ebook img

constant false alarm rate (cfar) PDF

104 Pages·2006·0.7 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview constant false alarm rate (cfar)

CONSTANT FALSE ALARM RATE (CFAR) DETECTION BASED ESTIMATORS WITH APPLICATIONS TO SPARSE WIRELESS CHANNELS A Thesis Submitted to the Graduate School of Engineering and Sciences of ˙ Izmir Institute of Technology in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in Electrical and Electronics Engineering by ¨ Umit KARACA October 2006 ˙ ˙ IZMIR Weapprovethethesisof U¨mitKARACA DateofSignature ..................................... 12October2006 Assist. Prof. Serdar O¨ZEN Supervisor DepartmentofElectricalandElectronicsEngineering ˙IzmirInstituteofTechnology ..................................... 12October2006 Assist. Prof. MustafaAzizALTINKAYA DepartmentofElectricalandElectronicsEngineering ˙IzmirInstituteofTechnology ..................................... 12October2006 Assoc. Prof. OlcayAKAY DepartmentofElectricalandElectronicsEngineering DokuzEylu¨lUniversity ..................................... 12October2006 Prof. F.AcarSAVACI HeadofDepartment DepartmentofElectricalandElectronicsEngineering ˙IzmirInstituteofTechnology ........................................ Assoc. Prof. Dr. Semahat O¨ZDEMI˙R HeadoftheGraduateSchool ABSTRACT CONSTANT FALSE ALARM RATE (CFAR) DETECTION BASED ESTIMATORS WITH APPLICATIONS TO SPARSE WIRELESS CHANNELS We provide Constant False Alarm Rate (CFAR) based thresholding methods for training based channel impulse response (CIR) estimation algorithms for communica- tion systems which utilize a periodically transmitted training sequence within a continu- ous stream of information symbols. After obtaining the CIR estimation by using known methods in the literature, there are estimation errors which causes performance loss at equalizers. The channel estimation error can be seen as noise on CIR estimations and CFAR based thresholding methods, which are used in radar systems to decide the pres- ence of a target, can effectively overcome this problem. CFAR based methods are based on determining threshold values which are computed by distribution of channel noise. We provide exact and approximate distribution of channel noise appear at CIR estimate schemes. WeappliedCellAveraging-CFAR(CA-CFAR)andOrderStatistic-CFAR(OS- CFAR) methods on the CIR estimations. The performance of the CFAR estimators are then compared by their Least Square error in the channel estimates. The Signal to Inter- ferenceplusNoiseRatio(SINR)performanceofthedecisionfeedbackequalizers(DFE), ofwhichthetapvaluesarecalculatedbasedontheCFARestimators,arealsoprovided. iii ¨ OZET ˙ ˙ SABIT YANLIS¸ ALARM ORANI SEZIMLEME TABANLI KANAL ˙ ˙ ˙ ˜ ˙ KESTIRIMI VE YOGUN OLMAYAN TEKIL KANALLARA UYGULAMALARI Bu c¸alıs¸mada, haberles¸me sistemlerinde kullanılan Kanal Du¨rtu¨ Yanıtı (CIR) ke- stirimlerinin es¸iklemesinde kullanılmak u¨zere, Sabit Yanlıs¸ Alarm Oranı (CFAR) sez- imleme tabanlı metotlar ele alınmıs¸tır. Haberles¸me literatu¨ru¨nde bilinen yo¨ntemlerle elde edilen kanal du¨rtu¨ yanıtları, kestirim hatası tas¸ımakta, bu durum denkles¸tiricilerde performans kaybına neden olmaktadır. Bu kestirim hatası, kanal du¨rtu¨ yanıtındaki gu¨ru¨ltu¨ olarakdeg˜erlendirilebilir. Radarsistemlerindehedeftespitedilmesindekullanılan Sabit Yanlıs¸ Alarm Oranı (CFAR) sezimleme tabanlı es¸ikleme metotları, bahsedilen bu gu¨ru¨ltu¨nu¨n temizlenmesinde kullanılabilir. Sabit Yanlıs¸ Alarm Oranı (CFAR) sezim- leme tabanlı metotlar, kanal gu¨ru¨ltu¨su¨nu¨n istatistiksel dag˜ılımı yardımıyla hesaplanan es¸ikdeg˜erlerinedayanmaktadır. Proje kapsamında, Hu¨cre Ortalamalı (CA-CFAR) ve ˙Istatistiksel Sıralamalı (OS- CFAR) Sabit Yanlıs¸ Alarm Oranı sezimleme tabanlı metotlar kullanılarak elde edilen es¸ik deg˜erleri, c¸es¸itli kanal kestirimlerine uygulanmıs¸tır. Bahsedilen metotların perfor- mansları, es¸ikleme is¸leminden sonra elde edilen kanal kestirim sinyallerinin En Ku¨c¸u¨k Kareler Hataları (NLSE) kars¸ılas¸tırılarak go¨sterilmis¸tir. Ayrıca, Sinyallerin Giris¸im ve Gu¨ru¨ltu¨ye Oranları (SINR), Karar Gerido¨nu¨s¸u¨mlu¨ Denkles¸tiriciler (DFE) kullanılarak go¨sterilmis¸tir. iv TABLE OF CONTENTS LISTOFFIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii LISTOFTABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix LISTOFABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . x CHAPTER1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. OrganizationandContributionsoftheThesis . . . . . . . . . 2 CHAPTER2. SIGNALANDCHANNELMODEL . . . . . . . . . . . . . . . 4 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2. OverviewoftheDataTransmissionModel . . . . . . . . . . . 4 CHAPTER3. GENERALIZEDLEASTSQUARESBASEDCHANNELESTIMA- TION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1. MethodofLeastSquares . . . . . . . . . . . . . . . . . . . . 13 3.2. ExistingChannelEstimationMethods . . . . . . . . . . . . . 15 3.2.1. Least-SquaresChannelEstimation . . . . . . . . . . . . . 15 3.2.2. CorrelationBasedChannelEstimation . . . . . . . . . . . 17 3.3. CovarianceMatrixUpdateBasedIterativeChannelEstimation 21 3.3.1. FurtherImprovementstotheInitialChannelEstimate . . . 22 3.3.2. StatisticalAnalysisofBaselineNoise . . . . . . . . . . . 24 3.3.3. ApproximationsofDistribution . . . . . . . . . . . . . . 30 3.3.4. IterativeAlgorithmtoCalculatetheChannelEstimate . . 31 3.3.5. OtherApproachesBackground(MatchingPursuit) . . . . 34 CHAPTER 4. CONSTANT FALSE ALARM RATE (CFAR) BASED THRESH- OLDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2. UsingCFARTechniquesforChannelEstimation . . . . . . . 37 v 4.2.1. ApproximationsandFurtherSimplifications . . . . . . . 41 4.3. CellAveraging(CA)CFARBasedDetection . . . . . . . . . 41 4.4. OrderStatistic(OS)CFARBasedDetection . . . . . . . . . . 44 4.5. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 CHAPTER5. CHANNELESTIMATE-BASEDDECISIONFEEDBACKEQUAL- IZERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.1. Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 APPENDIXA. 8-VSBPULSESHAPE . . . . . . . . . . . . . . . . . . . . . . 90 1.1. ComplexRoot-RaisedCosinePulse . . . . . . . . . . . . . . 90 1.2. ComplexRaisedCosinePulse . . . . . . . . . . . . . . . . . 91 APPENDIXB. TESTCHANNELS . . . . . . . . . . . . . . . . . . . . . . . . 93 vi LIST OF FIGURES Figure Page Figure2.1 Systemblockdiagram . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure2.2 Dataframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure3.1 CorrelationpropertiesoffinitePNsequences . . . . . . . . . . . . 18 Figure3.2 Thehistogramoftherealandimaginarypartsofthe418thtapvalue (cid:179) (cid:180) (cid:161) (cid:162) oftheterm AHA −1AH Hd+Qη . . . 27 [−Na−Lq:N+Nc−1+Lq] Figure3.3 The normality plot of the real and imaginary parts of the 418th tap (cid:179) (cid:180) (cid:161) (cid:162) valueoftheterm AHA −1AH Hd+Qη 28 [−Na−Lq:N+Nc−1+Lq] Figure4.1 Cell-AveragingCFAR . . . . . . . . . . . . . . . . . . . . . . . . 42 Figure4.2 NLSEofCA-CFARandCAGO-CFARfordifferentwindowsize . 45 Figure4.3 Kversusalpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure4.4 CIRestimationsforChannel1 . . . . . . . . . . . . . . . . . . . 52 Figure4.5 CIRestimationsforChannel2 . . . . . . . . . . . . . . . . . . . 53 Figure4.6 CIRestimationsforChannel3 . . . . . . . . . . . . . . . . . . . 54 Figure4.7 CIRestimationsforChannel3-plus . . . . . . . . . . . . . . . . . 55 Figure4.8 CIRestimationsforChannel4 . . . . . . . . . . . . . . . . . . . 56 Figure4.9 CIRestimationsforChannel5 . . . . . . . . . . . . . . . . . . . 57 Figure4.10 CIRestimationsforChannel6 . . . . . . . . . . . . . . . . . . . 58 Figure4.11 CIRestimationsforChannel7 . . . . . . . . . . . . . . . . . . . 59 Figure4.12 CIRestimationsforChannel8 . . . . . . . . . . . . . . . . . . . 60 Figure4.13 NLSEvaluesofCIRestimatesversusSNR(dB)forChannel1 . . . 61 Figure4.14 NLSEvaluesofCIRestimatesversusSNR(dB)forChannel2 . . . 62 Figure4.15 NLSEvaluesofCIRestimatesversusSNR(dB)forChannel3 . . . 63 Figure4.16 NLSEvaluesofCIRestimatesversusSNR(dB)forChannel3-plus 64 Figure4.17 NLSEvaluesofCIRestimatesversusSNR(dB)forChannel4 . . . 65 Figure4.18 NLSEvaluesofCIRestimatesversusSNR(dB)forChannel5 . . . 66 Figure4.19 NLSEvaluesofCIRestimatesversusSNR(dB)forChannel6 . . . 67 vii Figure4.20 NLSEvaluesofCIRestimatesversusSNR(dB)forChannel7 . . . 68 Figure4.21 NLSEvaluesofCIRestimatesversusSNR(dB)forChannel8 . . . 69 Figure5.1 DFEEqualizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Figure5.2 ResidualChannelafterFeed-ForwardFilter . . . . . . . . . . . . 76 Figure5.3 ResidualChannelafterFeed-BackFilter . . . . . . . . . . . . . . 77 Figure5.4 SINR versusSNRforChannel1forvariouschannelestimates. 78 DFE Figure5.5 SINR versusSNRforChannel2forvariouschannelestimates. 79 DFE Figure5.6 SINR versusSNRforChannel3forvariouschannelestimates. 80 DFE Figure5.7 SINR versus SNR for Channel 3-plus for various channel esti- DFE mates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Figure5.8 SINR versusSNRforChannel4forvariouschannelestimates. 82 DFE Figure5.9 SINR versusSNRforChannel5forvariouschannelestimates. 83 DFE Figure5.10 SINR versusSNRforChannel6forvariouschannelestimates. 84 DFE Figure5.11 SINR versusSNRforChannel7forvariouschannelestimates. 85 DFE Figure5.12 SINR versusSNRforChannel8forvariouschannelestimates. 86 DFE viii LIST OF TABLES Table Page Table4.1 K valuescomputedfromEquation(4.49) . . . . . . . . . . . . . . 49 TableB.1 Simulated9ChannelImpulseResponses . . . . . . . . . . . . . . 94 ix LIST OF ABBREVIATIONS AR Auto-regressive CFAR ConstantFalseAlarmRate CA-CFAR CellAveragingConstantFalseAlarmRate CAGO-CFAR CellAveragingGreatest-OfConstantFalseAlarmRate CIR ChannelImpulseResponse DFE DecisionFeedbackEqualizer DTV DigitalTelevision ISI Inter-SymbolInterference LE LinearEqualizer LMS LeastMeanSquare LS LeastSquares ML MaximumLikelihood MLSE MaximumLikelihoodSequenceEstimation(Estimator) MMSE MinimumMean-squaredError MP MatchingPursuit MSE Mean-squaredError OS-CFAR OrderStatisticConstantFalseAlarmRate RLS RecursiveLeastSquare SINR Signal-to-Interference-Plus-NoiseRatio SNR Signal-to-NoiseRatio VSB VestigialSide-band x

Description:
We provide Constant False Alarm Rate (CFAR) based thresholding methods CFAR based thresholding methods, which are used in radar systems to
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.