonralsceacnonndoatrbyeadnisistiontgroupisiehsedthfarotmfoltlhoewCsMthBe CXYCYZCZX CMBblackbodyemissionlaw.Wealsoconsider fsky =0.5.This + (cid:96)f1skyN(cid:96)(cid:96)21(cid:96)2(cid:96)(cid:96)33 δ(cid:96)1(cid:96)2(cid:48)δ(cid:96)2(cid:96)3(cid:48)δ(cid:96)3(cid:96)1(cid:48) crehsoiidcuealosfcaonsmtamallinsaktyiofnrathcatitocnonistammointiavtaetsedtStZoaanvdoiCdMfoBresgigronuanlsd. CXZCYYCZX WepresentonFig.3theexpectedcumulativeS/Nasafunction + (cid:96)f1skyN(cid:96)2(cid:96)1(cid:96)2(cid:96)(cid:96)33 δ(cid:96)1(cid:96)3(cid:48)δ(cid:96)2(cid:96)2(cid:48)δ(cid:96)3(cid:96)1(cid:48) doefttehcetemdufoltripscoalele(cid:96)s.aWboeveob(cid:96)s(cid:39)erv3e0d00t.hat the tSZ-kSZ-kSZ can be CXZCYXCZY + (cid:96)f1skyN(cid:96)2(cid:96)1(cid:96)2(cid:96)(cid:96)33 δ(cid:96)1(cid:96)3(cid:48)δ(cid:96)2(cid:96)1(cid:48)δ(cid:96)3(cid:96)2(cid:48), (24) 5.2. RealisticCMBexperiments ThePlanckexperimenthaveproducedacosmic-variancelimited with N , being the number of modes for the ((cid:96) ,(cid:96) ,(cid:96) ) (cid:96)1(cid:96)2(cid:96)3 1 2 3 measurementoftheCMBtemperatureangularpowerspectrum triangle. (Planck collaboration results XV 2013). However, secondary anisotropies(suchasthetSZeffect)measurementarestilldom- For our purpose, we considered the tSZ-kSZ-kSZ bispec- inated by instrumental noise. In this section we present the ex- trum,thuswehavetwopointthatareidentical.Consideringthat pected signal to noise from the Planck experiment and from a the expectation of tSZ and kSZ cross-correlation power spec- futureCOrE+2likeCMBmission. trum, CtSZ,kSZ, is zero, we can safely neglect this term in the (cid:96) computationofuncertainties.InthiscontextEq.24reducesto 5.2.1. Planck-likeexperiment CXXCXXCZZ <b(cid:96)1(cid:96)2(cid:96)3,b(cid:96)1(cid:48)(cid:96)2(cid:48)(cid:96)3(cid:48) >= f(cid:96)s1kyN(cid:96)(cid:96)21,(cid:96)2,(cid:96)(cid:96)33 δ(cid:96)1(cid:96)1(cid:48)δ(cid:96)2(cid:96)2(cid:48)δ(cid:96)3(cid:96)3(cid:48) TPolaensctkim-liakteemthiesseixopne,cwteedussigendatlh-teo-nnooisiseelreavteiol fursoimngPdlaatnacfkropmuba- CXXCXXCZZ licCMB(PlanckCollaboration2015ResultsIX2015)andtSZ + (cid:96)f1skyN(cid:96)(cid:96)21(cid:96)2(cid:96)(cid:96)33 δ(cid:96)1(cid:96)2(cid:48)δ(cid:96)2(cid:96)1(cid:48)δ(cid:96)3(cid:96)3(cid:48) (inPglanfsckky C=o0ll.a5b.oFroartiobnoth20C1M5 BReasnudltstSXZXmIIap2s01w5e)umseadpsthaesstuomta-l (25) measured power-spectra to estimate the noise level in the tSZ- kSZ-kSZbispectrum.Consequently,thisestimationofthenoise Ifwehave(cid:96) =(cid:96) then levelaccountsforCIBandpointsourcescontaminationinboth 1 2 tSZandCMBmaps. In Fig. 3, we present the expected signal-to-noise as a function CXXCXXCZZ <b ,b >=2 (cid:96)1 (cid:96)2 (cid:96)3 , (26) of the maximum (cid:96) considered. We observe that Planck is ex- (cid:96)1(cid:96)2(cid:96)3 (cid:96)1(cid:96)2(cid:96)3 fskyN(cid:96)1(cid:96)2(cid:96)3 pectedtoachievea0.2σmeasurementofthetSZ-kSZ-kSZbis- pectrum.Thisrulesoutthepossibilitytoextractthissignalfrom andifwehave(cid:96) (cid:44)(cid:96) then thePlanckdata.ThemainlimitationsarethenoiselevelintSZ 1 2 and CMB map, residual from other astrophysical components CXXCXXCZZ (mainlytheCIBforthetSZmap),andtheangularresolutionof <b ,b >= (cid:96)1 (cid:96)2 (cid:96)3 , (27) (cid:96)1(cid:96)2(cid:96)3 (cid:96)1(cid:96)2(cid:96)3 fskyN(cid:96)1(cid:96)2(cid:96)3 2 http://hdl.handle.net/11299/169642 6 G.Hurier:ConstraininggalaxyclustervelocityfieldwiththetSZ-kSZ-kSZbispectrum. Planckmaps,5arcminFWHMfortheCMBmapsand10arcmin Additionally, some components, such as the cosmic-infrared- forthetSZmaps.TheCMBalsostronglylimitsthesensitivityat background (CIB), cannot be modeled with a single spectral low-(cid:96).OnFig.3,wecanseelow-(cid:96) oscillationsthatcorrespond lawandcontributeasapartiallycorrelatedcomponentfromfre- totheCMBacousticoscillationpicscontributingtothenoisefor quencytofrequency.WethusmodeltheCIBcontributiontothe thetSZ-kSZ-kSZbispectrum. finalvarianceas V=(cid:16)F [C +C ]−1FT(cid:17)−1, (30) N CIB where C is the CIB covariance matrix. We computed the CIB CIB covariance matrix using the model presented in (Planck Collaboration 2015 Results XXIII 2015). For a more realistic estimation we performed the noise estimation as a function of themultipole(cid:96)tohaveanestimateofthenoisepower-spectrum inCMBandtSZmaps.Weverifiedthatthisapproachisrealistic byapplyingittothePlanckmissionspecificitiesandcomparing tothenoiselevelobservedinPlancktSZandCMBpublicmaps. InFig.3,wepresenttheexpectedtSZ-kSZ-kSZbispectrum S/NforaCOrE+likeexperiment.WeobservethatthetSZ-kSZ- kSZ S/N is dominated by the cosmic variance up to (cid:96) = 4000. We can expect a detection up to 200σ when neglecting poten- tialsystematiceffectintheCMBandtSZmaps.Wealsostress Figure3. Cumulative S/N for the tSZ-kSZ-kSZ bispectrum as thatourestimationofthetSZ-kSZ-kSZbispectrummayunder- afunctionof(cid:96) foracosmicvariancelimitedexperiment(black estimatetherealsignalathigh-(cid:96),wheretheinternaldynamicsof line), the Planck experiment (blue line), and a COrE+ like ex- the gaz inside galaxy clusters will most likely add extra power periment(redline).Thedashedlineshowsthe5σlevel. onsmallscales. . InFig.4,wepresenttheexpectedconstraintsonΩ ,σ ,and m 8 Y when combining the measurement of tSZ power spectrum, (cid:63) bispectrum,andtSZ-kSZ-kSZbispectrum. TheLikelihoodfunctioniscomputedasfollows, 5.2.2. FutureCMBexperiments L∝exp(cid:16)−[D−M(σ ,Ω ,Y )]TC [D−M(σ ,Ω ,Y )](cid:17), 8 m (cid:63) SZ 8 m (cid:63) We now consider a future CMB spacecraft mission assuming (31) specificities(frequencies,noiselevelpardetector,numberofde- tectors,beams)foraCOrE+likeexperiment,andaskycoverage Where D is a vector containing the tSZ-tSZ-tSZ and tSZ-kSZ- afsckcyes=s 0to.5C. FMoBr sourchtSfZutumreapesxpneoriismeelnetv,ewl.eTdhouns’,twheavceodmirpeucttelyd k∆SYZ(cid:63)/bYi(cid:63)spe=ctr0a),fMor iosurafivdecutcoiralcomnotadienlin(gσ8the=tw0.o8,biΩspmec=tra0f.o3r, theexpectednoiselevelincomponentseparatedmapsobtained parameters (σ8, Ωm, ∆Y(cid:63)/Y(cid:63)), and CSZ is the covariance ma- through linear combination of multi-frequency intensity maps. trix of the two bispectra in the weakly non-gaussian limit (see The optimal noise level, V, for a single astrophysical compo- Eq.24).ThecorrelationbetweenthetSZ-tSZ-tSZandtSZ-kSZ- i nentisgivenby, kSZbispectraintheweaklynon-gaussianlimitisproportionalto (cid:16)CtSZ,kSZ(cid:17)2,thuscontraintsfromthetSZ-tSZ-SZbispectrumand V =(cid:16)FC−1FT(cid:17)−1, (28) fro(cid:96)m the tSZ-kSZ-kSZ bispectrum can be considered as inde- i i N i pendent.Figure4showstheexpectedconstraintswhenσ ,Ω , 8 m where F is the component spectral behavior in the frequency andY areallowedtovary,wemarginalizedoverH =67.8±0.9 i (cid:63) 0 channels of the experiment, and C−1 is the instrumental noise km/s/Mpcandfixedallotherparameters. N covariancematrix.WeassumethatC−1isdiagonal,andthatmul- We observed that σ8 and Ωm present a high degree of de- N tipledetectoratagivenfrequencyhaveuncorrelatednoise. generacy, as our three probes present similar degeneracies for However,thereisseveralcomponentsonthesky.Thus,weuse thistwoparameters.However,weobservedthatwecanachieve thefollowingequation a precision of 4% on Y(cid:63), without any external prior. Such ap- proach will allows to calibrate the tSZ scaling relation without V=(cid:16)FC−1FT(cid:17)−1, (29) theneedofX-rayhydrostaticmass. N where F is a rectangular matrix containing the astrophysical 6. Conclusionanddiscussion componentspectralbehavior.Inthisanalysis,weconsidered: WehaveproposedanewmethodtodetectkSZeffectusingfu- • thetSZeffect, ture high-resolution CMB experiments. This method presents • theCMB, the advantage to be sensitive to the galaxy cluster velocity dis- • onethermaldustcomponent,thatfollowsamodifiedblack- persion without bias from CMB auto-correlation or from kSZ bodyspectralenergydistribution(SED)withatemperature, effectproducebythediffusebaryonicgasathighredshift.This T =20K,andspectralindexβ =1.6, method also allows to constraints the velocity field without se- d d • one radio component following a ναr SED with a spectral lection function. By comparison, the kSZ angular power spec- indexα =−1, trum measured by George et al. (2015), is sensitive to the to- r • theCOcomponent, tal kSZ power-spectrum. The constraints achieved on the kSZ • thespinningdustcomponent. powerspectrumbyCrawfordetal.(2014)whencombiningtSZ 7 G.Hurier:ConstraininggalaxyclustervelocityfieldwiththetSZ-kSZ-kSZbispectrum. Figure4.LikelihoodforcombinedtSZpowerspectrum,bispectrum,andtSZ-kSZ-kSZbispectrumasafunctionofY ,σ ,andΩ . (cid:63) 8 m Darkblue,blue,andlightbluecontoursindicatesthe1,2,and3σlevels. . powerspectrumandbispectrumisanindirectconstraints,andis bined with the tSZ power spectrum and bispectrum to set tight affectedbyastrongcosmicvariance,asitmeasuresthetSZ-tSZ- constraints (4%) on the Y − M relation calibration and thus on tSZandtSZ-kSZ-kSZbispectraasasinglequantity. thehydrostaticmassbias.Thiswillenablethepossibilitytoset Themethodproposedinthepresentpaper,relyonadirectmea- cosmological constraints without the need of prior on the hy- surement of the tSZ-kSZ-kSZ bispectrum after a separation of drostaticmassbias.Whichisacrucialstepconsideringthatthe the tSZ and kSZ signals. Consequently, it allows to obtain a hydrostaticmass-biasisthemainlimitationforcosmologicalpa- model-independent and low-cosmic-variance estimation of the rameterestimationfromtSZsurveys. tSZ-kSZ-kSZbispectrum. We have presented a complete modeling of the tSZ-kSZ- Acknowledgements kSZ bispectrum and deduced the associated cosmological pa- rameterdependancies.WederivedthedependenciesofthetSZ- The author thanks F.Lacasa for useful discussions. We ac- kSZ-kSZandtSZbispectrawithrespecttocosmologicalparam- knowledge the support of the French Agence Nationale de la eters.PreviousworkshavealsodiscussthetSZbispectrumscal- RechercheundergrantANR-11-BD56-015. ing with cosmological parameters (Bhattacharya et al. 2012b; Crawfordetal.2014,seee.g.,),andfoundslightlydifferentscal- ing. The cosmological dependancies of the tSZ angular power References spectrum is highly dependent on the weighting given to each Adam,R.,Bartalucci,I.,Pratt,G.W.,etal.2016,ArXive-prints halo.Asaconsequence,differencesonthemasse-observablere- Addison,G.E.,Dunkley,J.,&Bond,J.R.2013,MNRAS,436,1896 lation will significantly affects the bispectrum scaling with re- Arnaud,M.,Pratt,G.W.,Piffaretti,R.,etal.2010,A&A,517,A92 spect to cosmological parameters. This also explains the scale Bhattacharya,S.,Nagai,D.,Shaw,L.,Crawford,T.,&Holder,G.P.2012a,ApJ, dependanceofthebispectrumscalings,indeeddifferentangular 760,5 scales receive contribution from halos at différent redshifts and Bhattacharya,S.,Nagai,D.,Shaw,L.,Crawford,T.,&Holder,G.P.2012b,ApJ, 760,5 masses. Birkinshaw,M.1999,Phys.Rep.,310,97 We also demonstrated that future experiments, will be sen- Bleem,L.E.,Stalder,B.,deHaan,T.,etal.2015,ApJS,216,27 Carlstrom,J.E.,Holder,G.P.,&Reese,E.D.2002,ARA&A,40,643 sitive to the tSZ-kSZ-kSZ cross-correlation bispectrum up to Cole,S.&Kaiser,N.1988,MNRAS,233,637 200σ. Crawford,T.M.,Schaffer,K.K.,Bhattacharya,S.,etal.2014,ApJ,784,143 WedemonstratedthatthetSZ-kSZ-kSZbispectrumcanbecom- deHaan,T.,Benson,B.A.,Bleem,L.E.,etal.2016,ArXive-prints 8 G.Hurier:ConstraininggalaxyclustervelocityfieldwiththetSZ-kSZ-kSZbispectrum. DeDeo,S.,Spergel,D.N.,&Trac,H.2005,ArXivAstrophysicse-prints Diaferio,A.,Sunyaev,R.A.,&Nusser,A.2000,ApJ,533,L71 Diego,J.M.&Majumdar,S.2004,MNRAS,352,993 Doré,O.,Hennawi,J.F.,&Spergel,D.N.2004,ApJ,606,46 George,E.M.,Reichardt,C.L.,Aird,K.A.,etal.2015,ApJ,799,177 Hand,N.,Addison,G.E.,Aubourg,E.,etal.2012,PhysicalReviewLetters, 109,041101 Hasselfield,M.,Hilton,M.,Marriage,T.A.,etal.2013,J.CosmologyAstropart. Phys.,7,008 Hernández-Monteagudo, C., Ma, Y.-Z., Kitaura, F. S., et al. 2015, Physical ReviewLetters,115,191301 Hill,J.C.&Sherwin,B.D.2013,Phys.Rev.D,87,023527 Ho,S.,Dedeo,S.,&Spergel,D.2009,ArXive-prints Hurier,G.,Hildebrandt,S.R.,&Macias-Perez,J.F.2013,ArXive-prints Kitaura,F.-S.,Angulo,R.E.,Hoffman,Y.,&Gottlöber,S.2012,MNRAS,425, 2422 Komatsu,E.&Kitayama,T.1999,ApJ,526,L1 Komatsu,E.&Seljak,U.2001,MNRAS,327,1353 Komatsu,E.&Seljak,U.2002,MNRAS,336,1256 Lacasa,F.2014,ArXive-prints Mantz,A.B.,vonderLinden,A.,Allen,S.W.,etal.2015,MNRAS,446,2205 Mather,J.C.,Fixsen,D.J.,Shafer,R.A.,Mosier,C.,&Wilkinson,D.T.1999, ApJ,512,511 Mo,H.J.&White,S.D.M.1996,MNRAS,282,347 Nagai,D.,Kravtsov,A.V.,&Vikhlinin,A.2007,ApJ,668,1 Navarro,J.F.,Frenk,C.S.,&White,S.D.M.1997,ApJ,490,493 Ostriker,J.P.&Vishniac,E.T.1986,ApJ,306,L51 Peebles,P.J.E.1980,Thelarge-scalestructureoftheuniverse PlanckCollaboration2015ResultsI.2015,ArXive-prints PlanckCollaboration2015ResultsIX.2015,ArXive-prints PlanckCollaboration2015ResultsXIII.2015,ArXive-prints PlanckCollaboration2015ResultsXXII.2015,ArXive-prints PlanckCollaboration2015ResultsXXIII.2015,ArXive-prints PlanckCollaboration2015ResultsXXIV.2015,ArXive-prints PlanckCollaboration2015ResultsXXVII.2015,ArXive-prints PlanckCollaborationearlyresults.XI.2011,A&A,536,A11 PlanckcollaborationresultsXV.2013,ArXive-prints PlanckCollaborationresultsXXI.2013,ArXive-prints PlanckCollaborationresultsXXIX.2013,ArXive-prints Remazeilles,M.,Delabrouille,J.,&Cardoso,J.-F.2011,MNRAS,410,2481 Sayers,J.,Mroczkowski,T.,Zemcov,M.,etal.2013,ApJ,778,52 Shaw,L.D.,Rudd,D.H.,&Nagai,D.2012,ApJ,756,15 Sievers,J.L.,Hlozek,R.A.,Nolta,M.R.,etal.2013,J.CosmologyAstropart. Phys.,10,060 Soergel,B.,Flender,S.,Story,K.T.,etal.2016,MNRAS,461,3172 Sugiyama,N.S.,Okumura,T.,&Spergel,D.N.2016,ArXive-prints Sunyaev,R.A.&Zeldovich,Y.B.1972,CommentsonAstrophysicsandSpace Physics,4,173 Taburet,N.,Hernández-Monteagudo,C.,Aghanim,N.,Douspis,M.,&Sunyaev, R.A.2011,MNRAS,418,2207 Tinker,J.,Kravtsov,A.V.,Klypin,A.,etal.2008,ApJ,688,709 Wilson,M.J.,Sherwin,B.D.,Hill,J.C.,etal.2012,Phys.Rev.D,86,122005 9