ebook img

Constant seed size and mandible growth – a fundamental problem for granivorous ground beetle larvae (Coleoptera: Carabidae) PDF

2006·1.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Constant seed size and mandible growth – a fundamental problem for granivorous ground beetle larvae (Coleoptera: Carabidae)

©EntomologicaFennica.11October2006 Constant seed size and mandible growth – a fundamental problem for granivorous ground beetle larvae (Coleoptera: Carabidae) WilfriedPaarmann,NicolasFaust,ErikArndt,IngridLüchtrath&WolfgangRohe Paarmann,W.,Faust,N.,Arndt,E.,Lüchtrath,I.&Rohe,W.2006:Constantseed sizeandmandiblegrowth–afundamentalproblemforgranivorousgroundbee- tlelarvae(Coleoptera:Carabidae).—Entomol.Fennica17:334–339. Feeding on small tree seeds at fruit falls is a specific adaptation of harpaline groundbeetlesandtheirlarvaeintropicalrainforests.Usingmandiblesastools, theyhavetoperforatetheseedshelltoreachthenutritiousinterior.Theisometric growth of larval mandibles, known from predatory species, would result in a changing ratio between seed and mandible size during the course of develop- ment.Thestablesizeofhosttreeseedsshouldselectanoptimummandiblesize, similarforthethreelarvalinstarsinspermophageousspecies.Wefoundanin- creasingtendency tomaintainthelengthoftheapicalmandiblepart(apex)in seedfeedingspecies.ThesizeincreaseishigherinthespeciesfromAustralia,Af- ricaandSouthEastAsiathanintheNewWorldspeciesofthegenusNotiobia. Feedingexperimentshaverevealedthatlarvaeofspecieswithastrongerincrease inapexgrowtharealsoabletodevelopaspredatorsofDrosophilalarvae.Ourre- sultsfurthermorepointtoaninfluenceofbeetlesizeandshellhardnessofthehost treeseedsontheapexsizeanditsgrowthrate. W.Paarmann,N.Faust,I.LüchtrathandW.Rohe,HAWK,FakultätRessourcen- management,Büsgenweg1A,D-37077Göttingen,Germany E.Arndt,AnhaltUniversity,Department1,StrenzfelderAllee28,D-06406Bern- burg,Germany Received15January2006,accepted30June2006 1.Introduction shortageofpreyonthesoilsurface(Erwin1979), while ample seed supply is available, although Groundbeetlespeciesfeedingonsmalltreeseeds thisisrestrictedinspaceandtime.Manytreespe- aresofaronlyreportedfromtropicallowlandrain cies in the Amazonian lowland forests produce forests(Borcherdingetal.2000,Paarmannetal. suchabundantseedresource:Ficusspp.(Mora- 2001, 2002, 2003, Arndt & Kirmse 2002). The ceae), Bellucia spp., Loreya spp., Miconia spp. ancestors of harpaline ground beetles were car- (Melastomatacea), Coussapoa asperifolia (Cec- nivorousspecies(Beutel1997,ZettoBrandmayr ropiaceae), Goupia glabra (Celestracea) and etal.1998).Thechangefromanoriginallycar- Vismiaguianensis(Clusiaceae)(Arndt&Kirmse nivorouslifehabittospermatophagymaybethe 2002,Paarmannetal.2000,2002,2003).Inthe result of selective forces caused by a general South-EastAsian(Borcherdingetal.2000),the ENTOMOL.FENNICAVol.17 (cid:127) Carabidlarvaefeedingontreeseeds 335 Fig.1.Notiobiamandible.Arrowsindicateadditional terebralteethtypicalforlarvalmandiblesofmostof theseed-feedinggroundbeetlespeciesintropicalrain forests.Apexsizeisdefinedasbeingthedistancebe- tweenthetipofthemandibleandthetipofthe retinaculum(seeTables1–2). Australian(Kowalski2004),andAfrican(Paar- mannetal.unpubl.data)rainforests,Ficusspp. play a similar role. Kowalski (2004) added Dendrocnide photinophylla (Urticaceae) to the groupofhostplantsintheAustralianrainforest. Thebiggestseedsofthesehostplantsarethatof Goupiaglabrawith2.3mmlengthand1.1mm Fig.2.Abrasionsofthelarvalmandible,causedby width(Arndt&Kirmse2002). hardseedshells:second-instarmandiblesof Lampetessp.1,fedwithDrosophilalarvae(up)and Ontheirwaytoadapttoaseed-feedinghabit, fedwithFicusbenjaminaseeds(down). thebeetlespecieswithlarvaespecializedtoone type or size of seed had to solve a fundamental problem:theseedsremainthesamesizewhilethe seed-shell perforating tools (mandibles) of the In this paper, we provide additional support larvaeincreaseduringthedevelopmentfromthe for this hypothesis, using new material. While first to the third instar. The functional part of a KirmseandArndt(2002)usedlarvaefromfield nut-cracker,optimalforopeninganutofcertain catches(whichoftenshowabrasionsattheapex size and shape, should be kept at the same size site,Fig.2)andcomparedthetropicalseedfeed- during the general enlargement of the larva. ers with predatory species from temperate re- Arndt&Kirmse(2002)werethefirsttoshowthat gions,weusedmandiblesoflarvaefromfeeding thereisatendencyamongtheseed-feedinglarvae experiments with Drosophila larvae or wild to reduce the enlargement of the apex (distance poppy (Papaver rhoeas) seeds, which do not betweenthetipofthemandibleandthetipofthe causeabrasions.Furthermore,wecompareddata retinaculum; Fig. 1) among different larval fromseed-feedingspecieswithdatafromapred- stages. Consequently, the percentage of apex atory species, commonly appearing on fig fruit growthbetweenthefirstandthethirdlarvalin- falls in the Australian rainforest. Arndt and starscanbeusedasasimplemeasureforcharac- Kirmse (2002) measured only species from a terisingthedegreeoflarvalspecialization,caused SouthAmericanrainforest;wealsoincludedspe- bytheforcetokeeptheirnut-crackeratanopti- cies from Australian, African and South East malsizeduringbodyenlargement. Asianrainforests. 336 Paarmannetal. (cid:127) ENTOMOL.FENNICAVol.17 2.Materialandmethods Wemeasuredtheapexoflarvalmandiblesof11 ground beetle species originating fromfruit fall sitesindifferenttropicallowlandrainforests.The parentalstockofsevenNotiobiaspecieswascol- lected during field studies in the Reverva Flo- restal Adolpho Duke near Manaus (Amazonia, Brazil); for details, see Paarmann et al. (2001, 2002,2003).TheparentalstockofLampetessp.1 wascollectedduringfieldstudiesinBrunei(Bor- neo); for details, see Borcherding et al. (2000). TheColeolissuspapuaandTrichotichnusstoreyi breedingstockwascollectedintheNaturalRe- serves‘LakeBarin’and‘LakeEacham’intheTa- blelands of Queensland (Australia) during field studiesin2000and2001.Platymetopussp.was collectedduringFebruary2004intheKakamega Forest,WesternKenya,Africa. The mandibles used for the measurements werecollectedduringfeedingexperiments;these are described in detail by Paarmann (2002). To estimatethegrowthoftheapex,wemeasuredthe Fig.3.Apexgrowthinthepredatoryspecies distancebetweenthetipofthemandibleandthe Coleolissuspapuafromthefirsttothesecondandthe tipoftheretinaculum(Fig.1)withamicroscope thirdinstars(up)andintheSouthAmericanseed feederNotiobiaaulica(down).Whitelinesconnecttips under10xmagnificationthatallowedaprecision ofmandiblesandtipsofretinaculi. of 5 µm. Only mandibles from larvae fed with Drosophila larvae or wild poppy were used to avoidaninfluenceofabrasions.Forthedescrip- thestudiedspecies(subfamilyHarpalinae).Dif- tive statistics and the statistical analysis (F-test, ferencesingrowthwereconnectedtothefeeding Student’s t-test) we used Microsoft Excel and habitsofdifferentspecies.Thepredatoryspecies WinSTAT.SEM(scanningelectronmicroscope) C.papuadoubleditsapexlengthfromthefirstto photos were taken with the help of the Max the third instar, while the apex length was only PlanckInstitute,Göttingen.Theassessmentcrite- 17.1% longer in the third vs. in the first larval riaoffoodqualityforthedevelopmentofground instarintheseed-feedingN.aulica(seealsoTa- beetle species was described in detail in ble1).Fig.3illustratesthesetwodifferenttypes Paarmann (2002). We used a score system be- of mandible apex growth. The data of all mea- tween 0 (larva died without feeding) and 10 surementsarepooledinTable1. points(thehatchedbeetlesurvivedforatleasttwo Inall,66%(±5.1%SD)ofallseedseatendur- months). To describe food quality, we used the ingdevelopmentwereconsumedduringthethird average score points, together with the percent- larval instar in all the seed-feeding species age of larvae that reached 10 points. We also [pooled data from all ten studied spermato- counted the number of seeds consumed during phageousspecies;n=90;tenindividualsofeach eachlarvalinstar. speciesexceptN.aulica(n=7)andN.maxima(n =3)].Therefore,weassumedthattheapexshould reach its optimal size at this stage; hence this 3.Results measurewasusedasthebaseofcomparisons(Ta- ble2). Wefounddifferencesinthesizeenlargementof IfofferedDrosophilalarvaeasprey,thenon- theapicalpartofthemandibles (apex) between Americanspeciesreachedhighaveragefoodsuit- ENTOMOL.FENNICAVol.17 (cid:127) Carabidlarvaefeedingontreeseeds 337 Table1.Apexsize(µm)ofthethreelarvalinstars(withSDandn,i.e.,thenumberofmeasuredmandiblesateachinstar)insev- eralexaminedcarabidspeciesofthesubfamilyHarpalinae.Coloelissuspapuaisapredatoryspecies,alltheotherspeciesare spermophageous.Continent=continentoforigin(Au=Australia,Af=Africa,SEAs=South-EastAsia,SAm=SouthAmerica). Species 1.instar 2.instar 3.instar Continent Size SD n Size SD n Size SD n ColoelissuspapuaDarlington 260.0 5.3 12 366.0 15.8 15 531.8 30.4 17 Au TrichotichnusstoreyiBaehr 302.5 14.9 12 375.8 9.0 12 490.0 11.3 12 Au Platymetopussp. 418.5 7.5 20 507.7 9.2 20 600.5 13.1 20 Af Lampetessp.1 406.7 6.6 21 453.5 10.4 20 531.5 18.1 20 SEAs NotiobiaflavicinctusErichson 411.3 11.0 28 475.7 17.0 30 526.1 17.2 33 SAm Notiobiapseudolimbipennis Arndt 582.5 17.7 12 645.7 19.1 14 726.2 32.3 13 SAm NotiobiaumbriferaBates 328.1 16.0 16 362.5 13.4 16 401.1 15.2 19 SAm NotiobianebrioidesPerty 446.5 10.0 17 467.9 21.2 14 530.7 17.3 14 SAm NotiobiaaulicaDejean 335.0 14.6 16 355.6 13.8 18 392.3 21.3 13 SAm NotiobiaglabrataArndt 395.3 14.6 17 411.3 19.6 16 458.3 11.5 18 SAm NotiobiamaximaArndt 417.5 32.0 4 437.5 26.3 4 440.0 8.2 4 SAm abilityscores,similartothepurepredatoryspe- cinctus/N.pseudolimbipennis),significantlydif- ciesC.papua(Table2).Theaveragescoresofthe feredintheirapexsize(Table2).Therewasno Notiobiaspeciesthatfedonfruitflieswerelower, overlapbetweentheapexsizesofthesetwospe- andonlytwoofthemsurvivedtotheadulthood. cies. The medium apex size of the third larval Intwobeetlepairsofdifferentbodysize,each instarofthesmallerspecies,N.flavicinctus,was adapted to the same seed type (N. umbrifera/N. distinctlylowerthantheapexsizeofthefirstlar- aulicatoMiconia,andN.glabrata/N.maximato val instar of the bigger species, N. pseudo- Bellucia),wefoundsimilarapexsizesinthethird limbipennis (Student’s t-test, p <0.0001). The larvalinstarofthedifferentspecies(Table2).A seedsoftheirhostplantswereallinthesamesize third pair, specialized on fig seeds (N. flavi- range (length 0.8–1.2 mm, width 0.7–0.8 mm; Table2.Apexgrowthfromthefirsttothethirdlarvalinstar(%enlargement).Thecolumnsarefromlefttoright: Species(notethatC.papuaisapredatoryspecies);%apexg.=%apexgrowth;Scorep.=scorepoints;%10 p.=%larvaethatreached10points(seetext);Elytra=lengthofelytrainmm;SD=standarderrorforthelength ofelytra;n=numberofspecimensmeasuredforthelengthofelytra;Apexsize=apexsizeinthethirdinstarin µm(forthreebeetlespeciespairs).Italics–specializedonfigseeds,underlined–specializedonMiconiaseeds, bold–specializedonseedsofBelluciaandLoreya. Species %apexg. Scorep. %10p. Elytra SD n Apexsize Coloelissuspapua 104.6 8.4 35 8.0 0.2 6 – Trichotichnusstoreyi 52.0 8.1 56 5.5 0.2 19 – Platymetopussp. 43.5 8.8 40 – – – – Lampetessp.1 30.7 8.2 37 6.2 0.1 21 – Notiobiaflavicinctus 27.7 5.4 0 6.0 0.3 33 526.3 Notiobiapseudolimbipennis 24.7 5.5 0 8.2 0.3 26 726.2 Notiobiaumbrifera 22.2 2.4 0 5.4 0.3 12 401.1 Notiobianebrioides 18.9 6.0 0 8.2 0.5 21 – Notiobiaaulica 17.1 5.9 23 6.8 0.5 22 392.3 Notiobiaglabrata 16.0 7.5 48 7.2 0.3 20 458.3 Notiobiamaxima 5.4 – – 9.0 0.3 21 440.0 338 Paarmannetal. (cid:127) ENTOMOL.FENNICAVol.17 Fig.4.Seeds(botanicallydefinedasnuts)offigspeciesfromtheAmazonianrainforest nearManaus(Brazil).Fromlefttoright:Ficusguianensis,F.subapiculata,F.donell- smithii,F.hebetifolia,F.guianensis-complex,F.albert-smithii,F.mathewsiiandF. greiffiana. Fig.4).Duringthethirdlarvalinstar,larvaeofthe sophila larvae. The lowest apex growth was bigger species N. pseudolimbipennis opened on found in N. maxima, the biggest species among average233.9seeds(±51.2SD;n=32),121.1% thestudiedseedfeeders.Itseemsplausibletoas- more of Ficus seeds (pooled data for F. donell- sume that the biggest species should show the smithii, F. guianensis and F. subapiculata) than strongestreductioninapexgrowth,comparedto the smaller species N. flavicinctus [mean 105.1 thesmallerspecies.Notiobiamaximaisspecial- seeds(±19.1SD;n=31)]. izedtoBelluciaandLoreyaseeds(Paarmannet al.2002).ThesmallerspeciesN.glabrataisalso veryabundantatfruitfallsofthesetreespecies. 4.Discussion Its larvae show a very similar apex size in the thirdlarvalinstar(Table2;duetothelowsample Alowerdegreeofapexgrowthwasfoundinlar- sizeofN.maxima,nostatisticswereperformed). vae of all the studied spermophageous ground To reach this size, the smaller species needs an beetle species, compared to the predatory ones apex growth of 16%, compared to 5.4% in the [Table2;seeArndt&Kirmse(2002)forfurther biggerone.Similarconditionswerefoundinthe dataofcarnivorousandomnivorousspecies].If speciespairN.aulicaandN.umbrifera(Table2, thereductioninapexgrowthcorrelateswiththe underlined numbers). Both of these species are degreeofadaptationtoseedfeedingfromorigi- specialized on Miconia seeds (Paarmann et al. nally predatory species, this adaptation is more 2002);theyalsohaveverysimilarapexsizesin advanced in the South American species of the the third instar (Student’s t-test, p = 0.2) and a genusNotiobiathaninthestudiedspeciesfrom strongerapexgrowthinthesmallerspecies.The the other continents. A possible explanation of significant differences of about 50 µm between this phenomenon could be a larger seed and a thetwospeciespairs(t-test:for N. maxima:N. lower prey resource at fruit falls in the Amazo- aulica and N. umbrifera, p <0.001 and for N. nianlowlands,comparedtothesituationinsimi- glabrata:N.aulicaandN.umbrifera,p<0.001) larforestsonothercontinents.Thiscorresponds mayreflectthenicheseparationamongthediffer- alsowiththepercentageofseed-feedingindivid- ent Melastomatacea seed feeding specialists uals in the carabid assemblages: 92–98% in (Miconia and Bellucia/Loreya, respectively), Brazil vs. 39% in South-East Asia and 24% in found earlier by Paarmann et al. (2002) in the Australia (Borcherding et al. 2000, Kowalski field.Thetwospecies,N.pseudolimbipennisand 2004,Paarmannetal.2001,2002). N. flavicinctus, specialized on fig seeds (Paar- WhilethepredatoryspeciesC.papuaandthe mannetal.2001,Paarmann2003)alsodifferin seed-feedingspeciesfromAfrica, Australiaand theirbodysize(Table2).Incontrasttothespecies Borneoreachhighaveragescoreswhenfedwith pairs adapted to Miconia or Bellucia, the apex fruitflylarvae(Table2),theNotiobiaspeciesdo sizeofthefig-seedfeedersdifferedsignificantly notshowaclearcorrelationbetweenapexgrowth (Table2,numbersinItalics).Thisresultcouldbe and theability to develop feeding only on Dro- interpreted as a clear niche separation – except ENTOMOL.FENNICAVol.17 (cid:127) Carabidlarvaefeedingontreeseeds 339 thattheseedsofthedifferentfigspeciesintheir AbhandlungenderNaturwissenschaftlichenVereini- habitatareallinthesamesizerange(Fig.4),and gungHamburg(NF)31.164pp. Borcherding,R.,Paarmann,W.,NyawaS.B.&Bolte,H. bothspeciesreproduceatfruitfallsofthesame 2000:Howtobeafigbeetle?Observationsofground Ficusspecies(Paarmannetal.2001).Feedingex- beetles(Col.,Carabidae)associatedwithfruitfallsina periments(Paarmann2002)showedthatseedsof rainforestofBorneo.—Ecotropica6:169–180. F.guianensisandF.donell-smithiiareofsimilar Erwin,T.L.1979:Thoughtsontheevolutionaryhistoryof high value to both beetle species. Ficus sub- groundbeetles:hypothesesgeneratedfromcompara- tivefaunalanalysesoflowlandforestsitesintemper- apiculataappearstobeabetterhostspeciesforN. ateandtropicalregions.—In:Erwin,T.L.,Ball,G.E., flavicinctusthanforN.pseudolimbipennis,while Whitehead, D. R. & Halpern, A. L. (eds.), Carabid F.hebetifoliarepresentstheopposite.Thesedif- beetles:theirevolution,naturalhistoryandclassifica- ferences may be caused by differences in shell tion:539–587.Dr.W.Junk,TheHague.635pp. hardness.Thenecessityforthebiggerspeciesto Kowalski, S. 2004: Potentielle Wirtsbäume des samen- fressenden Laufkäfers Trichotichnus storeyi (Col., open a comparable high number of fig seeds Carabidae)imaustralischenRegenwald.—Diploma (121.1%morethanN.flavicinctus)couldleadto thesis, Fachhochschule Hildesheim, Holzminden, much stronger abrasions, followed by a loss of Göttingen.70pp. functionality(compareFig.2).Thehigherscore Paarmann, W., Adis, J., Stork, N. E., Gutzmann, B., valuesN.pseudolimpipennisreached,iffedwith Stumpe,P.,Staritz,B.,Bolte,H.,Küppers,S.,Holz- kamp,K.;Niers,C.&daFonseca,C.R.V.2001:The theseedsofF.hebetifolia,maybetheresultofa structureofgroundbeetleassembladges(Coleoptera: higherpowerinthebiggerfirstlarvalinstarcom- Carabidae)atfigfruitfalls(Moraceae)inaterrafirme pared to the small first instar larvae of N. rainforestnearManaus(Brazil).—JournalofTropi- flavicinctus. calEcology17:549–561. Paarmann, W., Gutzmann, B., Stumpe, P., Bolte, H., Küppers.S.,Adis.J.,Stork,N.E.&daFonseca,C.R. Acknowledgements. B. Bleher, N. Farwig (Johannes- V.2002:Thestructureofgroundbeetleassemblages Gutenberg-UniversitätMainz)andJ.Holstein(Staatliches (Coleoptera: Carabidae) at fruit falls of Melasto- Museum für Naturkunde, Stuttgart) collected living mataceaetreesinaBrazilianterrafirmerainforest.— ground beetle specimens in Kenya and organized their Biotropica34:368–375. transporttoGermany.Thephotosweretakenunderthead- Paarmann,W.2002:Determinationoffoodqualityforsuc- viceandwiththeequipmentofM.StukeandK.Müller cessfuldevelopmentofseed-feedinggroundbeetles (Max-Planck-Institut für Biophysikalische Chemie, (Col.,Carabidae)fromtropicallowlandrainforests. Göttingen). —In:Szyszko,J.etal.(eds.):HowtoprotectorWhat weknowaboutcarabidbeetles:45–57.Agricultural UniversityPress,Warszawa.378pp. Paarmann, W., Adis, J., Stork, N. E., Stumpe, P., Gutz- References mann,B.&Holzkamp.K.2003:Findingthehosttree species of Notiobia nebrioides Perty (Coleoptera, Carabidae),amemberoftheseed-feedingguildatfruit Arndt,E.&Kirmse,S.2002:Adaptationtoseed-feeding falls in Amazonian non-inundated lowland rain- ingroundbeetles(Coleoptera:Carabidae:Harpalini) forests.—JournalofNaturalHistory37:839–844. ofSouthVenezuela.—StudiesonNeotropicalFauna ZettoBrandmayr,T.,Giglio,A.,Marano,I.&Brandmayr, andEnvironment31:205–216. P.1998:Morphofunctionalandecologicalfeaturesin Beutel,R.1997:(cid:1)berPhylogeneseundEvolutionderCo- carabid(Coleoptera)larvae.—AttiMuseoRegionale leoptera (Insecta), insbesondere der Adephaga. — diScienzeNaturali,Torino:449–490.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.