ebook img

Constitutive Modelling of Granular Materials PDF

556 Pages·2000·22.251 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Constitutive Modelling of Granular Materials

Dimitrios Kolymbas (Editor) Constitutive Modelling of Granular Materials Springer-Verlag Berlin Heidelberg GmbH ONLINE LIBRARY Engineering http://www.springer.de/ engine/ Dimitrios Kolymbas (Editor) Constitutive Modelling of Granular Materials With 259 Figures Springer Professor Dr. techn. Dimitrios Kolymbas Universität Innsbruck, Austria Institut für Geotechnik und Tunnelbau Techniker Straße 13 6020 Innsbruck Austria Cataloging-in-Publication Data applied for Die Deutsche Bibliothek - CIP-Einheitsaufnahme Kolymbas, Dimitrios (Hrsg.) ISBN 978-3-642-63115-3 ISBN 978-3-642-57018-6 (eBook) DOI 10.1007/978-3-642-57018-6 This work is subject to copyright. All rights are reserved, whether the whole or part of the materia l is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission fo r use must always be obtained from Springer-Verlag. Violations are liable for prosecution act under German Copyright Law. © Springer-Verlag Berlin Heidelberg 2000 Softcover reprint of the hardcover 1st edition 2000 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: camera ready copy from author Cover-Design: MEDIO Innovative Medien Service GmbH Berlin Cover-Illustration: Gerd Gudehus Printed on acid-free paper SPIN 10754041 62/3020 5 4 3 2 1 0 Preface Granular materials such as soils often undergo large deformations. Their me chanical behaviour is pronouncedly anelastic. Mathematical models describ ing this anelastic behaviour are indispensable to understand it and to carry out numerical calculations. Most of these mathematical models are assembled within the framework of the so-called elasto-plasticity. The younger theory of hypoplasticity is a new paradigma, i.e. a completely different approach to mathematical modelling of anelastic behaviour. Far from stating that hy poplasticity is better than elastoplasticity, I wish to point to the fact that the involved problems are very complex and there are still many open ques tions in constitutive modelling. With the support of the European Union, which is kindly acknowledged, a series of three Euroconferences were devoted to Developments and Perspectives of Hypoplasticity. The last of these Euro conferences took place in the small Greek village of Horton and was given a larger scope in order to compare also approaches different from hypoplastic ones and provide, thus, a State of the Art in the constitutive modelling of granular materials. The present volume contains the papers of this Eurocon ference. These papers refer to the general situation of constitutive modelling, to alternatives of hypoplasticity, to micromechanical and thermodynamical approaches, to numerical applications and, last but not least, to the present developments and also the perspectives of hypoplasticity. In concluding I wish to cordially thank two persons who greatly con tributed to the success of the conference and the preparation of this volume: Mrs. Christine Neuwirt who brilliantly managed the intricate economic ad ministration of the conference, and Mr. Josef Wopfner who persistently and skilfully re-formated and processed the papers. Innsbruck, Dimitrios J(olymbas September 1999 Contents AUTHORS.................................................... 1 Introductory considerations The misery of constitutive modelling . . . . . . . . . . . . . . . . . . . . . . . .. 11 D.KOLYMBAS 1 Introduction................................................. 11 2 Meaning of material constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12 3 A review of the present situation in constitutive modelling ........ 13 4 Validation of constitutive models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15 5 On the physical foundation of constitutive models. . . . . . . . . . . . . . .. 15 6 Requirements on constitutive models . . . . . . . . . . . . . . . . . . . . . . . . . .. 16 7 How simple should a model be? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 19 8 Numerical implementations ................................... 20 9 Cooperation................................................. 22 10 The future of research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 References ..................................................... 23 Does engineering need science? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 C. VIGGIANI 1 Foreword................................................... 25 2 Definition of engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 3 Definition of science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 4 Relations between engineering and sciences. . . . . . . . . . . . . . . . . . . . .. 27 5 Some examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31 6 The forthcoming Middle Ages? ................................ 33 References ..................................................... 35 The role of models in civil engineering. . . . . . . . . . . . . . . . . . . . . . .. 37 D. MUIR WOOD 1 Introduction................................................. 37 2 Models..................................................... 38 3 Children's models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39 4 Students' models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 42 5 Engineers' models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 46 6 Philosophers' models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 7 Conclusion.................................................. 52 References ..................................................... 55 VIII Overview of hypoplasticity Hypoplasticity then and now ....... . . . . . . . . . . . . . . . . . . . . . . . . .. 57 W. WU, D. KOLYMBAS 1 Introduction................................................. 57 2 A heuristic example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 58 3 Some historical remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 61 4 Framework of hypoplasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65 5 Response envelope: a useful tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 72 6 Extensions: a tale of two terms ................................ 82 7 Simple boundary value problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 92 8 Miscellaneous................................................ 96 9 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 99 References ..................................................... 101 A review of two different approaches to hypoplasticity ........ 107 C. TAMAGNINI, G. VIGGIANI, R. CHAMBON 1 Introduction ................................................. 107 2 Mathematical structure ....................................... 109 3 Invertibility, consistency and limit states ........................ 118 4 Strain localization and bifurcation analysis ...................... 126 5 Conclusions ................................................. 137 References ..................................................... 138 A Gudehus/Bauer K-hypoplastic model. .......................... 144 B von Wolffersdorff K-hypoplastic model ......................... 144 Uniqueness, second order work and bifurcation in hypoplasticity147 R. CHAMBON 1 Introduction ................................................. 147 2 Existence and uniqueness of boundary value problems involving hy- poplastic constitutive equations ................................ 148 3 Rice analysis with hypoplastic constitutive equations ............. 155 4 Invertibility and controlability seen as boundary value problems ... 161 5 Conclusion .................................................. 163 References ..................................................... 164 Stationary states in hypoplasticity ............................ 167 E. BA UER, l. HERLE 1 Introduction ................................................. 167 2 Historical development of hypoplastic models of the Kolymbas type 169 3 Stationary states and modeling of the critical stress state surface ... 179 4 Determination of the material parameters ....................... 183 5 Extension to a polar continuum ................................ 185 Acknowledgements .............................................. 188 References ..................................................... 189 IX Generalized continua and microscopic approach Microscopic approach contributions to constitutive modelling. 193 C. THORNTON 1 Introduction ................................................. 193 2 Macroscopic ensemble behaviour ............................... 194 3 Induced structural anisotropy ................................. 194 4 Physics at the grain scale ..................................... 198 5 Conclusions ................................................. 207 6 Acknowledgements ........................................... 207 References ..................................................... 207 Discrete and continuum modelling of granular materials ...... 209 H.-B. MUHLHAUS, L. MORESI, H. SAKAGUCHI 1 Introduction ................................................. 209 2 Formulation ................................................. 211 3 Lagrangian Particle Method ................................... 217 4 Examples ................................................... 220 5 Concluding Remarks ......................................... 223 References ..................................................... 224 2nd Gradient constitutive models ............................. 225 1. VARDOULAKIS 1 The continuum assumption .................................... 225 2 A veraging and the meaning of 2nd gradients ..................... 226 3 A simple 2nd gradient structural model ......................... 229 4 A Mindlin-type 2nd gradient linear elasticity ..................... 231 5 A 2nd gradient plasticity model for granular materials ............ 239 6 Acknowledgments ............................................ 247 References ..................................................... 247 Micro-mechanically based higher-order continuum models for granular materials ............................................ 249 A.S.l. SUIKER, R. de BORST, C.S. CHANG 1 Introduction ................................................. 249 2 Micro-level particle interaction ................................. 250 3 From micro-level to macro-level ................................ 254 4 Macroscopic constitutive formulation ........................... 256 5 Continuum models versus discrete lattice model .................. 259 6 Higher-order continuum model that includes particle rotation ...... 266 7 Conclusions ................................................. 272 References ..................................................... 272 x Relevant local variables for the change of scale in granular materials ... ................................................... 275 B. CAMBOU, F. DEDECKER, M. CHAZE 1 Introduction ................................................. 275 2 Definition of the material and considered scales ................. 275 3 Analysis of the change of scale when the local level is defined at the contact between particles ..................................... 278 4 Analysis of the change of scale when the local level is defined for a local array of particles ........................................ 285 5 Conclusion .................................................. 287 References ..................................................... 289 Physical aspects On the physical background of soil strength .................. 291 G. GUDEHUS 1 Introduction ................................................. 291 2 Steady states . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 3 Dilatant soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 4 Contractant soils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 5 Miscellaneous................................................ 299 References ..................................................... 300 The influence of time derivative terms on the mechanical be- haviour of loose sands ........................................ 303 C. di PRISCO, S. IMPOSIMATO 1 Introduction ................................................. 303 2 Experimental observations .................................... 304 3 Mathematical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 4 Concluding remarks .......................................... 315 5 Acknowledgements ........................................... 317 References ..................................................... 317 Appendix A .................................................... 318 An approach to plasticity based on generalised thermody- namics ........................................................ 319 G. T. HOULSBY, A.M. PUZRIN 1 Introduction ................................................. 319 2 Thermomechanical formulation ............. . . . . . . . . . . . . . . . . . . . 320 3 Computational Examples ..................................... 326 4 Classification of plasticity models .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 5 Conclusions ................................................. 330 6 Acknowledgment ............................................. 331 References ..................................................... 331 XI Comparison of different approaches Comparison of hypoplastic and elastoplastic modelling of undrained triaxial tests on loose sand ......................... 333 I. HERLE, T. lJOANH, W. WU 1 Introduction................................................. 333 2 Experimental observations .................................... 333 3 Constitutive models .......................................... 337 4 Comparison of experiments with calculations .................... 338 5 Instability surface ............................................ 342 6 Modification of the hypoplastic model .......................... 344 7 Conclusions................................................. 348 Acknowledgement ............. " ............... " ............... 349 References ..................................................... 349 Hypoplastic and elastoplastic modelling - a comparison with test data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 Th. MARCHER, P.A VERMEER, P.-A. von WOLFFERSDORFF 1 Introduction ................................................. 353 2 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 3 Hypoplastic calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 4 Elastoplastic calculations ..................................... 360 5 Comparison................................................. 365 6 Conclusions ................................................. 370 7 Acknowledgements ........................................... 371 References ..................................................... 371 Strain response envelope: a complementary tool for evaluating hypoplastic constitutive equations ............................ 375 T. DOANH 1 Introduction ................................................ 375 2 Experimentalobservations .................................... 376 3 Hypoplastic analysis ......................................... 380 4 Predictive capability of hypoplasticity .......................... 390 5 Conclusions ................................................ 394 References ........................................ . . . . . . . . . . . . . 394 Special models Modelling weathering effects on the mechanical behaviour of granite ....................................................... 397 R. NOVA 1 Introduction ................................................. 397 2 Conceptual model for weathering effects on rock behaviour ....... 398

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.