Yucheng Dong · Jiuping Xu Consensus Building in C Group Decision B l d Making G Searching the Consensus Path with Minimum Adjustments Consensus Building in Group Decision Making Yucheng Dong Jiuping Xu (cid:129) Consensus Building in Group Decision Making Searching the Consensus Path with Minimum Adjustments 123 YuchengDong Jiuping Xu Business School Business School SichuanUniversity SichuanUniversity Chengdu,Sichuan Chengdu,Sichuan China China ISBN978-981-287-890-8 ISBN978-981-287-892-2 (eBook) DOI 10.1007/978-981-287-892-2 LibraryofCongressControlNumber:2015950014 SpringerSingaporeHeidelbergNewYorkDordrechtLondon ©SpringerScience+BusinessMediaSingapore2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerScience+BusinessMediaSingaporePteLtd.ispartofSpringerScience+BusinessMedia (www.springer.com) Preface The group decision making (GDM) can be seen as a task to find a collective solution to a decision problem in the situations where a group of experts express their opinions regarding multiple alternatives. In essence, the GDM reflects the internalrelationsbetweentheindividualsandgroupandcanbedefinedasageneral model as follows: Fðop1;op2;...;opnÞ¼opc; wherefop1;op2;...;opngaretheopinionsofnindividuals,opcistheopinionofthe group, and F is the aggregation function implying the group decision rule to aggregate individual opinions into a collective one. The GDM is in the important and core position in the economics and man- agement science. From a macro perspective, modern society is essentially a GDM system.Intherationalanddemocraticsociety,thereexittwobasicGDMmethods: one is “voting”, which is usually used in politics, and the other is “market mech- anism”, which is applied in economic issues. Microscopically, there are numerous GDM problems, and people are often faced with the need to work with others in group settings. ThehistoryoftheGDMstudiescanbetrackedbacktodesignofvotingmethod (Lull, 1282, 1287; Borda, 1781; Condorcet, 1785). In the last 60 years, the researches of the GDM have gotten great progresses, and some famous theories have been proposed, e.g., social choice theory (Arrow, 1951) and prospect theory (Kahneman and Tversky, 1979, 1992). The social choice theory dates from Condorcet's formulation of the voting paradox, and provides a theoretical frame- work for analysis of combining individual opinions, preferences, interests, or welfares to reach a collective decision or social welfare in some sense. The Arrow Impossibility Theorem, the Gibbard-Satterthwaite Strategy-proofness Impossibility TheoremandtheSenLibertarianImpossibilityTheoremconstructthefootstoneof social choice theory. The prospect theory is a descriptive model based on psy- chology, and tries to model real-life choices, rather than optimal decisions, as normativemodelsdo.The prospecttheorystates that people make decisions based v vi Preface on the potential value of losses and gains rather than the final outcome, and that people evaluate these losses and gains using certain heuristics. The social choice theory and the prospect theory both provide exciting insights for us to better understand and investigate GDM problems. ConsensusisanimportantareaofresearchintheGDMandisdefinedasastate of mutual agreement among individuals of a group, where all opinions have been heardandaddressedtothesatisfactionofthegroup.Aconsensusreachingprocess is a dynamic and an iterative process composed by several rounds where the individuals express, discuss, and modify their opinions until to make a decision. Integrating the consensus reaching process into the GDM offers some advantages: (1) More effective implementation. When individuals’ opinions and concerns are taken into account, they are more likely to actively participate in the implementa- tion of the obtained solution, and (2) Building connection among the individuals. Using consensus as a decision tool means taking the time to find unity on how to proceed before moving forward, which promotes communication among individuals. Intheconsensusreachingprocess,individualsoftenneedtoadjusttheiropinions to improve the consensus level among individuals. In this book, we propose a challenge for analysts: how to minimize the adjustment amounts in the consensus reaching process, which can be described as an optimization-based model. Xn min dðopk;opkÞ; opk k¼1 where fop1;op2;...;opng are the individuals’ original opinions, fop1;op2;...;opng are the individuals’ adjusted opinions with a consensus, and dðopk;opkÞðk ¼1;2;...;nÞ is to measure the adjustment amounts associated with the individual k. We investigate the optimization-based model to search the con- sensuspathwithminimumadjustmentsunderdifferentGDMcontexts.Particularly, inChap.2weclarifythebasicideaoftheconsensuswithminimumadjustments(or cost), and investigate the consensus model with minimum adjustments (or cost) under the utility preferences and aggregation functions. Then, in Chap. 3 we pro- pose two consensus models for the GDM with preference relations: the iteration-based consensus model and the LP-based consensus model. Next, we investigate the consensus models with minimum adjustments under the 2-tuple linguistic context and the hesitant linguistic context in Chap. 4. Subsequently, in Chap. 5 we propose two consensus models for the GDM with heterogeneous preference representation structures: the direct consensus model and the prospect theory-based consensus model. Finally, Chap. 6 presents two multiple attribute consensusruleswith minimumadjustments:thedistance-basedconsensus ruleand the count-based consensus rule. Based on the distance-based and count-based consensusrules,wedevelopaninteractiveconsensusreachingprocessformultiple attribute group decision making. Preface vii We believe that the optimal adjusted opinions, obtained by the methodology presentedin thebook, can provide abetterdecision aidwhich individuals useas a reference to modify their individual opinions. We want to express special thanks to Professor Yinfeng Xu, Professor Yihua Chen, Professor Zhi-Ping Fan, Professor Wei-Chiang Hong, Professor Enrique Herrera-Viedma,andProfessorFranciscoHerrera, for theircontributions andgreat support to this book. We also want to express our sincere thanks to the colleagues and students in our group, Hengjie Zhang, Haiming Liang, Cong-Cong Li, Xia Chen, Yuzhu Wu, Nan Luo, Guiqing Zhang, and Bowen Zhang, who have done much workinthis field andmade anumberof corrections.This bookissupported byGrants(Nos.70425005,71171160,71571124)fromNSFofChina,andaGrant (No. skqx201308) from Sichuan University. Chengdu¸ China Yucheng Dong July 2015 Jiuping Xu Contents 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Preference Representation Structure and Aggregation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Preference Representation Structure . . . . . . . . . . . . . . . . 2 1.1.2 Aggregation Function. . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Consensus Reaching Process . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Literature Review Regarding Consensus . . . . . . . . . . . . . 6 1.2.2 General Consensus Framework . . . . . . . . . . . . . . . . . . . 7 1.2.3 The Core Problem in the Consensus Reaching Process . . . 9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Consensus with Utility Preferences . . . . . . . . . . . . . . . . . . . . . . . . 17 2.1 Basic Idea of the Consensus with Minimum Adjustments . . . . . . 17 2.1.1 Consensus with Minimum Adjustments or Cost . . . . . . . . 17 2.1.2 Internal Aggregation Function . . . . . . . . . . . . . . . . . . . . 19 2.2 Consensus Under Aggregation Function . . . . . . . . . . . . . . . . . . 21 2.2.1 Minimum Cost Consensus Model. . . . . . . . . . . . . . . . . . 21 2.2.2 Maximum Expert Consensus Model . . . . . . . . . . . . . . . . 31 2.3 Comparison Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.3.1 Consensus Based on IR and DR Rules . . . . . . . . . . . . . . 42 2.3.2 Comparison Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 Consensus with Preference Relations. . . . . . . . . . . . . . . . . . . . . . . 49 3.1 Integrating Individual Consistency into Consensus . . . . . . . . . . . 49 3.2 Consensus with Multiplicative Preference Relations . . . . . . . . . . 50 3.2.1 Prioritization and Aggregation Methods. . . . . . . . . . . . . . 51 3.2.2 Consistency and Consensus in Multiplicative Preference Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2.3 Iteration-Based Consensus Model. . . . . . . . . . . . . . . . . . 54 3.3 Consensus with Additive Preference Relations . . . . . . . . . . . . . . 66 ix x Contents 3.3.1 Consistency and Consensus in Additive Preference Relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.2 LP-Based Consensus Model. . . . . . . . . . . . . . . . . . . . . . 68 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4 Consensus Under Linguistic Context. . . . . . . . . . . . . . . . . . . . . . . 77 4.1 Consensus Under the 2-tuple Linguistic Context. . . . . . . . . . . . . 77 4.1.1 Several Symbolic Linguistic Computational Models . . . . . 77 4.1.2 The Consensus Operator . . . . . . . . . . . . . . . . . . . . . . . . 82 4.1.3 Properties of the Operator . . . . . . . . . . . . . . . . . . . . . . . 91 4.2 Consensus Under Hesitant Linguistic Context . . . . . . . . . . . . . . 95 4.2.1 Hesitant Consensus Problem . . . . . . . . . . . . . . . . . . . . . 95 4.2.2 Hesitant Consensus Measure . . . . . . . . . . . . . . . . . . . . . 97 4.2.3 Minimizing the Adjusted Simple Terms . . . . . . . . . . . . . 98 4.2.4 Properties of the Hesitant Model . . . . . . . . . . . . . . . . . . 118 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 5 Consensus with Heterogeneous Preference Representation Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.1 Direct Consensus Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 5.1.1 Direct Consensus Framework. . . . . . . . . . . . . . . . . . . . . 127 5.1.2 Direct Selection Process . . . . . . . . . . . . . . . . . . . . . . . . 130 5.1.3 Direct Consensus Process . . . . . . . . . . . . . . . . . . . . . . . 134 5.1.4 Properties of the Direct Model. . . . . . . . . . . . . . . . . . . . 143 5.2 Prospect Theory Based Consensus Model . . . . . . . . . . . . . . . . . 147 5.2.1 Prospect Theory and Preference-Approval Structures. . . . . 147 5.2.2 Prospect Theory Based Consensus Framework. . . . . . . . . 149 5.2.3 Selection Process with Reference Points . . . . . . . . . . . . . 150 5.2.4 Consensus Process with Reference Points . . . . . . . . . . . . 153 5.2.5 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.3 Consensus with Minimum Adjustments Under Prospect Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 5.3.1 Minimum Adjustments with Reference Points . . . . . . . . . 166 5.3.2 Comparison Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 168 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6 Consensus in Multiple Attribute Decision Making . . . . . . . . . . . . . 173 6.1 Consensus Problem with Multiple Attributes . . . . . . . . . . . . . . . 173 6.2 Multiple Attribute Consensus Rules . . . . . . . . . . . . . . . . . . . . . 176 6.2.1 Distance-Based Consensus Rule. . . . . . . . . . . . . . . . . . . 176 6.2.2 Count-Based Consensus Rule. . . . . . . . . . . . . . . . . . . . . 180 6.3 Multiple Attribute Consensus Reaching Process . . . . . . . . . . . . . 183 6.3.1 The Interactive Consensus Reaching Process . . . . . . . . . . 183 6.3.2 Convergence Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 185 Contents xi 6.3.3 Mixing Use of Multiple Attribute Consensus Rules . . . . . 190 6.4 Numerical and Comparison Analysis. . . . . . . . . . . . . . . . . . . . . 191 6.4.1 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6.4.2 Comparison Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 195 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Description: