ebook img

Conservation Agriculture for Environmental Sustainability in A Semiarid Agroecological Zone PDF

19 Pages·2017·3.2 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Conservation Agriculture for Environmental Sustainability in A Semiarid Agroecological Zone

sustainability Article Conservation Agriculture for Environmental Sustainability in A Semiarid Agroecological Zone under Climate Change Scenarios ZhangHong1,MsafiriY.Mkonda1,2,* ID andXinhuaHe1,3,* ID 1 CentreofExcellenceforSoilBiology,CollegeofResourcesandEnvironment,SouthwestUniversity, Chongqing400715,China;[email protected] 2 DepartmentofGeographyandEnvironmentalStudies,SolomonMahlanguCollegeofScienceand Education,SokoineUniversityofAgriculture,Morogoro3038,Tanzania 3 SchoolofBiologicalSciences,UniversityofWesternAustralia,Crawley6009,Australia * Correspondence:[email protected](M.Y.M.);[email protected](X.H.) (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:11February2018;Accepted:26April2018;Published:4May2018 Abstract: Using the Mann–Kendall Test to analyze data from a survey of 400 farmers, this study compared the rate of adoption of conservation agriculture (CA) in two contrasting villages of Mnyakongo and Ugogoni locating in the Kongwa District, a semi-arid zone in central Tanzania. ResultsexhibitedthatthelevelofCAadoptionwas<10%ofthetotalhouseholds. ThetrendofCA adoptionwasdeterminedatthecoefficientofR2=0.95,0.90,0.68and0.57formulching,croprotation, agroforestryandlittletillage,respectively. Despitelittletillageandcroprotationhavinghighacreage underCA,therateofmulchingadoptionwassignificantlyhigherthanthatofothers. Furthermore, there were significant correlations between the CA adoption and crop yields or environmental sustainability (p < 0.05). Maize, sorghum and millet yields were significantly greater under CA (1.7tha−1)thanno-CA(0.7tha−1). Particularly,maizeyieldswereincreasedfrom1.3to2.3tha−1 from2000to2015underCAwhenitwasintercroppedwithlegumes. Themajorityfarmers(>70%) assertedthatCAhadoptimizedtheiryieldsforbothfoodandeconomicincentives. Thus,thisstudy recommendstheadoptionofCAinthesemi-aridagro-ecologicalzones. Keywords: climate change; crop yields; environmental services; intercropping; legumes; Mann–Kendalltest;vulnerability;Tanzania 1. Introduction Thesignificanceofsoilorenvironmentalconservationtolimitsoildegradationhasbeenadvocated since1903[1]. The currentsituationofa rapidpopulationincrease andglobalclimatechangehas necessitatedthepracticabilityofsuchsoilconservation[2]. Forexample,theUSAgovernmenthas invested millions of dollars yearly to support conservation related projects [3,4]. To increase fruit production and environmental conservation in organic Australian vineyards, both mulching and compositeareusedasconservationagriculturalpractices[5]. Thispracticeincreasescropyieldsand environmentalconservationinvariousareasofthecountry. The increasing extreme of weather changes especially for temperature and precipitation has significantly impacted the nutrient cycling and soil moisture in most of Sub-Saharan Africa [6,7]. Theseweatherchangescouldintensifyinthefutureasvariousclimatemodelshavebeenpredicting furtherclimatealterations. Asaresult,acropproductionsystemanditsproductivityaretoworsen withpossiblyhighoutbreakofdiseases,pestsandpathogens. To intervene with these authentic and potential consequences, we need to develop resilient agriculturalsystemsthroughrationalandaffordablestrategiesthatmaintaintheecosystemfunctions Sustainability2018,10,1430;doi:10.3390/su10051430 www.mdpi.com/journal/sustainability Sustainability2018,10,1430 2of19 andprotectlivelihoods[8–10]. Studieshaverecommendeddifferentconservationagriculture(CA) practices to mitigate, and adapt to, climate impacts [11]. CA features in various forms such as organicsoilmanagement,agroforestry,croprotation,etc. Bennettetal.[12]andMalviyaetal.[13] in their models found that N -fixing legumes hve potential for both crop yields optimization and 2 environmentalservices. Moreover,Zhuetal.[14]realizedthatorganicmatterfromdeaddebrisand litterdecomposition are importantfor improvingsoil fertilityin variousecosystems. Organicsoil managementisanimportantaspectofCA. Sincesmallholderfarmersarevulnerabletoextremechangeofrainfallpattern,CAcanbetheir bestprepositiontoelevatetheirresilience[15,16]. Thisisparticularlyimportantbecauseitisexpected that, by2030, Africawillhave120–150millionsmallholderfarmersandmostofthemwillrelyon rain-fed agriculture for their subsistence [17]. While the dependence on rainfed-fed agriculture is expected to increase, the projections from an assessment of 12 CMIP3 (CMIP3 - Coupled Model IntercomparisonProjectThree)(AR4-4th AssessmentReport)GCMs(GlobalClimateModels)over Africasuggestanextremevariationinrainfallbytheendofthe21stCentury[18]. Inthatrespect,the susceptibilityofthefarmerswillfurtherincreaseduetosuchincreasedchallengingcondition[19,20]. Specifically, the farmers’ vulnerability with less rainfall is expected to be worst in arid and semi-aridareasduetoincreaseddroughteffectsinthesealreadystressedareas[18–21]. Sucheffectsin theseareascannotbeunderestimatedbecausetheglobaldrylandareascoverabout41%ofEarth’s surface and sustain the livelihoods of about two billion people [21,22]. In these areas, drought is greatlyexacerbatedbytheglobalincreaseintemperatureanddecreaseinrainfall[23]. Forinstance, studieshaverevealedtheaverageincreaseofglobalsurfacetemperatureas0.8◦Cduringthepast centuryorthelastthreedecades[24],leadingtothedeteriorationofagriculturalsystems.Subsequently, thisdeteriorationhasexertedmorepressureonalreadystressedenvironmentalresourcesthrough overutilization,thusaddingmorecomplexitytosustainableagriculturemanagement[22–25]. Thefrequentlyexcessivedroughtsinmostdrylandareashaveledtosignificantdegradationof soilfertility[26]. Suchsoilfertilitydegradationisfurtheraccruedbypooragronomicpracticesand excessivechemicalfertilization[27–29],andstudieshaveshownthatdifferentformsandprinciplesof CA,suchasterracesorridges,minimumtillagecropping,covercropping,largepitsandintercropping especiallylegumeintercroppingofsweetbeansandlablab,havethepotentialtoimprovesoilfertility andmitigateclimatechangeimpacts. Similarly,soilfertility,cropproductionandcarbonsequestrationhaveincreasedinmostareas where CA has been effectively applied [20]. Under CA, soil microbial communities become more functionalthanwithoutCAandcaninfluenceawiderangeofsoilfunctionsandecologicalservices such as organic matter turnover and nutrient cycling (nitrogen, phosphorus and carbon), among others [30,31]. Thus, CA has been recently proposed as Climate-Smart Agriculture (CSA) in most Africancountriesbecauseitiseconomicallyviableandenvironmentallyfriendly[20,30–32]. According toFAO[33],theCApracticecouldelevatefoodsecurity,resilienceand/oradaptivecapacitytoclimate variabilityimpactsbysequestratingcarboninbothplantbiomassandsoils. Similarly,Lal[34]promotedthatreducedtillageisapowerfultoolforretainingsoilcarbonand improvingsoilfertilityforhealthycropgrowthandbiochemicaltransformationofbiomasscarbon intosoilorganicmatterorhumus. Itwasevidencedthatconventionaltillagelosessoilnutrientsand waterthroughinfiltration[35]. Evenminorsoildisturbancehassignificantecologicaleffectsonsoil fertilityineasternandnorthernTanzania[36,37]. However,despitethissignificance,therehasbeenhighinconsistenceofCAadoptioninmostof Sub-SaharanAfricawhereabout70%ofagricultureindustryisundersmallholderfarmerswhoare mostvulnerabletoglobalclimatechanges. Theirvulnerabilityisaccruedbythehighdependenceon rainfedagriculture[38]. Thus,Sub-SaharanAfricancountrieshaverecentlyadoptedtheCApractice, althoughtheadoptionratehasnotbeensufficientinmostofSub-SaharaAfrica(Figure1). Sustainability2018,10,1430 3of19 Sustainability 2017, 9, x FOR PEER REVIEW 3 of 19 Figure 1. Development of conservation agriculture over the last 20 years by world region in total area Figure1. Developmentofconservationagricultureoverthelast20yearsbyworldregionintotal (ha) and as an average percentage across the adopting countries of the respective region. African area(ha)andasanaveragepercentageacrosstheadoptingcountriesoftherespectiveregion.African countries seem to adopt conservation agriculture slowly. It needs more emphasis for a good take off. countriesseemtoadoptconservationagricultureslowly. Itneedsmoreemphasisforagoodtake Afterwards, the continent will increase crop yields in terms of quantity and quality as well as off. Afterwards,thecontinentwillincreasecropyieldsintermsofquantityandqualityaswellas conserving the ecosystems (Source: Adopted from FAO [17]). conservingtheecosystems(Source:AdoptedfromFAO[17]). Most Sub-Saharan countries recently started the adoption of CA. For example, Malawi, Zambia MostSub-SaharancountriesrecentlystartedtheadoptionofCA.Forexample,Malawi,Zambia and Zimbabwe intensified their CA adoption in the 1990s [6,7,37]. Having been informed on the and Zimbabwe intensified their CA adoption in the 1990s [6,7,37]. Having been informed on the significance of CA, there is an immediate need to emphasize the optimal adoption and utilization of significanceofCA,thereisanimmediateneedtoemphasizetheoptimaladoptionandutilizationof CA in the region (Sub-Sahara Africa) where most farmers are destitute and marginalized. CAintheregion(Sub-SaharaAfrica)wheremostfarmersaredestituteandmarginalized. An Overview of Conservation Agriculture in Tanzania AnOverviewofConservationAgricultureinTanzania Most Tanzanian communities adopted indigenous agricultural conservation practices, e.g., the Most Tanzanian communities adopted indigenous agricultural conservation practices, e.g., Matengo pits (terraces) in Ruvuma, Chagga garden (agroforestry) in Kilimanjaro and Ngitiri the Matengo pits (terraces) in Ruvuma, Chagga garden (agroforestry) in Kilimanjaro and Ngitiri (enclosed pasture) in Shinyanga regions to intervene the challenges associated with environmental (enclosedpasture)inShinyangaregionstointervenethechallengesassociatedwithenvironmental stress. These practices have shown promise for optimizing crop yields, increasing fodder, controlling stress. Thesepracticeshaveshownpromiseforoptimizingcropyields,increasingfodder,controlling soil erosion and conserving moisture and fertility [27,39]. However, CA has only been operated in soilerosionandconservingmoistureandfertility[27,39]. However,CAhasonlybeenoperatedinfew few regions including Dodoma, Manyara, Arusha and Southern highlands of Tanzania [40]. Few CAs regionsincludingDodoma,Manyara,ArushaandSouthernhighlandsofTanzania[40]. FewCAshave have been practiced in the aforementioned regions that involve agroforestry, crop cover and crop breoetnatpiornac atincded airne tmheosatfloyr einmfleunetniocende dbyre gpiroivnasteth oart ignovvoelrvnemaegnrot foorrgeasntriyz,actrioonpsc [o4v1e-r53a]n. dThcruosp, rreoltiaatbiloen apnodliacrye cmoousltdl ygirneflatulyen acfefdecbt ythper iCvAat eaodropgotivoenr ninm tehnet coorguanntriyza. tAiotn psr[e4s1e–n5t3, ]C.ATh ruesc,erievleias blliettlpeo alitctyenctoiounld gfrreoamtly thaeff eTcatntzhaenCiaA Aagdroicputilotunrainl Pthoeliccoyu [n54tr]y a.sA tthpe reexsiesntitn,gC Aporleiccye iavdesvolicttalteesa tttheen tgiorenefnr ormevothluetTioann zthanatia Aegmripchualtsuizraels Pmoolircey o[n54 c]oansvtehnetieoxnisatli ntigllapgoel iacnyda dchveomcaitceasl tfheretiglirzeaetniorne.v o lutionthatemphasizesmoreon conveAntti othnea lhtoiullsaegheoaldn dlecvheel,m thicea aldfeorptitliiozna toiof nC.A or any other agricultural technology is reached after the Aadtothpetehr oius sseahtoislfdielde vweli,thth ethaed dopectiiosinono.f ICnA moorsat ncyasoetsh,e trhaeg rhiocuulsteuhroalldt eacdhonpotlso gnyewis raegarcihcuedltuarfatel r thteechandoolpotgeyr (iis.es.,a CtiAsfi) ewdhwosieth netht beedneecfiitssi oanre. sIingnmifiocsatntclays gesre,attheer thhoauns tehhoosled oaf dano petxsisntienwg taegchrincoullotugyra. l teInch tnhoilso gaypp(ir.oea.,cCh,A p)rwohspoescetinveet bneenwe fittescharneosloiggnyi fiacdaonptltyergs reoabtseerrtvhea nthteh ousteiliotfy agnaeinxiesdti nbgy tethche neoalrolgyy . Inadthoipstaeprsp broefaocrhe, apdroosppteincgti vtheante twechtencohlnooglyo.g Tyhaisd ocapnte brse odbessecrrvibeetdh einu vtialirtiyougsa imneoddeblys tahse foelalrolwysa.d opters beforeFaodr oepxatimngplteh,a tthtee Hchencoklmogayn. mThoidsecla [n43b]e spdeecsicfriiebde dthien dveacrisioiouns amnodd eexltseanst foofl tloecwhsn.ology adoption as foFlolorwexs:a mple,theHeckmanmodel[43]specifiedthedecisionandextentoftechnologyadoption asfollows: Ci = Ziφ + εi (CA adoption) (1) Ci=Ziφ+εi(CAadoption) (1) Sustainability2018,10,1430 4of19 Yi=Xiβ+µi(extentofCAadoption) (2) whereCiisadummyvariableforCAadoption;ZiisavectorofdeterminantsofCAadoption;Yiisthe extentofCAadoption(proportionoflandareaunderCA);XiisavectorofdeterminantsofCAextent ofadoption;θandβarevectorsofparameterstobeestimated: andεiandµiareerrorterms. BasedontheHeckmanmodel[43],fortheestimatedparametersofEquation(b)tobeefficient, thereshouldbenocorrelationsbetweenthetwoerrorterms(εiandµi). Nevertheless, thesample selection bias has resulted in a non-zero correlation between the two errors. To correct for this selectionbias,theHeckmanmodelfirstlyestimatesEquation(a)toobtainasampleselectionindicator, i.e.,theInverseMillsRatio(IMR).Thisissuitableformeasuringthecovariancebetweenthetwoerrors. The study by Rogers [9] had agreement with Heckman model, as it informed that “the innovation-decisionprocesscanleadtoeitheradoption,adecisiontomakefulluseofaninnovation asthebestcourseofactionavailable,orrejection,adecisionnottoadoptaninnovation”. AfewCA studieshavebeenconductedtoevaluatetheextentofCAinTanzaniaincludingonmaizeyieldsinthe UluguruMountains(EasternArcMountains)[26]. The present study focused on the semi-arid agroecological zone in Tanzania, where maize, sorghumandmilletarethemajorcrops,becausethissemi-aridareaisthemostvulnerabletoclimate changeimpactsandenvironmentaldegradation. Intheseareas,CAisthemostreliablewayoflimiting thesetwomajorchallenges. Thedominantfarmingsystemsinthemostsemi-aridregionsinclude: cropping,pastoralismandagro-pastoralism(integrationofcropswithlivestock). Suchintegrations increase the biomass inputs of perennial plants and the optimization of nutrient amendments in the soil [30,39]. These systems can also increase the mutual interactions between plants roots and mycorrhizaefungi,andeventuallynutrientsuptakeandresistanttopathogensbyplants. AlthoughthescienceofCAanditssignificanceatthegloballevelisprogressingrapidly,various knowledgegapsstillexist,particularlyindevelopingcountries. Thispresentstudywasgearedto assesstherateofCAadoptionanditsecologicalsignificanceinthesemi-aridareasofcentralTanzania. AlthoughseveralFAO-CAprojectshavebeenconductedinseveralTanzanianregions,theirimpacts haveremainedtrivial[41,42]. Thisstudywashypothesizedasfollows: H . TherateofCAadoptionisinfluencedbythedesireoffarmerstohaveoptimalyields,preservationofsoil 1 moistureandfertility,controlofsoilerosion,andreductionoflaborwork. H . TherateofCAadoptionisnotinfluencedbythedesireoffarmerstohaveoptimalyields,preservationofsoil 2 moistureandfertility,controlofsoilserosion,andreductionoflaborwork. Theabove-mentioneditemsinthehypotheseswerewidelyknowntotherespondents,thusitwas possibletodifferentiateand/orsynthesizeoneanotherduringdatacollectionandinterpretation. Here,weinvestigatedthelevelofCAadoptioninthesemi-aridagroecologicalzoneofcentral Tanzania. Itwasquiteimportanttoconductsuchastudybecausemostsemi-aridareasexperience frequent food-shortage associated with environmental degradation and extreme climate change impacts.Thus,thepresentstudyexploredtherateofCAadoptionandissocio-ecologicalsignificanceto thecommunityandenvironment. Toachievethisobjective,therateofCAadoptionwashypothesized against the factors for its adoption. The findings of such a study are expected to have significant contribution to the establishment of CA promotion policies in Tanzania with an earmark to the vulnerablecommunitiesandecosystems. ThepolicyadvocacyonCAisasignificantmovetoward sustainableadoptionofCAinallcountries’agroecologicalzones. Atpresent,theadoptionofCAisdeterminedbypersonalcharacteristics(i.e.,knowledgeand experience),physicalfactor(landavailability),andsocialandfinancialfactors.Despitetheinsignificant willingnessintheCAadoption,thepracticehasnumerousfruitfulresults,asitimprovesbiological functionsofthesoilthroughmycorrhizaefungi,antsandwormsthatcanenhancenutrientsuptake byplants. Thebasisofthestudy’sfindingswasfieldworkwithaconstructedconceptualframework (Figure2)enlistingthesignificantaspectsoftheCA. Sustainability 2017, 9, x FOR PEER REVIEW 5 of 19 uptake by plants. The basis of the study’s findings was fieldwork with a constructed conceptual Sustainability2018,10,1430 5of19 framework (Figure 2) enlisting the significant aspects of the CA. FFiigguurree 22.. CCoonncceeppttuuaall ffrraammeewwoorrkk ffoorr ccoonnsseerrvvaattiioonn aaggrriiccuullttuurree ((SSoouurrccee:: AAddoopptteedd ffrroomm MMkkoonnddaa aanndd HHee [[4444]])).. The framework portrays the major roles of CA as a tool firstly for increasing crop yields and The framework portrays the major roles of CA as a tool firstly for increasing crop yields and secondly for environmental conservation to improve soil fertility through no- or reduced-tillage, secondly for environmental conservation to improve soil fertility through no- or reduced-tillage, mulching, agroforestry and crop rotation [50–61]. It also increases crop yields in terms of quality and mulching,agroforestryandcroprotation[50–61]. Italsoincreasescropyieldsintermsofqualityand quantity. By so doing, it curbs food insecurity and abject poverty. It further preserves biodiversity quantity. Bysodoing,itcurbsfoodinsecurityandabjectpoverty. Itfurtherpreservesbiodiversityand amnidti mgaitteigsatthees ethmei sesmioinssoiofng roefe gnrheoeunsheoguassee gsa(sGeHs (GGsH),Ge.sg)., Ce.Og. C,COH2, CaHn4d aNndO N.2O. 2 4 2 22.. MMaatteerriiaallss aanndd MMeetthhooddss 22..11.. PPrrooffiillee ooff tthhee SSttuuddyy SSiittee TThhiiss ssttuuddyy wwaass ccaarrrriieedd oouutt iinn tthhee KKoonnggwwaa DDiissttrriicctt,, aa sseemmiiaarriidd zzoonnee ooff CCeennttrraall TTaannzzaanniiaa bbeettwweeeenn JJuunnee aanndd SSeepptteemmbbeerr 22001166 ((FFiigguurree 33)).. TThhiiss ddiissttrriicctt iiss llooccaatteedd oonn tthhee leleeewwaarrdd ssiiddee ooff UUkkaagguurruu MMoouunnttaaiinnss wwiitthh aann aarreeaa ooff ~~44004411 kkmm22 aanndd aa vvaarryyiinngg eelleevvaattiioonn bbeettwweeeenn 990000 aanndd 11000000 mm aa..ss..ll.. ((66°◦1199′(cid:48)666600”” LLaattiittuuddee (S) and 36◦15(cid:48)36”Longitude (E)). The typical vegetation in the Central Tanzania is bush or thicket. Sustainability 2017, 9, x FOR PEER REVIEW 6 of 19 Sustainability2018,10,1430 6of19 (S) and 36°15′36”Longitude (E)). The typical vegetation in the Central Tanzania is bush or thicket. The mean annual precipitation is 400–600 mm (most between December and April) and the mean Tahnenumael atnemapnneruaatulrper eicsi p2i6t a°tCio. nTihse4 s0o0i–l 6i0s0 cmlasmsif(imedo satsb CethwroemenicD Leucevmisoblesr (athned FAApOri l)Soainl dTathxeonmoemainc aSnynsuteamlt)e mwpitehr aatu rseanisd2y6 ◦loCa.mTh teesxotiulries.c lTahssei fiseidlt acsoCnhteronmts icoLf utvhies oslosi(ltsh eaFt AdOiffSeorielnTta xfoarnmoms iwcSeyres tenmot) wsiigthniafiscaanndtlyy ldoaifmferteexnttu (rpe .>T 0h.0e5s)i latncodn rteanntgseodf 1th7e0–so2i5l5s agt kdgif–f1e rseonilt wfairtmh saw beurlekn doetnsisgitnyi fiocfa 1n.t2ly5–d1i.f6fe5r eMngt (mp–>3 [03.075,4)4a–n4d8]r. anged170–255gkg−1soilwithabulkdensityof1.25–1.65Mgm−3[37,44–48]. FFiigguurree 33.. LLooccaattiioonn aanndd ssaammpplliinngg ppoossiittiioonnss ooff tthhee sseelleecctteedd vviillllaaggeess iinn tthhee KKoonnggwwaa DDiissttrriicctt.. TThhee ssttuuddyy ssiitteess aarree aallssoo ddeennootteedd wwiitthh llaattiittuuddee aanndd lloonnggiittuuddeess ddeeggrreeeess( (SSoouurrccee:: IIRRAA GGIISS LLaabb,,U UDDSSMM::2 2001166)).. 2.2. Agricultural Systems in the Area 2.2. AgriculturalSystemsintheArea WWiitthh 33663377 kkmm22 ooff aarraabbllee llaanndd,, tthhee ssttuuddyy aarreeaa iiss ddoommiinnaatteedd bbyy ccrrooppppiinngg ssyysstteemmss,, ppaassttoorraall ssyysstteemmss and mixed farming. About 80% of the cropping systems are under smallholder farmers (~2.5 hectares andmixedfarming. About80%ofthecroppingsystemsareundersmallholderfarmers(~2.5hectares per household) who use a hand hoe as the main farming tool. Medium scale farmer (about 17%) use per household) who use a hand hoe as the main farming tool. Medium scale farmer (about 17%) power tillers while large scale farmers (about 3%) use tractors. The dominant food and cash crops use power tillers while large scale farmers (about 3%) use tractors. The dominant food and cash include maize, sorghum, millet, common beans, cassava, sweet potatoes, chick peas, sesame, cropsincludemaize,sorghum,millet,commonbeans,cassava,sweetpotatoes,chickpeas,sesame, cashews, sunflower and groundnuts. The dominant animals are cattle, sheep, pigs, donkey and goats. cashews,sunflowerandgroundnuts. Thedominantanimalsarecattle,sheep,pigs,donkeyandgoats. IInn aaddddiittiioonn,, oonnee rraanncchh ((~~225500 kkmm22)) aanndd oonnee ppaassttuurree ((~~115500 kkmm22)) aarree oowwnneedd bbyy tthhee NNaattiioonnaall RRaanncchhiinngg Company and Livestock Research Center, respectively. CompanyandLivestockResearchCenter,respectively. 22..33.. MMeetthhooddoollooggyy 22..33..11.. DDaattaa CCoolllleeccttiioonn aanndd SSaammpplliinngg DDeessiiggnn AA ssimimppleler arnadnodmomsa msapmlipnlginwg awseams pelmoypeldoyiends eilne cstienlgectthinegs tuthdey satrueda.yW aerepai.c kWede opnieckthede Koonneg wthae dKiostnrgicwtaa mdoisntrgicnt uammeoronug snduimstreircotsuso fdtihsetriscetms io-af rtihdez osenmeio-farTiadn zzoanniea othf aTtaanrzeasneivae rthelayt iamrep ascetveedreblyy cimlimpaactetecdh abnyg celiamnadtef rcehqaunegnet faonodd fsrheoqruteangte .foPoudr pshosoirvtaegsea. mPpulripnogswivae sseammpplloinyge dwians seemlecptlionygedtw ion Sustainability2018,10,1430 7of19 representativevillages,i.e.,MnyakongoandUgogoni. Prioritywasgiventovillagesthathavebeen practicingCA.AreconnaissancesurveywasdoneinApril2016,twomonthsbeforetheactualdata collection. Duringthisphase,datacollectiontoolsweretestedtodeterminetheireffectiveness. Wealso usedthisphasetoprocesstherequiredresearchpermitsanddeterminedsomekeyinformants. All discrepanciesraisedduringthisphasewerefixedbeforetheactualprocessofdatacollection. Data collection including household surveys, group discussions, informative interviews and physical observation was conducted from June to September 2016. These activities were simple and suitable because they optimally involved relevant stockholders. A simple random sampling wasappliedwhenselectinghouseholdswhileasystematicsamplingwasusedtoformgroupsfor discussions. Inaddition,purposivesamplingwasemployedinselectingtheinterviewees. We also conducted intensive interviews with agricultural experts, extension officers and few elders. DataonCA(i.e.,acreageunderCA)andcropsyieldsweregatheredfromtheKongwaDistrict AgriculturalandLivestockDevelopmentOfficer(DALDO)andtheMinistryofAgriculture,Livestock andFishery,Tanzania. The acreage data about areas under irrigation were gathered from the Dodoma Region Zonal Irrigation Office (in which Kongwa is affiliated). A total of 400 questionnaires were collectedfromhouseholdheadsofsmallholders(farmer/livestockhouseholds),asshowninTable1. Thequestionnairesinvolvedbothclosedandopenquestions. Theselectionofhouseholdswasdone bydividingthetotalnumberofhouseholdsineachvillagebytherequiredsamplesize(about10%). Thehouseholdlistswereobtainedfromthevillage’sgovernmentleadersinthestudyarea. Table1.SummaryofquestionnairesadministrationandPRAstoolsinthesampledvillages. Mnyakongo Ugogoni Questionnaires(n=400) TotalHH(2050) TotalHH(2080) Numberofhouseholdsinterviewed 200 200 Cropfarmers(%) 70 80 Livestockfarmers(%) 10 10 Bothcropandlivestockfarmers(%) 20 10 Focusgroupdiscussion(n=30) Cropfarmers 12 10 Livestockfarmers 0 2 Bothcropandlivestockfarmers 3 3 Interview(n=20) Cropfarmers 8 9 Livestockfarmers 0 0 Bothcropandlivestockfarmers 2 1 *PRAs=ParticipatoryRuralAppraisal;*HH=Householdheads;*n=Numberofobservations.Source:Field SurveyData,2016. Interviews and household surveys were used to collect socio-ecological data at a society level. We collected both quantitative and qualitative data at the field and farm household level. About 258,219 ha (71%) of the total arable land (363,690 ha) in the district was cultivated by 45,271 households. The two representative villages had 4500 farming households with about 16,000ha. SinceweaimedtoexploretherateofCAadoption,weselected400households(farmers) from the two villages on a random basis. In total, these 400 households had 1600 ha (an average of2.0–4.0haperhousehold)undercropproduction. Wedeterminedtheoverallfarmers’perception onCA,anditstypesandbenefits. Intheprocess,wealsodeterminedtheavailabilityofextension services. Finally,informationonsoilcharacteristicswasmainlyobtainedfromtheKongwaDistrict LandUseandPlanningofficeandliteraturereview. Sustainability 2017, 9, x FOR PEER REVIEW 8 of 19 Both crop and livestock farmers 2 1 * PRAs = Participatory Rural Appraisal; * HH = Household heads; * n = Number of observations. Source: Field Survey Data, 2016. 2.3.2. Data and Statistical Analyses We analyzed the quantitative data using the Mann–Kendall Test (at 95% level of confidence), Saunsdta iMnabiiclirtoys2o01ft8 ,e1x0c,1e4l 3(0window 13) software. In this regard, the p-values less than 0.05 were supp8oosfe1d9 to be statistically significant (p < 0.05). The qualitative data from the household surveys were analyzed using theme content methods, whereas qualitative information was summarized and inserted in the TheParticipatoryRuralAppraisalmethod(PRA)wasalsoemployedtocollectsocio-economic text during discussions. data at the field level. These PRAs include informative interviews, group discussions, physical observation,etc. TheapplicationofthePRAmethodhasbeenusedtoexploreperceptionsofrural 3. Results communities on environmental issues that affect their lives [49–51]. One group discussion with 15peoplewasconvenedineachvillage,andinterviewswereconductedwith20agriculturalexperts, 3.1. Recent Adoption of Conservation Agriculture farmers,livestockkeepersandvillagegovernmentleaders. Results showed that, despite the recently increased rate of CA adoption (Figures 4–6), <10% of 2h.o3u.2s.eDhoaltdasa hnaddS atdatoispttiecdal iAt. nFoalry isnesstance, in the two representative villages, 400 households cultivated an area of about 1600 ha for crop production, while 200 ha of CA were practiced by 10% of these We analyzed the quantitative data using the Mann–Kendall Test (at 95% level of confidence), households. At the district level, there were 45,271 farming households who had cultivated 258,219 andMicrosoftexcel(window13)software. Inthisregard,thep-valueslessthan0.05weresupposedto ha (Table 2), but only 4300 households had adopted the CA for an area of 20,000 ha. bestatisticallysignificant(p<0.05). Thequalitativedatafromthehouseholdsurveyswereanalyzed CA practices had been more adopted in Ugogoni than in Mnyakongo. The former had a higher usingthemecontentmethods,whereasqualitativeinformationwassummarizedandinsertedinthe averaged land size and total cultivated lands (Table 2). This brought significant differences in terms textduringdiscussions. of socio-ecological benefits to both the community livelihoods and the environment. 3. Results Table 2. Current and estimated land under conservation agriculture in the sampled villages. 3.1. RecentAdoptionofConservationAgriculture Total Cultivated Average-Landholding Average Land Adoption Estimated Land Village ResultsshowedLtahnadt (,hda)e spitethereSceiznet (lhya)i ncreasedurnadteer oCfAC (hAa)a dopRtaitoe n(%()F iguruensde4r– C6A), (<h1a)0 %of Mnyakongo 8600 3.5 0.34 8.7 90 householdshadadoptedit. Forinstance,inthetworepresentativevillages,400householdscultivated Ugogoni 9200 4.1 0.38 11.4 105 an area of about 1600 ha for crop production, while 200 ha of CA were practiced by 10% of these * The adoption rate was from the agricultural officers and others from local farmers in a 2016 field households. Atthedistrictlevel,therewere45,271farminghouseholdswhohadcultivated258,219ha survey. Source: Field Survey Data, 2016. (Table2),butonly4300householdshadadoptedtheCAforanareaof20,000ha. CApracticeshadbeenmoreadoptedinUgogonithaninMnyakongo. Theformerhadahigher In addition, the major types of the CA in the study area were agroforestry, mulching, crop averagedlandsizeandtotalcultivatedlands(Table2). Thisbroughtsignificantdifferencesintermsof rotation and minimum tillage. The lands allocated to CA were corrected by the total lands under socio-ecologicalbenefitstoboththecommunitylivelihoodsandtheenvironment. farming (p < 0.05). Hence, predictions and extrapolations could be done based on such dimension. Conservation agriculture in the study area 5000 a,w a,w a,w a,w a,wa,x )a 4000 a,x h ( s 3000 b,x a b,x b,x e r a e 2000 z a,y iS a,y a,y a,yb,y a,y 1000 b,z b,y c,z d,z 0 1995 2000 2005 2010 2015 Year Little tillage Crop rotation Agroforestry Mulching Figure 4. Variation in land use or farming systems from 1995 to 2015 (five-year averaged data) in Figure4. Variationinlanduseorfarmingsystemsfrom1995to2015(five-yearaverageddata)in Mnyakongo and Ugogoni villages of the Kongwa District, a semi-arid zone in central Tanzania. Data MnyakongoandUgogonivillagesoftheKongwaDistrict,asemi-aridzoneincentralTanzania.Data (means±SD,n=5)withdifferentlettersdenotesignificantdifferencesbetweenaveragedyearsfor thesameCApractice(a,b,c,d,e)andbetweendifferentCApracticesforthesameaveragedyear(w, x,y,z)atp<0.05.Note:Littletillageinvolvesshallowcultivation(minimumtillage)ofthefarm(i.e., non-conventional).Source:FieldSurveyData,2016. Sustainability 2017, 9, x FOR PEER REVIEW 9 of 19 (means ± SD, n = 5) with different letters denote significant differences between averaged years for the same CA practice (a, b, c, d, e) and between different CA practices for the same averaged year (w, x, y, z) at p < 0.05. Note: Little tillage involves shallow cultivation (minimum tillage) of the farm (i.e., Sustainability2018,10,1430 9of19 non-conventional). Source: Field Survey Data, 2016. FInigaudrdei t4io inn,dtihceatmesa jtohret ytepmespoofrtahl etrCeAndin otfh CeAst uaddyoparteioanw werietha gsrpoefcoiraels ftoryc,ums uolnc hliinttgle, ctriollpagreo,t actrioopn arontdatmioinn, imaguromfotriellsatgrye .aTnhde mlaunldchsinalglo. cTahteerde twoaCsA a wsleigrehtc oinrcrerecatesde ibny atlhmeotsott aallll aCnAd spurancdteicrefsa, rwmhinilge (rped<u0c.e0d5 )t.ilHlaegnec ae,npdr cerdoipct iroontastaionnd wexetrrea pmoolareti oandsopcoteudld cobmedpoarneedb taos eodthoenrss. uchdimension. FFiigguurree 54 sinhdowicas ttehset hadeotpemtiopno rdailsptraernitdieso fbCetAweaedno cprtoiopn rowtaitthiosnp aencida lrefodcuucsedo ntillliattglee. tMilloagree ,lacnrodps rwoittaht ioCnA, apgrroacfotirceesst rywearned umnudlecrh irnegd.uTcehde retilwlaagsea (s5l0ig00h thinac) rethaasen inunadlmero sctroapll CroAtaptiroanc ti(c4e5s0,0w hhail)e. rMedeauncwedhtiillel,a cgreoapn rdotcartoiponr owtaatsi osnigwniefriceamntolyre madoroep ateddopcotemdp (aRr2e =d 0to.9o0)t htherasn. reduced tillage (R2 = 0.57). UndeFri gsuurceh 5psrhemowissesth, eit awdaosp teivoindednist ptahraitt ireesdbuectewde teinllacgroep hraodt alteisosn naenwd areddoupcteerds ttihllaang ec.rMopo rreotlaatniodns wdiidth, pCrAobparbalcyt ibceecsawuseere itu hnadde ralrreedaudcye dbeteilnla agdeo(p5t0e0d0 bhya )ththea lnagugnadredrs c(rlaotpe raodtoatpiotenrs(4).5 T0h0ehsae) r.eMsuelatns waghrielee, cwriotph rroedtautcioend wtilalasgsei gbneiifincga nthtley lemaodrienga dCoAp tiend T(aRn2z=an0ia.9, 0a)ltthhoaungrhe ditu icse dintteilglaragteed(R w2i=th0 m.57u)l.chU, ncrdoepr scuovcher parnedm liesgeus,mitesw [2a6s]e. vident that reduced tillage had less new adopters than crop rotation did, probaInbl yadbdeictaiounse, mituhlacdhianlrge aadnyd baegernofaodroepsttreyd (bFyigtuhreel a6g) ghaardd ssm(laatleleard loapntdesr s()1.0T0h0e hsea)r ewsuitlhts aa ghrigeeh wraitthe roefd CuAce dadtiollpatgieonb.e iOngf tthheeslee atdwinog, mCAulcinhiTnagn zaapnpiae,aareltdh otuog hhaivteis hinigtehgerra ateddopwtiitohnm ruatlech (,Rc2r o=p 0c.o9v5e) rtahnadn laeggruomfoeress[t2r6y] .did (R2 = 0.68) while the former received more new adopters. This was because most of the adInopadtidonit iwona,s mdounlceh winigthainn dthaeg proafsot r2e0s tyreya(rFs i(g1u9r9e56–)20h1a5d).s mallerlands(1000ha)withahighrate of CAIn afdacotp, ttihoenr.e Oisf atnh eimsemtwedoi,atme unlecehdin tgo aesptpaebalirsehd ctoomhpaevlleinhgig ehffeorratsd toop mtioanker aCteA (uRn2d=er0s.t9a5n)dtahbalne aangrdo fsourestsatrinyadbilde (tRo2 =far0m.68er)sw (hTialebtleh e3f)o. rmAner irnetceenivsievde maodroepntieown aodfo pCtAer sw. Tohuilsdw tahserbeefcoarues eopmtiomstizoef tshuestaadinoapbtlieo nlivwealishdooondes,w esitpheicniathlley pfoars tv2u0lnyeeraarbsle(1 a9n9d5– d2e0p15ri)v.ed smallholder farmers. 1 2 Figure5.Adoptionrateofcroprotation(A)andlittletillage(B)asCApracticesintheMnyakongoand UgogonivillagesoftheKongwaDistrict,asemi-aridzoneincentralTanzania.Source:FieldSurvey Data,2016. Sustainability 2017, 9, x FOR PEER REVIEW 10 of 19 Figure 5. Adoption rate of crop rotation (A) and little tillage (B) as CA practices in the Mnyakongo Sustainaabnildity U20g1o8g,o1n0,i 1v43il0lages of the Kongwa District, a semi-arid zone in central Tanzania. Source: Field1 0of19 Survey Data, 2016. 1 2 Figure 6. Adoption rate of mulching (A) and agroforestry (B) as CA practices in the study area. Source: Figure6.Adoptionrateofmulching(A)andagroforestry(B)asCApracticesinthestudyarea.Source: Field Survey Data, 2016. FieldSurveyData,2016. Table 3. Responses (%) of effectiveness to the conservation agriculture practices by local farmers in Table2.Currentandestimatedlandunderconservationagricultureinthesampledvillages. the sampled villages (n = 200 in each village) during a 2016 field survey. TotalCultivated VerAyv Eerfafgeec-tLiavned hoMldiondgerAavteer EagfefeLcatnidve ANdoopt tSiounreR ateNotE EstfimfeactteidvLea nd Village Conservation LManedth(hoad)s Size(ha) underCA(ha) (%) underCA(ha) Mn Ug Mn Ug Mn Ug Mn Ug Mnyakongo 8600 3.5 0.34 8.7 90 Agroforestry 18 19 76 77 0 0 6 4 Ugogoni 9200 4.1 0.38 11.4 105 Crop rotation 71 73 22 25 7 2 0 0 *Theadoptionratewasfromtheagriculturalofficersandothersfromlocalfarmersina2016fieldsurvey.Source: FieldSurLvietytlDe attial,la20g1e6 . 15 16 67 71 13 10 5 3 Mulching 27 29 62 64 9 5 3 2 Infact,thAebrebriesvaiantiiomnsm: Medni,a Mtennyeaekdontogoe, satnadb lUisgh, Ucogmogpoenlil;i nSgouerfcfeo: rFtsietldo SmuarvkeeyC DAatua,n 2d0e1r6s. tandableand sustainabletofarmers(Table3). AnintensiveadoptionofCAwouldthereforeoptimizesustainable Results in Table 3 indicate that most farmers (50%–70%) asserted that the effectiveness of CA livelihoods,especiallyforvulnerableanddeprivedsmallholderfarmers. had been either very high or moderate. Most farmers (71%) asserted that crop rotation (e.g., maize, ResultsinTable3indicatethatmostfarmers(50%–70%)assertedthattheeffectivenessofCA sorghum, millet, groundnuts, etc.) has been very effective, while 7% of them were not sure if the hadbeeneitherveryhighormoderate. Mostfarmers(71%)assertedthatcroprotation(e.g.,maize, sorghum, millet, groundnuts, etc.) has been very effective, while 7% of them were not sure if the practicewaseffective. Likewise,mostfarmers(76%)assertedthattheeffectivenessofagroforestryhas beenmoderate,while6%didnotthinkitwaseffective.

Description:
recommends the adoption of CA in the semi-arid agro-ecological zones the Matengo pits (terraces) in Ruvuma, Chagga garden (agroforestry) in
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.