ebook img

Constraining black hole spins with low-frequency quasi-periodic oscillations in soft states PDF

0.73 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Constraining black hole spins with low-frequency quasi-periodic oscillations in soft states

MNRAS000,1–10(2016) Preprint31January2017 CompiledusingMNRASLATEXstylefilev3.0 Constraining black hole spins with low-frequency quasi-periodic oscillations in soft states Alessia Franchini1⋆, Sara Elisa Motta2 and Giuseppe Lodato 1 1DipartimentodiFisica,UniversitàDegliStudidiMilano,ViaCeloria,16,Milano,I-20133,Italy 2UniversityofOxford,DepartmentofPhysics,Astrophysics,DenisWilkinsonBuilding,KebleRoad,OX13RH,Oxford,UK 7 1 0 Lastupdated...;inoriginalform... 2 n ABSTRACT a J Black hole X-ray transients show a variety of state transitions during their outburst 0 3 phases,characterizedbychangesintheirspectralandtimingproperties.Inparticular,power densityspectra(PDS)showquasiperiodicoscillations(QPOs)thatcanberelatedtotheac- ] cretionregimeofthesource.Welookedfortype-CQPOsinthedisc-dominatedstate(i.e.the E highsoftstate)andintheultra-luminousstateintheRXTEarchivaldataof12transientblack H hole X-ray binaries known to show QPOs during their outbursts. We detected 6 significant . QPOsinthesoftstate thatcanbeclassified astype-CQPOs. Undertheassumptionthatthe h accretiondiscindisc-dominatedstatesextendsdownorclosetotheinnermoststablecircular p orbit (ISCO) and that type-C QPOs would arise at the inner edge of the accretion flow, we - o use the relativistic precessionmodel(RPM) to place constraintson the blackhole spin. We r wereabletoplacelowerlimitsonthespinvalueforallthe12sourcesofoursamplewhilewe t s couldplacealsoanupperlimitonthespinfor5sources. a [ Keywords: accretion,accretiondiscs–binaries:close–blackholephysics–X-rays:stars 2 v 0 6 1 INTRODUCTION (see,e.g.,Mottaetal.2012).Whilethehardstatesarecharacterized 7 byhighervariability(30−40%rmsintheLHSand5−20%rmsin 1 Blackhole(BH)low-massX-raybinaries(LMXBs)aredoublesys- theintermediatestates),thevariabilityintheULSandintheHSS 0 temsharboringastellarmassblackholethataccretesmatterfroma isverylow(aroundandbelow5%rms,respectively). . Sun-likecompanionstar.ThevastmajorityofBHLMXBsaretran- 1 0 sientsystems,i.e.theyspendmostoftheirlifeinadim,quiescent Thedifferentstatesaredefinedbasedonthespectralproper- 7 state(LX∼1030–1034erg/s),occasionallyinterruptedbybrightout- tiesofthesourceandontheinspectionofthepowerdensityspec- 1 burstsduringwhichtheyshowlargeincreasesinluminosity(reach- tra(PDS),wherechangesinthefasttimevariabilitycanbeclearly v: ing occasionally the Eddington limit) and remarkable variations observed. The most remarkable features detected in the PDS are i in their spectral and fast variability properties (Belloni&Motta narrowpeaksknownasquasi-periodicoscillations(QPOs),whose X 2016). These changes can be described through the Hardness- centroid frequency are thought to be associated with dynamical r IntensityDiagram(HID)(Homanetal.2001;Bellonietal.2011), time scales in the accretion flow. The origin of QPOs is still un- a wherehysteresisloopscanbeidentified(Miyamotoetal.1992)and derdebateandseveralmodelshavebeenproposedtoexplaintheir differentbranchesofaq-shapedtrackroughlycorrespondtodiffer- existence(seeMotta2016forareview).However,itiscommonly entspectral/timingstates.MostactiveBHLMXBsshowfivemain acceptedthatmostQPOsoriginateinthevicinityoftheblackhole, different states:theLow HardState(LHS),dominated byComp- thustheypotentiallycarryinformation onthepropertiesand mo- tonized emission; the High Soft State (HSS), where the thermal tionofmatterinastronggravitationalfield. emissionfromanaccretiondiscdominatesthespectrum;theHard IntermediateState(HIMS)andtheSoftIntermediateState(SIMS), QPOs are usually divided in two groups based on their fre- wherethespectrumshowsthecontributionsfromboththeaccretion quency: low frequency and high frequency (LFQPOs and HFQ- discandtheComptonizedemission,butwherethemostdramatic POs, respectively). LFQPOs have frequencies typically varying changesinthetimingpropertiesareobserved.Afewsourcehave fromafewmHzupto∼ 30Hzandarefurtherdividedintothree alsoshownananomalousorultra-luminousstate(ULS),whichcan types-type-A,type-Bandtype-C-basedontheirproperties(e.g. beseenasasoft-intermediateandhard-intermediatestateinwhich peakfrequency,width,energydependenceandphaselags)andon theluminosityissignificantlyhigherwithrespecttotheotherstates theassociatedbroadbandnoiseinthePDS(shapeandtotalvari- abilitylevel,Wijnandsetal.1999,Casellaetal.2005,Mottaetal. 2011).AccordingtotheclassificationofHoman&Belloni(2005), ⋆ [email protected] Type-A QPOs are commonly found in the SIMS and are charac- (cid:13)c 2016TheAuthors 2 Franchini,MottaandLodato terized by a weak and broad peak around 6−8 Hz. 1 Their ori- able to rigidly precess around the compact object spin axis. Ac- gin is still under debate. Type-B are usually seen in the SIMS cording to this model type-C QPOs are produced by the Lense- (whichisdefinedbytheirpresence,Belloni&Motta2016).They Thirringprecessionofaradiallyextendedportionofthehotinner arecharacterizedbyarelativelystrongandnarrowpeakaround6 accretion flow that produces a modulation of the X-ray flux, dif- Hz(Mottaetal.2011)andithasbeensuggestedthattheyareas- ferentlyfromtheRPMwhereatestparticleisresponsibleforthe sociated with relativistic jets during the transition from the hard QPO. Inthe first case, the QPO frequency isa weighted average tothe soft state(Fenderetal.2009).Type-C QPOsarefound es- ofthefreeprecessionfrequenciesatthevariousradii.However,for sentially in any spectra/timing state (including the ULS, Motta the disc to precess rigidly, its radial extent must be narrow (tens 2016). They are characterized by a strong (up to 20% rms), nar- ofR )(Lodato&Facchini2013;Franchinietal.2016;Nixonetal. g row(ν/∆ν > 3,butoftenmuchlarger)andvariablepeak(itsfre- 2016).Inparticular,intheHSS,wheretheaccretiondiscinnerra- quencyandstrengthvaryingbyfewordersofmagnitudealongan dius is expected to be close to or coincident with the innermost outburst;see,e.g.,Mottaetal.2015)superposedonaflat-topnoise stable circular orbit (ISCO, e.g. Dunnetal. 2010), the inner hot that steepens above a frequency comparable to the centroid fre- (geometrically thick) accretion flow is expected to be extremely quencyoftheQPO.Type-CQPOsappearatlowfrequencies(from narrow (itsouter radiusdetermined bytheinner thindisctrunca- afewmHzuptotenthsofHzMottaetal.2011)inthehardstate tionradius).Therefore,itsprecessionfrequencyisreasonablywell where the disc is thought to be truncated at a large radius (tens describedbythatofatestparticleorbitingattheISCO.Thus,inthe tohundredsofR ).Theyincreasetheirfrequencyduringthetran- HSSandinparticularclosetotheISCO,theRPMandtherigidpre- g sition from the hard to the soft state, reaching their maximum in cessionarepracticallycoincident andtheRPMrepresentsagood theHSS,wheretheyshowfrequenciesaround30Hz(Mottaetal. approximationoftherigidprecession(Ingram&Motta2014). 2014a,Mottaetal.2014b).HFQPOsarefairlyrareinBHbinaries Themeasurementoftheblackholeparametersisamajoris- (whiletheyarecommonlyobservedinNSsystems,wheretheyare sueinastrophysics.Whilethemasscanbeestimatedthroughoften referredtoaskHzQPOs,seevanderKlis2006)andhavebeende- complexdynamicalstudies,thespincanonlybeinferredinanin- tected only inafew sources (Bellonietal. 2012). HFQPOsseem directway.IntheHSSmeasurementsofthespinscanbeobtained to appear preferentially in the HSS and in the ULS, even though through X-ray spectroscopy by modelling the thermal disc emis- observational biases could be at play because of the low number sion in the spectrum (McClintocketal. 2011, 2014; Steineretal. ofdetectionscurrentlyavailable.Remillard&McClintock(2006), 2010, 2011, 2012). In the hard and intermediate states, the spin usingadifferentclassification(Table1inMcClintocketal.2009), isinstead measured bymodelling thediscreflectionspectrum, in showedthatmostHFQPOshavebeendetectedinobservationswith particularbymodellingtheeffectsofthespinontheIron-Kαline asubstantialpower-lawcontribution. (Miller2007;Reynolds2013).Bothmethodsrelyuponidentifying There are different models that attempt to describe the ori- theinnerradiusoftheaccretiondiscwiththeISCO.Inaddition,for thespectralcontinuummethod,onemustalsoknowthemassofthe ginofQPOsinLMXBs.Therelativisticprecessionmodel(RPM) blackhole,theinclinationoftheaccretiondisc(generallyassumed is one of those. This model has been originally proposed by equal to the inclination of the binary system) with respect to the Stella&Vietri(1998);Stellaetal.(1999) andwasrecentlyrevis- lineofsightandthedistancetothebinary.Forthesereasons,such itedbyMottaetal.(2014a,b);Ingram&Motta(2014),toexplain methodsareoftenaffectedbylargesystematicerrorsandinafew threetypesofQPOs:type-CQPOs,thelowerandtheupperHFQ- POs.IntheRPM,thecentroidfrequencyofthreedifferenttypesof casestheyhavelead toinconsistent values of theblackhole spin whenusedonthesamesource(Shafeeetal.2006).TheRPM,on QPOsisassociatedwiththefrequenciesofatestparticleorbitinga theotherhand,isbasedonlyonmeasurementsthatcanbeinferred spinningblackhole,aspredictedbythetheoryofGeneralRelativ- throughverypreciseX-raytimingmeasurements(i.e.theprecision ity.TheLense-Thirring(LT)frequencyisassociatedwiththetype- of the measurement of a QPO centroid frequency is only limited CQPO,theperiastronprecessionfrequencywiththelowerHFQPO bythetimeresolutionofthedataused,whichisusuallyextremely andtheorbitalmotioncorrespondstotheupperHFQPO.TheRPM high).Therefore,theRPMcanbeusedtoestimateBHspinsinde- predictsthattheexpectedvaluesofthesefrequenciesdependsolely pendentlyfromothermethods. onthefundamental parametersoftheBH,i.e.massandspin,and InthisworkweapplytheRPMtoQPOsdetectedintheHSS, on the radius at which the particle motion occurs (i.e. where the i.e.producedcloseorattheISCO,placinglimitsontheblackhole QPOsareproduced). Basedon thisfact, once atype-C QPO and spinofanumberofsourcesbymakingreasonableassumptionson two HFQPOsare observed simultaneously, one can obtain apre- themass,whenthisisnotknownapriori. cisemeasurementofthefundamentalparametersoftheblackhole, spinandmass(Mottaetal.2014a).Aspinmeasurementcanalsobe obtainedwhenonlytwosimultaneousQPOsoftherelevanttypes aredetectedandwhenanindependent massmeasurement,forin- 2 OBSERVATIONSANDDATAANALYSIS stancedetermineddynamically,isavailable(Mottaetal.2014b).If themass isunknown, theRPMstillallowstoplace limitson the Based on Mottaetal. (2015) we analyzed RXTE/Proportional massandspinoftheblackhole(seeIngram&Motta2014). Counter Array(PCA)archival observations of12transient BHBs Ingrametal. (2009) proposed a model based on relativis- showing QPOs. We selected those sources that show a standard tic precession that requires a geometrically thin accretion disc HSSamongthe14sourcesconsideredbyMottaetal.(2015).We (Shakura&Sunyaev1973)truncatedatsomeradius(theinnerdisc did also include observations in the ULS for those sources that truncationradius)filledinwithaninnerhotaccretionflowthatis showed thiskind of stateduring their outbursts. Inthiswork, we excludedSwiftJ1753.5-0127 sinceithasnotshownaHSSinthe RXTEera(Solerietal.2013),andXTEJ1720-318, whichdidnot 1 However, we note that more recent works (Bellonietal. 2011; Motta showQPOsduringtheoutburstobservedbyRXTE.Welookedfor 2016;Belloni&Motta2016)placedthistypeofQPOsintheHSS,since QPOsintheHSSandintheULS,wheretheyarethoughttobepro- theytypicallyappearattotalfractionalrmsbelow5%inBHBs. duced at or closeto theISCO (seeMottaetal. 2012, Mottaetal. MNRAS000,1–10(2016) Type-C QPOs insoftstate 3 2015). We analyzed all the observations in the RXTE catalogue where r is the radius (in units of the gravitational radius R = g in the HSS and ULS that have not been included in Mottaetal. GM/c2)atwhichthefrequenciesareproduced,aisthedimension- (2014a,b,2015).ThenweaddedalsotheQPOsfoundintheprevi- lessblackholespinparameter,and Mistheblackholemass.The ousworks. signs plus and minus refer to prograde and retrograde orbits, re- WecomputedthePDSusingacustomsoftwareunderIDLin spectively. the total and hard energy band (∼ 2−37 keV, absolute channels According to the RPM, type-C QPOs are associated with 0-64, and ∼ 6−37 keV, absolute channels 14-64, respectively). the Lense-Thirring precession frequency ν , the lower HFQPO LT SinceQPOstypicallyshowahardspectrum(Sobolewska&Z˙ycki totheperiastronprecessionfrequencyν andtheupper HFQPO per 2006),producingthePDSusingonlyhardphotonsmaximizesthe to the orbital frequency ν . Under the hypothesis that when ob- φ chancesofdetectingafaintsignal,whoseintrinsicvariabilitycould servedsimultaneously,thesefrequenciesareproducedatthesame bedilutedbythenon-variablephotonsfromtheaccretiondisc,that radius r, the equations above - linking the black hole parameters dominatesinthesoftstatesandemitsmostlybelow6keV.Forsim- (spin and mass) to the QPO centroid frequencies - form a sys- ilarreasons,wedidnotconsiderthephotonsabovechannel64:the temofthreeequationsinsixvariables:(a,M,r,ν ,ν ,ν ).There- φ per LT efficiencyof thePCAdrops dramaticallyabove∼30keV andthe fore, when a type-C QPO and two HFQPOs are detected simul- variabilitycomingabovethisenergyismostlyPoissonnoise.Inad- taneously, one can solve the RPM system of equations exactly dition,intheHSStheenergyspectrumistypicallyverysteep,with (Ingram&Motta 2014), obtaining precise values for a, M and r verylittleornosignalabove∼20keV.Inafewcaseswecouldnot (Mottaetal.2014b,a). producePDSinthehardbandsincethedatamodesdidnotallowit, Inthisworkweassumethatthehighestfrequencytype-CQPO thereforeweonlyanalyzedthetotalenergybandPDS(channel0- detected in the HSS or ULS for each source corresponds to the 64ifavailable,otherwisechannels0-249).Weused16s-longinter- Lense-ThirringprecessionfrequencyofatestparticleattheISCO. valsandaNyquistfrequencyof2048HztoproducethePDS,which TheradiusoftheISCO(r ),aspredictedbythetheoryofGen- ISCO werethennormalizedfollowingLeahyetal.(1983)andconverted eralRelativity,isonlyafunctionof theblackholedimensionless tosquarefractionalrms(Belloni&Hasinger1990).Wemeasured spinparameter(see,e.g.,Stella&Vietri1998).Therefore,substi- theintegratedfractionalrms(i.e.thermsfromtheentirePDS)in tutingthe expression of r into theequations above, allows us ISCO the2-15keVbandandbetween0.1and64Hz.Fromnowon,ifnot toremovethervariablefromtheRPMsystemandthustoobtain otherwisestated,byrmswerefertotheintegratedfractionalrms. equationsthatonlydependonManda.Thisimpliesthat,ifeither Then,weinspectedallthePDSselectingonlythosewherewe themassorthespinareknown,onecanobtainanestimateofthe detectedoneormorenarrowpeaksandfittedthemusingthestan- otherparameterdetectingjustoneQPOandusingtherelatedRPM dard XSPEC fitting package with a one-to-one energy-frequency equation. While BH spin measurements can be obtained only in- conversion and a unity response matrix. Following Bellonietal. directlyandareoftenaffectedbylargeuncertainties, BHmasses, (2002), we fitted the noise components with a number of broad instead, canbeinferredthroughdynamical studies. Theliterature Lorentzians and the hints of QPOswith narrow Lorentzians 2. A includestodatemassmeasurementsforafewtensofcompactob- constant component wasadded totake intoaccount thecontribu- jectinbinarysystems,includingseveralstellarmassBHs.Wecan tionofthePoissonnoise.Weestimatedthestatisticalsignificance thusmake reasonableassumptions onthemassrangespanned by ofthesepeaksandweexcludedallfeatureswithsingletrialsignif- theBHshostedinthesystemsofoursample.Thismeansthat,even icancebelow3σ.Thenweconsideredalsothenumberoftrialsin without a dynamically determined BH mass, we are now able to thecalculationof thesignificanceand wediscarded allthepeaks placelimitsontheblackholespinusingtheRPM.Inprinciple,this thatresultednotsignificantafterthisanalysis.Werejectedalsothe couldbedonewithanyQPOrelevantfortheRPM(type-CQPO, peakswithqualityfactor(i.e.theratiobetweencentroidfrequency upper or lower HFQPO).However, type-C QPOsare much more andFWHMoftheQPOpeak)Q<2.SinceintheHSSbothtype-C commonandeasiertodetectthanHFQPOsandcanbedetectedin QPOsandHFQPOscanbeseen,weclassifiedtheQPOswefound basicallyallspectral/timingstates(Motta2016),includingtheHSS followingMottaetal.(2011)andMottaetal.(2012). andULS. In order to place limits on the spin in those cases where a dynamical BH mass is not available, we choose a conserva- 3 THERELATIVISTICPRECESSIONMODEL: tive range of masses, based on the mass distribution of BHBs CONSTRAININGTHESPIN (Casares&Jonker2014):3−20M .Thesmallestdynamicallycon- ⊙ firmedstellarmassblackholeisGROJ1655-40,withM =5.4M Thefundamentalfrequenciesofaparticleorbitingaspinningblack ⊙ (Beer&Podsiadlowski 2002).Inasimilarway,theupper limitis holearegivenby(fromlowesttohighestfrequency): based on the fact that the heaviest dynamically confirmed stellar mass black hole in a Galactic binary system is the one in GRS νLT =νφ(cid:20)1−(cid:16)1∓4ar−3/2+3a2r−2(cid:17)1/2(cid:21) (1) J1915+105(Reidetal.2014),withablackholeof12.4M⊙.There isnoevidenceforheavierstellarmassblackholes(eventhougha binarywithtwo30M BHshasbeenrecentlydetectedAbbottetal. ⊙ ν =ν 1− 1−6r−1±8ar−3/2−3a2r−2 1/2 (2) 2016),thereforeweassumedaconservativeupperlimitonthemass per φ(cid:20) (cid:16) (cid:17) (cid:21) of20M . ⊙ We explore the range between 3 and ∼ 150 Hz for the LT c3 1 ν =± (3) frequency. The lower limit is chosen based on the observational φ 2πGMr3/2±a evidencethatallBHBsshowtype-CQPOsreachingatleast3Hz (Mottaetal. 2015). Even if type-C QPOs are typically observed 2 Type-CQPOssometimesshowsignificantharmoniccontentespeciallyin below∼30Hz,wedecidedtoconservativelyexploreawiderrange thehardstates.However,asingleLorentzianisalwaysenoughtofittype-C of frequencies. Indeed, it is worth noticing that a type-C QPO QPOsintheHSS. produced around an almost maximally spinning black hole (e.g. MNRAS000,1–10(2016) 4 Franchini,MottaandLodato 110 20 20 18 18 140 16 147 16 170 14 14 200 ]⊙ 12 138 ]⊙ 12 230 260 290 320 350 M 3 M M[ 10 129 M[ 10 8 120 8 111 6 93 102 6 4 12 21 30 39 48 57 66 75 84 4 0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 a a Figure 1. Couples of mass-spin values that give the LT precession fre- Figure2.Couplesofmass-spinvaluesthatgivetheperiastronprecession quency.ThenumbersarethefrequenciesevaluatedinHz.Eachlineisob- frequency. The exactly sameplot is obtained considering the orbital fre- tainednumericallysolvingeq.1assumingafrequencyrangefrom3to147 quencyattheISCO.Indeed,attheISCOthereisnoradialoscillationinthe Hz. frequency,thusνper=νφ.ThenumbersarethefrequenciesevaluatedinHz. Eachlineisobtainednumericallysolvingeq.2assumingafrequencyrange from50to350Hz. a = 0.98 obtained for GRO J1655-40 using spectroscopic meth- ods) should have a frequency above 100 Hz. Sinceinprinciple a type-CQPOthesehighcouldbedetected,wechooseawiderrange types of QPOs, which in a rms vs frequency plot are known to offrequenciestoexplorethispossibilityandinordertoguarantee generallyformdifferent,welldefinedgroups(seee.g.Casellaetal. anunbiasedanalysis. 2005,Kalamkaretal.2011,Mottaetal.2012).Inparticular,type- GRSJ1915+105showsHFQPOsaround67Hz(Morganetal. C QPOs are known to correlate well with the rms, forming in a (1997)) while the other sources show this type of QPOs above frequencyversusrmsplaneacurvedtrackwithrmsdecreasingfor 150 Hz.Therefore, for periastronprecession frequencies (and or- increasing frequency, breaking at νBreak ∼10 Hz. The slope is al- bitalfrequency,coincidentwiththeperiastronprecessionfrequency ways steeper for the high-frequency half of the correlation track at the ISCO) we assume a lower limit of 50 Hz and an upper (see,e.g.,Mottaetal.2012forthecaseofGROJ1655-40).HFQ- limit of 350 Hz since this isthe highest observed HFQPO so far POs,instead,formadifferentgroupofpointsatsignificantlyhigher (Strohmayer 2001; Bellonietal. 2012). We stress that, according frequenciesandrmscomparabletothatoftype-CQPOsfoundin to the RPM, it is possible to distinguish type-C QPOs from the thesoftstate(Mottaetal.2016,inprep). HFQPOassociatedtoeitherorbitalorperiastronmotionsincethere InFig.3,weplottheintegratedfractionalrmsversusthecen- isnomass-spincombinationthatgivesthesamefrequencyforboth troidfrequencyoftheQPOsforeachsourceofoursample.Wesee motions. thatformostofthesourcestheQPOcentroidfrequencycorrelates InFigure1weshowtheLense-Thirringprecessionfrequency wellwiththerms,formingacurvedtrack.Intheplotwemarkwith ν evaluated at r for every mass and spin couple within the blackdotstheQPOsreportedinMottaetal.(2012,2014a,b,2015) LT ISCO ranges3M < M < 20M and0<a<1(i.e.weconsideredonly andwithredstarsthetype-CQPOsfoundinthiswork. ⊙ ⊙ progradeorbits).NotethatforclarityweonlyshowLense-Thirring frequenciesspacedby9Hz.Forcomparison,wealsoshowinFig. 4.2 EvidenceofQPOsinthesoftstate 2theperiastronprecessionfrequenciesatr withthesamespin ISCO andmassranges. Ithasbeenshownthatfortwosourcesinoursample,GROJ1655- 40 and XTE J1550-564 (see Saitoetal. 2007 for GRO J1655-40 Inordertoplacelimitsonthespinvalue,weselectedthehigh- andKubota&Done2004forXTEJ1550-564), theaccretiondisc est frequency type-C QPO for each source (considering both the inner radius remains constant for most of the HSS, providing a QPOswefoundinthisworkandtheQPOsreportedinMottaetal. strong evidence for the accretion disc having reached the ISCO 2012, 2014a,b, 2015) and then solved eq. (1) for the spin a after (seealsoSteineretal.2011,Mottaetal.2014a,Plantetal.2014). substitutingtheexpressionofrISCO.Weusedeitheraknownvalue ItisworthnoticingthattheQPOsintheHSSofthesetwosources forM(whenavailableintheliterature),orweassumedthemassto stand out in terms of very low rms and high Q factor (see Table lieintherangegivenabove. 1).Giventhebehavior of thesourcesof our sample(andof tran- sientBHX-raybinariesingeneral)intheHIDs,itisreasonableto assumethattheinnerdiscradiusdoesindeedreachtheISCOany 4 RESULTS timeasourceisobservedintheHSS,whichisbasicallythesame assumptionusedforthespinmeasurementsbasedonspectroscopy 4.1 QPOClassification (seee.g.McClintocketal.2014andreferencestherein).Sincethe Plottingthetotalintegratedfractionalrmsversusthecentroidfre- type-C QPOsdetectedintheULShavefrequencies verycloseto quency of a QPO is a useful method for distinguishing different thoseobservedintheHSS(seee.g.Mottaetal.2012),weextended MNRAS000,1–10(2016) Type-C QPOs insoftstate 5 100 4U1543-47 100 4U1630-47 100 GROJ1655-40 100 GX339-4 Mottaetal.(2015) Type-C(thiswork) 10−1 10−1 10−1 10−1 10−2 10−2 10−2 10−2 100 101 102 10−1 100 101 102 10−1 100 101 102 10−1 100 101 102 10−1 XTEJ1817-330 100 XTEJ1550-564 100 H1743-322 100 XTEJ1859+226 ms r al n o dfracti 10−1 10−1 10−1 e grat e int10−2100 101 102 10−210−1 100 101 102 10−210−1 100 101 10−2100 101 100 XTEJ1650-500 100 XTEJ1748-288 100 XTEJ1752-223 100 MAXI1543-564 10−1 10−1 10−2 10−1 10−1 100 101 101 102 100 101 100 101 centroidfrequency(Hz) Figure3.IntegratedfractionalrmsversusQPOcentroidfrequency.EachpointcorrespondstoasingleRXTEobservation.Eachpanelreferstoasinglesource ofoursample. thisassumptionalsototheULS.Howeverwedecidednottoplace obtained applying the RPMto our sample in Table 1. In the first upper limitsusing type-C QPOs in the ULS since they might be column are listed the source names and the second contains the underestimated.WedescribebelowinSection4.3theuncertainty Obs-IDofthehighestdetectedtype-CQPO.Thethird,fourthand inthespinestimateproducedbyusingthisassumption. fifthcolumnscontainthehighesttype-CQPOfrequencyandqual- If the highest type-C QPO is detected in the HSS, we can ityfactorandthetotalfractionalrmsrespectively.Thesixthcolumn thereforeassumethatitwasproducedattheISCOandthusplace indicateswhetherthehighest type-CQPOwasdetectedinthisor a lower and an upper limit on the spin assuming a lower and an inpreviousworks(Mottaetal.2012,2014a,b,2015;Homanetal. upper limit for themass. For those sources for which wedid not 2005).Thelasttwocolumnscontainthestateinwhichthehighest detect a type-C QPO in the soft state, we can still use the high- type-CQPOwasdetectedandthespinlimitsobtainedrespectively. estfrequencytype-CQPOfromMottaetal.(2012,2014a,b,2015) Wewouldliketostressthatweperformedasystematicsearch toplaceaconservativelowerlimitassumingalowerlimitforthe fortype-CQPOsintheHSSandULS.Forthosesourcesforwhich masssincetheseQPOsprobablycorrespondedtoradiilargerthan wedidnotdetectanytype-CQPOinthesestatesweusedthetype- theISCO.Inthesecasesanupperlimitonthespinwouldbemean- CQPOsreportedinMottaetal.(2015).Forcompletenesswewere ingless(andinfactnotcorrect)givenourassumptions. madeawareofthefactthattherearetwoQPOsatevenhigherfre- Fig.4containstheHIDsofthe5sourcesthatshowedtype-C quencies missing in Mottaetal. (2015) for XTE J1859+226 and QPOsinthe HSS.Thered dots represent theobservations of the XTE J1650-500. Thus our lower limitsfor these two sources are newly detected QPOs. By looking at these diagrams and the rms slightlyunderestimated.WedecidednottoaddtheseQPOsinour valuesintableA1itisclearthatthetype-CQPOsinGX339-4,4U worksincewedonotwanttobiastheanalysisperformed. 1543-47andXTEJ1817-330 weredetectedinsoftstates.Instead Formostofthesourcesofoursamplethereisnoindependent thetype-CQPOsinGROJ1655-40and4U1630-47havebeende- massmeasurement, thusweassumed themasstolieintherange tectedintheULS.Wecanreasonablyassumethatalsointhisstate 3−20M .Inafewcases,however,wehavebetterconstraintson theaccretiondiscinnerradiusreachestheISCOsincethefrequen- ⊙ the black hole mass and thus on the spin value. The lower limit cies of type-C QPOs in the ULS are similar to those detected in for the black hole mass in GX 339-4 is 6M (Hynesetal. 2003; theHSS.Inthe4U1543-47HIDwemarkedwithreddotsthetwo ⊙ Muñoz-Dariasetal.2008).Thuswecanplaceastricterlowerlimit differenttype-CQPOswedetectedthatslightlyoverlapwitheach onthespinvalue:a =0.16.SinceweareassumingBHmasses other. ThustheseHIDscontain allthe6new QPOsfound inthis lower up to20M , theupper limitfor thespin of GX 339-4 isa = work. ⊙ upper 0.38. ForbothGROJ1655-40(5.31±0.07M Mottaetal.2014a) ⊙ and XTE J1550-564 (9.1±0.6M Oroszetal. 2011) we have a 4.3 Constrainingthespin ⊙ goodindependentmassmeasurement.Usingthesedynamicallyes- WeplacedlowerlimitsontheBHspinforeachsourceofoursam- timated mass values, we can narrow significantly the spin range pleasdescribedinSection3.Forthesourceswiththehighesttype- ofvaluesforthetwosources(seeTable1).Thespinvaluesfound CQPOdetectedinthesoftstatewedidalsoplaceanupperlimit by Mottaetal. (2014a,b) (a = 0.290±0.003 for GRO J1655-40 (assuminganupper limitonthemass).Wesummarizetheresults anda=0.34±0.01forXTEJ1550-564)are,asexpected,ingood MNRAS000,1–10(2016) 6 Franchini,MottaandLodato 104 GX339-4 0.8 • 0.7 s) 103 cts/ 0.6 E( 102 0.5 T A R 101 a 0.4 T / N a U ∆ 0.3 O 100 C 0.2 10−1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.1 HARDNESSRATIO 0.0 104 4U1630-47 1.0 1.2 1.4 1.6 1.8 2.0 rout/rin • s/s)103 (ct Figure5.Relative changeinthespinestimate assumingthattheQPOis E AT102 producedbyanextendedrigidlyprecessingstructure(Ingrametal.2009) R ratherthanatestparticleatISCO,asafunctionoftheradialextentofthe T UN101 precessingstructurerout/rin,whereroutistheouterradiusandrin =rISCO O istheinnerradiusofthestructure. C 100 0.0 0.2 0.4 0.6 0.8 1.0 1.2 HARDNESSRATIO agreementwiththerangeweinferredusingtheRPMwiththehigh- esttype-CQPOattheISCO. 104 4U1543-47 Asmentionedabove,theremightstillbethepossibilitythat, ••• eveninthesoftstate,thediscdoesnotextenddowntotheISCO, s/s) 103 butsomewhatclosetoit.Inthiscase,onecanstillrelatetheQPO E(ct 102 frequency to the spin of the black hole, because we expect that AT the hot inner flow would have a finite and small radial extent R 101 so that it would precess as a rigid body (Ingram&Done 2011; T N U Franchinietal.2016).Thus,wecanassumethatthehotinnerflow O 100 C extendsfromtheISCOtoanouter radiusR ,andthencompute out 10−1 thespinvaluethatwouldreproduceagivenQPOfrequencyusing, 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 forexampleeq.(1)inIngram&Done(2011).Inthisway,wecan HARDNESSRATIO thusestimatetheassociatedchangetothespinvalueobtainedfrom 104 XTEJ1817-330 theRPMmodel,asafunctionofRout.Forinstance,usingthehigh- esttype-CQPOdetectedinGROJ1655-40(i.e.27.51Hz)together s/s)103 • withthemassestimateforthissource,wecanevaluatetheuncer- ct taintywithrespecttothevalueobtainedusingtheRPM.Theresults ( E AT102 inthiscaseareshowninFigure5.The x-axisistheratiobetween R theouterradiusoftheinner accretionflowandtheISCOandthe T UN101 y-axisistherelativechangeinthespinvalue.Asimilarresultholds O C alsofordifferentQPOfrequencies. 100 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 HARDNESSRATIO 5 DISCUSSION 105 GROJ1655-40 We analyzed RXTE observations of 12 black hole transients that s)104 • showed a transition to the soft state. We considered observations cts/ in the HSS and ULS of these sources. We then assumed that the E(103 highestfrequencytype-CQPOhasbeenproducedattheISCOand T RA102 weappliedtheRPMinordertoplacelimitsonthespinvalue.This NT isdone either using aknown value of theblack hole mass or as- U O101 sumingthemassinareasonablerangeofvalues,decidedapriori C (3−20M inourcase). 100 ⊙ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 This method is based on the assumption that the inner disc HARDNESSRATIO truncation radius is constant and coincident with ISCO when a BHB is observed in the HSS or ULS. Demonstrating the coinci- dence of the inner disc truncation radius with ISCO is problem- Figure4.HIDofthe5sourceswithtype-CQPOsintheHSS(GX339-4, atic and involves spectroscopic measurements that are generally 4U1630-47,4U1543-47,XTEJ1817-330,GROJ1655-40).Thereddots representtheobservations thatcontainthetype-CQPOswefoundinthis affected by largeuncertainties. Therefore, our assumption consti- work.NotethattheQPOsinGX339-4,4U1543-47andXTEJ1817-330 tutesarelevantcaveat.However,bothobservationsandsimulations weredetectedinsoftstates,whiletheonesinGROJ1655-40and4U1630- providestrongevidenceaboutthestabilityoftheinnerdiscradius 47weredetectedintheULS.IntheHIDof4U1543-47wemarkedthetwo overtimeindisc-dominatedstatesofBHBs(e.g.McClintocketal. differenttype-CQPOswefoundwithreddots. MNRAS000,1–10(2016) Type-C QPOs insoftstate 7 Table1.Spinlimitsinferredfromthehighestfrequencytype-CQPOatISCOaccordingtotheRPM.Bothlimitsareevaluatedassumingablackholemass intherange3−20M⊙.InthecaseofGX339-4thelowerlimitcorrespondsto6M⊙.ForXTEJ1550-564andGROJ1655-40thelimitscorrespondtothe measuredmasses9.1±0.6M⊙ and5.31±0.07M⊙ respectively(MuñozDariasetal.2010;Mottaetal.2014b,a).Thefirstcolumncontainsthenameofthe source,thesecondistheObs-IDofthehighesttype-CQPOdetected.Thethird,fourthandfifthcolumnscontainthepropertiesoftheQPO,i.e.frequencyand theQfactor,andthetotalfractionalrms.Thesixthcolumnindicateswhetherthehighesttype-CQPOhasbeendetectedinthisworkorthepreviousones.The seventhcolumnindicatesthestateinwhichtheQPOwasdetectedandthelastcolumncontainsthespinlimits. Target Obs-ID νmax(Hz) Q rms New? state spinlimits GX339-4 92085-01-02-03 10.59±0.18 3.46±0.50 5.05±0.03 yes HSS 0.16-0.38 4U1630-47 80117-01-07-01 14.80±0.28 2.17±0.27 9.5±0.4 no ULS >0.12 4U1543-47 70133-01-01-00 15.37±0.18 2.57±0.27 4.2±0.03 yes HSS 0.13-0.47 XTEJ1859+226 40124-01-14-00 8.56±0.06 2.76±0.18 12.4±0.4 no HIMS >0.07 XTEJ1650-500 60113-01-13-02 6.84±0.05 8.05±1.23 20.8±0.3 no HIMS >0.06 XTEJ1817-330 91110-02-32-00 9.6±0.5 2.93±0.82 5.7±0.1 yes HSS 0.08-0.36 XTEJ1748-288 30171-02-01-00 31.55±0.13 6.00±0.42 10.2±0.5 no HIMS >0.23 XTEJ1752-223 95360-01-11-00 6.46±0.13 3.6±1.1 23.4±1.2 no HIMS >0.06 XTEJ1550-564 40401-01-48-00 18.10±0.06 19±4 6.2±0.1 no HSS 0.31-0.34 MAXIJ1543-564 96371-02-02-01 5.72±0.04 10.2±1.4 27.3±1.2 no HIMS >0.05 H1743-322 80135-02-03-00 14.6±0.2 12.6±6.3 4.4±0.2 no ULS >0.12 GROJ1655-40 91702-01-17-01 27.51±0.13 44±21 2.7±0.1 no HSS 0.29-0.31 2014).Tanaka&Lewin(1995)showedthattheinnerradiusisre- frequencyforagivensourceresultsinanunderestimationofboth markablystablealsoifthethermalfluxofthesourcesteadilyde- upper and lower limit of the spin. In other words, when estimat- creasesontimescalesofmonthsbyoneortwoordersofmagnitude. ing the spin range from a type-C QPO that is not the highest in Similar evidence for a constant inner disc radius in the soft state frequency, wewould befollowingthe wrongtrackinFig.1,that hasbeendemonstratedformanysources(Doneetal.2007andref- wouldbefoundtotheleftofthetrackcorrespondingtotheactual erences therein,Plantetal. 2014,Plantetal. 2015).According to highestfrequencytype-CQPO.ThiseffectislargerforQPOsthat Tanaka&Lewin(1995),theconstancyoftheinnerradiussuggests arenotdetectedintheHSS,thereforeproducedataradiusthatis that it is related to the ISCO. More recently Steineretal. (2010) almostcertainlylargerthanISCO. foundanotherevidenceofanonvaryingdiscinnerradiusovertime We note that the different tracks in Fig. 1 tend to lay closer forthesourceLMCX-3,unaffectedbythehighvariabilityofthis to each other for high frequencies (i.e. above 80 Hz). Thus, the source.Nevertheless,sincewecannotbecertainofthecoincidence erroronthespinestimatemightbedominatedbythatonthemass oftheinnerdiscradiuswithISCOforallthesourcesofoursample, iftheQPOfrequencyisveryhigh.Ingeneral,thetwouncertainty excludedGROJ1655-40andXTEJ1550-564(forwhichthecoin- thatcontributetotheerroronthespinvaluearethatontheblack cidencehasbeendemonstratedexplicitly),weadvicethereaderto hole mass and the identification of the highest type-C QPO. For considertheinferredlimitswithcaution. instance,iftheactualhighesttype-CQPOwasproducedat,say,30 The rigid precession of the inner accretion flow as an ex- Hzinsteadofbeingdetectedat21Hz,theerrorthatwecommiton planation of type-C QPOs has been supported by several stud- thespinestimateisoftheorderofafewpercent. ies(Ingrametal.2009;Ingram&Motta2014;Ingrametal.2016). The rigid precession model tends asymptotically to the RPM for radii approaching the ISCO, therefore, given the stability of the 5.1 Comparisonwithothermethods discinner radiusinthesoftstate,theRPMrepresentsagoodap- Forsomesources of our sample thespinhasbeen alsomeasured proximationoftherigidprecessionfortruncationradii(hencehot throughX-rayspectroscopybyfittingthethermaldiscemissionor flowouterradii)veryclosetotheISCO(Ingrametal.2009). by modelling the disc reflection spectrum. Fig. 6 shows the spin The approach we used in this work differs from that of measurements found in the literature obtained from X-ray spec- Ingram&Motta (2014), which always requires that at least two troscopy versus the spin values we inferred from timing analysis QPOs are detected simultaneously (the type-C QPO and one in this work. The black line marks the position where the mea- HFQPO)inordertoplaceanupperorlowerlimitonspinandmass, surementsshouldfalliftherewasperfectagreementbetweenspec- dependingonthecaseconsidered.Hereweassumedthatthehigh- troscopybasedmeasurementsandtimingbasedmeasurements.In estfrequencytype-CQPOisproducedattheISCO.ThustheRPM twooutoffivesources(XTEJ1550-564and4U1543-47)thespin systemofequationsisreducedtojustoneequation(i.e.eq.(1))that measurements obtained with spectroscopy and timing do agree. giveseitheralowerlimit(ifthehighest type-C QPOwasnotde- In particular, Morningstar&Miller (2014) obtained a spin value tectedintheHSS)orarangeofspinvalues.Therangesarebroadif a = 0.43+0.22, in agreement with our values, for 4U 1543-47 us- −0.31 thereisnoindependent(e.g.dynamical)massmeasurementavail- ing both the spectral continuum fitting method and the iron line able,orsignificantlynarrowerifthemassisknown.Thereasonis fittingmethodsimultaneously.Steineretal.(2011)useddatafrom thattheuncertaintyonthespiniscompletelydominatedbytheer- theBHBXTEJ1550-564tomodelthecontinuumandtofittheiron ror on themass (much larger thanthe error on theQPO centroid lineobtainingtwodifferentspinmeasurements,thatcombinedre- frequency). sultedinaspinofa=0.49+0.13whichismarginallyconsistentwith −0.20 Inprinciplewecanneverbecompletelysurethatthetype-C thespinrangethatwereport(seeTable1). QPOweassumedtobethehighestisactuallythehighestproduced For4U1630-47Kingetal.(2014)measuredthespinbyfitting bythesourceinthesoftstate.Thereisalwaysthepossibilitythat thecontinuum spectrum of thesource, obtaining a = 0.985+0.005, −0.014 anevenhigherfrequencytype-CQPOhasbeenproducedandnot which is in principle compatible with our lower limit (i.e. 0.12). detected. Using a type-C QPO that is not at the highest possible For XTE J1752-223 and GX 339-4, spectroscopy returned high MNRAS000,1–10(2016) 8 Franchini,MottaandLodato spinvaluesusingbothcontinuum fittingandthereflectionmodel 1.0 (Reisetal. 2011; Milleretal. 2002; Reisetal. 2008). Reisetal. (2011)foundanintermediateblackholespina = 0.52±0.11for XTEJ1752-223whileforGX339-4analmostextremespinvalue 0.8 a=0.935±0.010hasbeeninferred.WhileforXTEJ1752-223we wereabletoplaceonlyalowerlimitonthespinthusourfindings arestillconsistentwiththeresultsobtainedusingspectroscopy,the 0.6 spectroscopic estimate of the spin in GX 339-4 is not consistent ec p withtherangeobtainedusingtheRPM. as 0.4 Mottaetal. (2014a) measured with unprecedented precision 4U1543 the mass and spin of the BH in GRO J1655-40 applying the XTEJ1550 RPM using the three QPOs that have been simultaneously ob- 0.2 GX339-4 served(Mottaetal.2012;Strohmayer2001).Theyinferredamass GROJ1655 M = 5.31±0.07M and aspin value a = 0.290±0.003 that is, ⊙ 0.0 asexpected,ingoodagreementwiththerangeobtainedinthispa- 0.0 0.2 0.4 0.6 0.8 1.0 per.Throughspectroscopicstudies,different,muchhigher,values a RPM ofthespinhavebeeninferred.Bymodellingthethermalspectral continuumShafeeetal.(2006)foundaspinrangea=0.65−0.75. Reisetal.(2010)placedalowerlimita=0.9byfittingthestrong reflectionfeaturesinthespectrumandMilleretal.(2009)obtained Figure6.Thehorizontallinesrepresentthedifferentrangesofspinvalues ahighlyspinningblackholewitha = 0.94−0.98usingthesame obtainedinthisworkforeachsource.Theblack,red,greenandcyanlines referto4U1543,XTEJ1550,GX339-4andGROJ1655respectively.On method. Both the spectroscopic methods rely on the assumption they-axisthedotsrepresentthevaluesobtainedusingspectroscopicmeth- that the inner edge of the disc corresponds to the ISCO, which odswiththecorrespondent errorbars.Theblacklinerepresents thecase might not be a correct assumption in all spectral states of active aspec=aRPM. black holes (see, e.g. Doneetal. (2007)). Furthermore, in order tousethespectralcontinuumfittingmethod,onemustalsoknow the black hole mass, the inclination of the (inner) accretion disc thenappliedtheRPM.Thischoiceisjustifiedbythefactthatinthe withrespecttothelineofsightandthedistancetothesource.All HSSthediscisexpectedtoextenddownorveryclosetotheISCO. thesefactorsintroducelargeuncertaintiesandpossiblysignificant Asaconsequence,theinneraccretionflowisextremelynarrowin biasesinthespinmeasurement. Forinstance,asalreadynotedby thisstateandweassumedthatitsLense-Thirringfrequencycanbe Mottaetal. (2014b) in the case of GRO J1655-40, the disagree- welldescribedbythatofatestparticleattheISCO.Accordingto mentbetweenspinmeasurementsinferredthroughdifferentmeth- the RPM, we associated the highest frequency type-C QPO with odsmightbeduetothehighinclinationoftheinneraccretiondisc the Lense-Thirring precession frequency of a test particle at the with respect to the outer disc (i.e. the orbital inclination) and to ISCO.Wetheninferredlowerspinlimitsforallthesourcesofour the line of sight. When such misalignment is not taken into ac- sampleandupperlimitsfortheonesthatshowedtype-CQPOsin count,thefinalspinmeasurementcanbelargelybiased.TheRPM theHSSorULS,assumingareasonablerangeofblackholemasses methoddoesnotdependonanyofthesevariables,andinthecase orusingtheactualmassvalueforthosesourcewhereadynamical where3QPOsaresimultaneouslydetected,itallowstoobtainself massmeasurementisavailable.WesuccessfullyappliedtheRPM consistentlymassandspinoftheBH.Theprecisionontheinferred toall the sources inour sample that showed type-C QPOsin the parametersisonlydrivenbytheprecisionintheQPOfrequencies HSSorULS. measurement. Our results are in good agreement withthose inferred using Morespectroscopy-basedandtiming-basedmeasurementsof other spectroscopy-based methods (continuum fittingmethodand thespinarenecessarytoconfirmthevalidityoftheRPMmethod theK-αlinemodelling)onlyintwocases.Nextgenerationsatel- and to test its consistency with other methods. New generation lites,characterizedbyahigher signal-to-noiseratiomighthelpin satellites(suchaseXTPZhangetal.(2016))willprovidemoreand solvingtheissueofspinmeasurements. betterdatatotestthisandothermethodsforspinmeasurements. Finally, as already noted by Mottaetal. (2014a), we would liketostressthattheRPMisasimplifiedmodelaimedatdescribing 7 ACKNOWLEDGMENTS rather complex physical conditions, such as those encountered in theinnermostdiscregionsaroundanaccretingcompactobject.The Wearegratefultothereferee,Dr.JeroenHoman,thatprovideduse- RPM does not include yet a production mechanism for the QPO fulcommentsandsuggestionsthathelpedinsignificantlyimprove signals(butseePsaltis&Norman2000 orSchnittmanetal.2006 ourwork. AFacknowledges thetransitiongrant oftheUniversità for possible mechanisms), which remains an open question to be degliStudidiMilanoandtheUniversityofOxfordforhospitality. investigatedinthefuture. SEMacknowledgestheUniversityofOxfordandtheVioletteand SamuelGlasstoneResearchFellowshipprogram. 6 SUMMARYANDCONCLUSIONS APPENDIXA: POWERDENSITYSPECTRAAND Inthisworkweplacedlimitsonthevalueoftheblackholespinfor PROPERTIESOFQPOS severalbinariesthroughthesoleuseofX-raytiming.Inparticular welookedfortype-CQPOsinthesoftstateforanumberofsources FigureA1showsaselectionofPDScontainingatype-CQPOde- selectedbasedonthepresenceoftype-CQPOsintheirPDS,and tected in the HSS and in the ULS. Fromtop to bottom, the PDS MNRAS000,1–10(2016) Type-C QPOs insoftstate 9 ObsID ν(Hz) Q rms GX339-4 10−2 GX339-4 92085-01-02-03 10.59 3.46 0.05 4U1630-47 70417-01-09-00 12.3 2.15 0.033 y 4U1543-47 sit n 70133-01-01-00 15.37 2.57 0.042 e d 70133-01-05-00 15.0 3.75 0.046 al XTEJ1817-330 ctr e 91110-02-32-00 9.6 2.93 0.057 p s GROJ1655-40 er 10255-01-05-00 10.7 2.7 0.011 w o P TableA1.PropertiesoftheQPOsfoundinthisworkdividedbysource.For eachQPOthefirstcolumncontainstheObsID,thesecondisthecentroid frequency,thethirdisthequalityfactorQandthelastoneistheintegrated fractionalrms. 10−1 100 101 102 103 Frequency(Hz) comefromGX339-4,4U1543-47andGROJ1655-40respectively. ThefirsttwoQPOsarecharacterizedbyastrongandnarrowpeak 4U1543-47 at frequencies of theorder of 10 Hz. Thethird isa small though significant(3.96σ,singletrial)peakat27.5Hz. WereportinTableA1thepropertiesofthenewQPOsdetected y inthiswork:theObsID,thecentroidfrequency,thequalityfactor sit n e andtheintegratedfractionalrms.Notethatthetotalfractionalrms d measuredfortheobservationwhereagivenQPOisdetectedisal- al ways65%,whichshowsthatalltheseQPOsweredetectedinsoft ctr e states. As noted elsewhere, this impliesthat the inner disc radius sp iscloseorcoincidenttotheISCOandtheRPMcanbeappliedto er w obtainaconstrainonthespinofthecentralblackhole. o P 10−3 REFERENCES 10−1 100 101 102 103 Frequency(Hz) AbbottB.P.,etal.,2016,PhysicalReviewLetters,116,061102 BeerM.E.,PodsiadlowskiP.,2002,MNRAS,331,351 BelloniT.,HasingerG.,1990,A&A,230,103 GROJ1655-40 BelloniT.M.,MottaS.E.,2016,inBambiC.,ed.,AstrophysicsandSpace ScienceLibraryVol.440,AstrophysicsofBlackHoles:FromFunda- mentalAspectstoLatestDevelopments.p.61(arXiv:1603.07872), doi:10.1007/978-3-662-52859-4_2 y BelloniT.,PsaltisD.,vanderKlisM.,2002,ApJ,572,392 nsit BelloniT.M.,MottaS.E.,Muñoz-DariasT.,2011,BulletinoftheAstro- de nomicalSocietyofIndia,39,409 al BelloniT.M.,SannaA.,MéndezM.,2012,MNRAS,426,1701 ctr e CasaresJ.,JonkerP.G.,2014,SpaceSci.Rev.,183,223 p s CasellaP.,BelloniT.,StellaL.,2005,ApJ,629,403 er DoneC.,GierlinskiM.,KubotaA.,2007,A&A,15,1 w o DunnR.J.H.,FenderR.P.,KördingE.G.,BelloniT.,CabanacC.,2010, P MNRAS,403,61 FenderR.P.,HomanJ.,BelloniT.M.,2009,MNRAS,396,1370 FranchiniA.,LodatoG.,FacchiniS.,2016,MNRAS,455,1946 100 101 102 103 HomanJ.,BelloniT.,2005,Ap&SS,300,107 Frequency(Hz) HomanJ.,WijnandsR.,vanderKlisM.,BelloniT.,vanParadijsJ.,Klein- WoltM.,FenderR.,MéndezM.,2001,ApJS,132,377 HomanJ.,MillerJ.M.,WijnandsR.,vanderKlisM.,BelloniT.,Steeghs D.,LewinW.H.G.,2005,ApJ,623,383 FigureA1.Upperpanel:PDSobtainedfromobservation92085-01-02-03 HynesR.I.,SteeghsD.,CasaresJ.,CharlesP.A.,O’BrienK.,2003,ApJ, ofthesourceGX339-4duringitsoutburstin2007.Thetype-CQPOfound 583,L95 at10.6Hzisclearlyvisible.Middlepanel:PDSobtainedfromobservation IngramA.,DoneC.,2011,MNRAS,415,2323 70133-01-01-00ofthesource4U1543-47.Thetype-CQPOfoundat15.4 IngramA.,MottaS.,2014,MNRAS,444,2065 Hzisclearlyvisible.Lowerpanel:PDSobtainedfromobservation91702- IngramA.,DoneC.,FragileP.C.,2009,MNRAS,397,L101 01-17-10ofthesourceGROJ1655-40.Thereisasmallbutsignificantpeak IngramA.,vanderKlisM.,MiddletonM.,DoneC.,AltamiranoD.,Heil atroughly30Hz.Thisisthehighesttype-CQPOdetectedforthissource. L.,UttleyP.,AxelssonM.,2016,preprint, (arXiv:1607.02866) KalamkarM.,HomanJ.,AltamiranoD.,vanderKlisM.,CasellaP.,Linares M.,2011,ApJ,731,L2+ MNRAS000,1–10(2016) 10 Franchini,MottaandLodato KingA.L.,etal.,2014,ApJ,784,L2 KubotaA.,DoneC.,2004,MNRAS,353,980 LeahyD.A.,ElsnerR.F.,WeisskopfM.C.,1983,ApJ,272,256 LodatoG.,FacchiniS.,2013,MNRAS,433,2157 McClintockJ.E.,RemillardR.A.,RupenM.P.,TorresM.A.P.,Steeghs D.,LevineA.M.,OroszJ.A.,2009,ApJ,698,1398 McClintockJ.E.,etal.,2011,ClassicalandQuantumGravity,28,114009 McClintockJ.E.,NarayanR.,SteinerJ.F.,2014,SpaceSci.Rev.,183,295 MillerJ.M.,2007,ARA&A,45,441 MillerJ.M.,FabianA.C.,in’tZandJ.J.M.,ReynoldsC.S.,WijnandsR., NowakM.A.,LewinW.H.G.,2002,ApJ,577,L15 MillerJ.M.,ReynoldsC.S.,FabianA.C.,MiniuttiG.,GalloL.C.,2009, ApJ,697,900 Miyamoto S., Kitamoto S., Iga S., Negoro H., Terada K., 1992, ApJ, 391,L21 MorganE.H.,RemillardR.A.,GreinerJ.,1997,ApJ,482,993 MorningstarW.R.,MillerJ.M.,2014,ApJ,793,L33 MottaS.E.,2016,AstronomischeNachrichten,337,398 Motta S., Muñoz-Darias T., Casella P., Belloni T., Homan J., 2011, MNRAS,418,2292 MottaS.,HomanJ.,MuñozDariasT.,CasellaP.,BelloniT.M.,Hiemstra B.,MéndezM.,2012,MNRAS,427,595 MottaS.E.,BelloniT.M.,StellaL.,Muñoz-DariasT.,FenderR.,2014a, MNRAS,437,2554 MottaS.E.,Muñoz-DariasT.,SannaA.,FenderR.,BelloniT.,StellaL., 2014b,MNRAS,439,L65 MottaS.E.,CasellaP.,HenzeM.,Muñoz-DariasT.,SannaA.,FenderR., BelloniT.,2015,MNRAS,447,2059 Muñoz-DariasT.,CasaresJ.,Martínez-PaisI.G.,2008,MNRAS,385,2205 MuñozDariasT.,StieleH.,BelloniT.,MottaS.,2010,TheAstronomer’s Telegram,2999,1 NixonC.,FranchiniA.,LodatoG.,KingA.,2016,inprep OroszJ.A.,SteinerJ.F.,McClintockJ.E.,TorresM.A.P.,RemillardR.A., BailynC.D.,MillerJ.M.,2011,ApJ,730,75 PlantD.S.,O’BrienK.,FenderR.P.,2014,preprint, (arXiv:1411.7411) PlantD.S.,FenderR.P.,PontiG.,Muñoz-DariasT.,CoriatM.,2015,A&A, 573,A120 PsaltisD.,NormanC.,2000,ArXivAstrophysicse-prints, ReidM.J.,McClintock J.E.,Steiner J.F.,Steeghs D.,Remillard R.A., DhawanV.,NarayanR.,2014,ApJ,796,2 ReisR.C.,FabianA.C.,RossR.R.,MiniuttiG.,MillerJ.M.,Reynolds C.,2008,MNRAS,387,1489 ReisR.C.,FabianA.C.,MillerJ.M.,2010,MNRAS,402,836 ReisR.C.,etal.,2011,MNRAS,410,2497 RemillardR.,McClintockJ.,2006,ARA&A,44,49 ReynoldsC.S.,2013,SpaceSci.Rev., SaitoK.,HomanJ.,YamaokaK.,FukuyamaM.,MiyakawaT.G.,Yoshida A.,2007,ArXivAstrophysicse-prints, SchnittmanJ.D.,HomanJ.,MillerJ.M.,2006,ApJ,642,420 ShafeeR.,McClintockJ.E.,NarayanR.,DavisS.W.,LiL.-X.,Remillard R.A.,2006,ApJ,636,L113 ShakuraN.I.,SunyaevR.A.,1973,A&A,24,337 SobolewskaM.A.,Z˙yckiP.T.,2006,MNRAS,370,405 SoleriP.,etal.,2013,MNRAS,429,1244 Steiner J. F., McClintock J. E., Remillard R. A., Gou L., Yamada S., NarayanR.,2010,ApJ,718,L117 SteinerJ.F.,etal.,2011,MNRAS,416,941 SteinerJ.F.,etal.,2012,MNRAS,427,2552 StellaL.,VietriM.,1998,ApJ,492,L59+ StellaL.,VietriM.,MorsinkS.M.,1999,ApJ,524,L63 StrohmayerT.E.,2001,ApJ,552,L49 TanakaY.,LewinW.H.G.,1995,pp126–174 WijnandsR.,HomanJ.,vanderKlisM.,1999,ApJ,526,L33 ZhangS.N.,etal.,2016,preprint, (arXiv:1607.08823) vanderKlisM.,2006,AdvancesinSpaceResearch,38,2675 ThispaperhasbeentypesetfromaTEX/LATEXfilepreparedbytheauthor. MNRAS000,1–10(2016)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.