ebook img

Constant-Sign Solutions of Systems of Integral Equations PDF

651 Pages·2013·4.17 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Constant-Sign Solutions of Systems of Integral Equations

Ravi P. Agarwal · Donal O’Regan Patricia J.Y. Wong Constant-Sign Solutions of Systems of Integral Equations Constant-Sign Solutions of Systems of Integral Equations Ravi P. Agarwal • Donal O’Regan Patricia J.Y. Wong Constant-Sign Solutions of Systems of Integral Equations 123 RaviP.Agarwal DonalO’Regan DepartmentofMathematics SchoolofMathematics,Statistics TexasA&MUniversity–Kingsville andAppliedMathematics Kingsville,TX,USA NationalUniversityofIreland,Galway Galway,Ireland PatriciaJ.Y.Wong SchoolofElectrical&Electronic Engineering NanyangTechnologicalUniversity Singapore ISBN978-3-319-01254-4 ISBN978-3-319-01255-1(eBook) DOI10.1007/978-3-319-01255-1 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013291023 MathematicsSubjectClassification:45-02 ©SpringerInternationalPublishingSwitzerland2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) RPA: Tomy wifeSadhnaAgarwal DOR: Tomy daughterNiamh EllieO’Regan PJYW: Tomy motherWong-PhuahLiewHong Preface Themainpurposeofthisbookistodevelopindetailexistencetheoryandprovide some insights into systems of integral equations. The intention is to present a systematic investigationand a comprehensivetreatmentof Volterra and Fredholm equations. Thebookconsistsof20chapters.Thenecessaryfixedpointtheory,compactness criteria,andbasicpreliminarieswillbepresentedinChap.1.Throughoutthebook wewilldiscusstwosystemsofFredholmequations,oneisonthefiniteinterval Z 1 u .t/D g .t;s/f .s;u .s/;u .s/;(cid:2)(cid:2)(cid:2) ;u .s//ds; t 2Œ0;1(cid:2); 1(cid:3)i (cid:3)n i i i 1 2 n 0 andtheotherisonthehalf-lineŒ0;1/ Z 1 u .t/D g .t;s/f .s;u .s/;u .s/;(cid:2)(cid:2)(cid:2) ;u .s//ds; t 2Œ0;1/; 1(cid:3)i (cid:3)n i i i 1 2 n 0 andthesolutionuD.u ;u ;(cid:2)(cid:2)(cid:2) ;u /willbesoughtinappropriatefunctionspaces, 1 2 n andthesystemofVolterraintegralequationswestudyis Z t u .t/D g .t;s/f .s;u .s/;u .s/;(cid:2)(cid:2)(cid:2) ;u .s//ds; t 2Œ0;T(cid:2); 1(cid:3)i (cid:3)n i i i 1 2 n 0 whereT > 0isfixed.Oneofthemainaimsofthisbookistodiscussforintegral equationsthenaturalfunctionspaceswhereasolutionliesandtopresentproperties and behavior of solutions. The arguments throughout the book will be based on fixedpointarguments.Inparticular(butnotexclusively)wewillpresentarguments basedontheSchauderfixedpointtheorem,Krasnosel’skiifixedpointtheorem,the Leggett–Williams fixed point theorem, and the Leray–Schauder alternative. The functionspaceswhicharise naturally,forexample,inFredholmintegralequations on the finite interval in this book will be .CŒ0;1(cid:2)/n D CŒ0;1(cid:2) (cid:4) (cid:2)(cid:2)(cid:2) (cid:4) CŒ0;1(cid:2) vii viii Preface or .LpŒ0;1(cid:2)/n D LpŒ0;1(cid:2) (cid:4) (cid:2)(cid:2)(cid:2) (cid:4) LpŒ0;1(cid:2) or more generally .L Œ0;1(cid:2)/n D (cid:3) L Œ0;1(cid:2)(cid:4)(cid:2)(cid:2)(cid:2)(cid:4)L Œ0;1(cid:2) where L Œ0;1(cid:2) is an Orlicz space. Throughoutthe book (cid:3) (cid:3) (cid:3) many examples are included to illustrate the theory. In Chap.2 we will present existencetheory(singleandmultipleconstant-signsolutions)forFredholmintegral equations both on the finite interval and on the half-line. The set of eigenvalues anditspropertiesforvariousFredholmintegralequationsonthefiniteintervaland on the half-line are discussed in Chap.3. Multiplicity of solutions of Fredholm integral equations is investigated in Chap.4. In particular the existence of triple constant-signsolutionsis studiedthere. Solutionsin Chaps.2–4onfinite intervals are sought in .CŒ0;1(cid:2)/n D CŒ0;1(cid:2)(cid:4)(cid:2)(cid:2)(cid:2)(cid:4)CŒ0;1(cid:2). In Chap.5 solutions on finite intervalsare soughtin .LpŒ0;1(cid:2)/n D LpŒ0;1(cid:2)(cid:4)(cid:2)(cid:2)(cid:2)(cid:4)LpŒ0;1(cid:2). VariousFredholm integral equations both on the finite interval and on the half-line are discussed in thischapter.InparticularinChap.5theresultsobtainedassumeapolynomialtype restriction (in u) on the nonlinearity f.t;u/. The semipositone case for various Fredholmintegralequationsbothonthefiniteintervalandonthehalf-lineistackled in Chap.6. Semipositone problems arise naturally in chemical reactor theory and existence will be established in Chap.6 provided the Thiele modulus is suitably chosen.InChaps.7–9singularitiesofspecialtype,namelyintegrablesingularities, areinvestigatedforintegralequations.Inparticularthenonlinearityf .t;u ;(cid:2)(cid:2)(cid:2) ;u / i 1 n may be singular at t D 0 and u D 0 where j 2 f1;(cid:2)(cid:2)(cid:2) ;ng. Our theory is j motivatedfromproblems,forexample,incommunications,boundarylayertheory, andHomannflow.Thesingularcase(withothertypesofsingularities)forvarious Fredholm and Volterra integral equations is studied in detail in Chaps.10–12. Periodicandalmostperiodicsolutionsforvariousintegralequationsarediscussed inChaps.13–15.Inparticulartheintegralequation Z t u .t/D g .t;s/f .s;u .s/;u .s/;(cid:2)(cid:2)(cid:2) ;u .s//ds; t 2.(cid:5)1;1/; 1(cid:3)i (cid:3)n i i i 1 2 n t(cid:2)(cid:4) whichdescribesthespreadofntypesofepidemicswhichareindependentofeach other is tackled in Chap.13, whereas a system of Hill’s equation is examined in Chap.14. Solutions in Orlicz spaces for various Fredholm and Volterra integral equations will be presented in Chaps.16 and 17, and a solution to a Fredholm integralequation on the finite interval will be soughtin .L Œ0;1(cid:2)/n D L Œ0;1(cid:2)(cid:4) (cid:3) (cid:3) (cid:2)(cid:2)(cid:2) (cid:4) L Œ0;1(cid:2). In particular in these chapters using Orlicz spaces other than Lp (cid:3) will lead to restrictions that are not of polynomialtype (in u) on the nonlinearity f.t;u/ and hence will allow us to consider new classes of equations. In Chap.18 theUrysohnintegralequation Z 1 u .t/D g .t;s;u .s/;u .s/;(cid:2)(cid:2)(cid:2) ;u .s//ds; t 2Œ0;1(cid:2); 1(cid:3)i (cid:3)n i i 1 2 n 0 will be discussed and a solution will be sought in .CŒ0;1(cid:2)/n D CŒ0;1(cid:2) (cid:4) (cid:2)(cid:2)(cid:2)(cid:4) CŒ0;1(cid:2). In addition the set of eigenvalues and its properties for Urysohn integral Preface ix equationswill be studied in Chap.18. Finally Brezis–Browdertype argumentsfor various Fredholm and Volterra integral equations will be presented in Chaps.19 and20. We wish to express our gratitude to our colleague Dr. Fengmin Chen for typesettingsomepartsofparticularchapters. Kingsville,TX,USA RaviP.Agarwal Galway,Ireland DonalO’Regan Singapore PatriciaJ.Y.Wong

Description:
This monograph provides a complete and self-contained account of the theory, methods, and applications of constant-sign solutions of integral equations. In particular, the focus is on different systems of Volterra and Fredholm equations. The presentation is systematic and the material is broken down
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.