ebook img

connes-amenability of bidual and weighted semigroup algebras PDF

30 Pages·2006·0.2 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview connes-amenability of bidual and weighted semigroup algebras

MATH.SCAND.99(2006),217–246 CONNES-AMENABILITY OF BIDUAL AND WEIGHTED SEMIGROUP ALGEBRAS MATTHEWDAWS Abstract WeinvestigatethenotionofConnes-amenability,introducedbyRundein[10],forbidualalgebras andweightedsemigroupalgebras.WeprovidesomesimplificationstothenotionofaσWC-virtual diagonal,asintroducedin[13],especiallyinthecaseofthebidualofanArensregularBanach algebra.Weapplytheseresultstodiscrete, weighted, weaklycancellativesemigroupalgebras, showingthatthesebehaveinthesamewayasC∗-algebraswithregardsConnes-amenabilityof the bidual algebra. We also show that for each one of these cancellative semigroup algebras l1(S,ω),wehavethatl1(S,ω)isConnes-amenable(withrespecttothecanonicalpredualc0(S)) ifandonlyifl1(S,ω)isamenable,whichisinturnequivalenttoSbeinganamenablegroup,and theweightsatisfyingacertainrestrictivecondition.ThislatterpointwasfirstshownbyGrønbæk in[6],butweprovideaunifiedproof.Finally,weconsiderthehomologicalnotionofinjectivity, andshowthathere,weightedsemigroupalgebrasdonotbehavelikeC∗-algebras. 1. Introduction Wefirstfixsomenotation,following[2].ForaBanachspaceE,weletE(cid:2)beits dualspace,andforµ∈E(cid:2) andx ∈E,wewrite(cid:4)µ,x(cid:5)=µ(x)fornotational convenience. We then have the canonical map κE : E → E(cid:2)(cid:2) defined by (cid:4)κE(x),µ(cid:5) = (cid:4)µ,x(cid:5) for µ ∈ E(cid:2),x ∈ E. For Banach spaces E and F, we writeB(E,F)fortheBanachspaceofboundedlinearmapsbetweenE and F;wewriteB(E,E) = B(E);wewriteT(cid:2) fortheadjointofT ∈ B(E,F). WeusethenotionofBanachleftA-modules,rightmodulesandbimodulesas in[2]. A linear map d : A → E between a Banach algebra A and a Banach A-bimodule E is a derivation if d(ab) = a ·d(b)+d(a)·b for a,b ∈ A. For x ∈ E, we define δx : A → E by δx(a) = a ·x −x ·a. Then δx is a derivation,calledaninnerderivation. A Banach algebra A is amenable if every derivation d : A → E(cid:2) to a dualbimoduleisinner.Forexample,aC∗-algebraA isamenableifandonly ifA isnuclear; agroupalgebraL1(G)isamenableifandonlyifthelocally compactgroupGisamenable(whichisthemotivatingexample).See[14]for furtherdiscussionsofamenabilityandrelatednotions. ReceivedSeptember5,2005. 218 matthewdaws LetEbeaBanachspaceandF aclosedsubspaceofE.Thenwenaturally, isometrically,identifyF(cid:2) withE(cid:2)/F◦,where F◦ ={µ∈E(cid:2) :(cid:4)µ,x(cid:5)=0 (x ∈F)}. Definition1.1. LetEbeaBanachspaceandE∗beaclosedsubspaceof E(cid:2). Let πE∗ : E(cid:2)(cid:2) → E(cid:2)(cid:2)/E∗◦ be the quotient map, and suppose that πE∗ ◦κE isanisomorphismfromE toE(cid:2).ThenwesaythatE isadualBanachspace ∗ withpredualE∗. WhenA isadualBanachspacewithpredualA∗whichisalsoasubmodule ofA(cid:2) wesaythatA isadualBanachalgebra. ForadualBanachalgebraA withpredualA∗, wehenceforthidentifyA withA∗(cid:2).Thuswegetaweak∗-topologyonA,whichwedenotebyσ(A,A∗). AsnoticedbyRunde(see[10]),thereareveryfewBanachalgebraswhich arebothdualandamenable.ForvonNeumannalgebras,whicharethemotiv- atingexampleofdualBanachalgebras,thereisaweakernotionofamenablity, called Connes-amenability, which has a natural generalisation to the case of dualBanachalgebras. Definition1.2. LetA beadualBanachalgebrawithpredualA∗.LetE be a Banach A-bimodule.Then E(cid:2) is a w∗-Banach A-bimodule if, for each µ∈E(cid:2),themaps (cid:1) a·µ, A →E(cid:2), a (cid:14)→ µ·a areσ(A,A∗)−σ(E(cid:2),E)continuous. Then (A,A∗) is Connes-amenable if, for each w∗-Banach A-bimodule E(cid:2),eachderivationd :A →E(cid:2),whichisσ(A,A∗)−σ(E(cid:2),E)continuous, isinner. GivenaBanachalgebraA,wedefinebilinearmapsA(cid:2)(cid:2)×A(cid:2) → A(cid:2) and A(cid:2)×A(cid:2)(cid:2) →A(cid:2) by (cid:4)(cid:26)·µ,a(cid:5)=(cid:4)(cid:26),µ·a(cid:5) (cid:4)µ·(cid:26),a(cid:5)=(cid:4)(cid:26),a·µ(cid:5) ((cid:26)∈A(cid:2)(cid:2),µ∈A(cid:2),a ∈A). Wethendefinetwobilinearmaps(cid:1),♦:A(cid:2)(cid:2)×A(cid:2)(cid:2) →A(cid:2)(cid:2) by (cid:4)(cid:26)(cid:1)(cid:27),µ(cid:5)=(cid:4)(cid:26),(cid:27)·µ(cid:5) (cid:4)(cid:26)♦(cid:27),µ(cid:5)=(cid:4)(cid:27),µ·(cid:26)(cid:5) ((cid:26),(cid:27) ∈A(cid:2)(cid:2),µ∈A(cid:2)). Wecancheckthat(cid:1)and♦areactuallyalgebraproducts,calledthefirst and secondArensproductsrespectively.ThenκA :A →A(cid:2)(cid:2) isahomomorphism with respect to eitherArens product.When (cid:1) = ♦, we say that A is Arens regular. In particular, when A isArens regular, we may check that A(cid:2)(cid:2) is a dualBanachalgebrawithpredualA(cid:2). connes-amenabilityofbidualandweightedsemigroup... 219 Theorem 1.3. Let A be an Arens regular Banach algebra. When A is amenable, A(cid:2)(cid:2) is Connes-amenable. If κA(A) is an ideal in A(cid:2)(cid:2) and A(cid:2)(cid:2) is Connes-amenable,thenA isamenable. Let A be a C∗-algebra. Then A is Arens regular, and A(cid:2)(cid:2) is Connes- amenableifandonlyifA isamenable. Proof. Thefirststatementsare[10,Corollary4.3]and[10,Theorem4.4]. ThestatementaboutC∗-algebrasisdetailedin[14,Chapter6]. AnotherclassofConnes-amenabledualBanachalgebrasisgivenbyRunde in[11],whereitisshownthatM(G),themeasurealgebraofalocallycompact groupG,isamenableifandonlyifGisamenable. The organisation of this paper is as follows. Firstly, we study intrinsic characterisations of amenability, recalling a result of Runde from [13]. We then simplify these conditions in the case ofArens regular Banach algebras. We recall the notion of an injective module, and quickly note how Connes- amenabilitycanbephrasedinthislanguage.Thefinalsectionofthepaperthen appliestheseideastoweightedsemigroupalgebras.Wefinishwithsomeopen questions. 2. Characterisations of amenability LetEandF beBanachspaces,andformthealgebraictensorproductE⊗F. WecannormE⊗F withtheprojectivetensornorm,definedas (cid:1) (cid:3) (cid:2)n (cid:2)n (cid:17)u(cid:17)π =inf (cid:17)xk(cid:17)(cid:17)yk(cid:17):u= xk ⊗yk (u∈E⊗F). k=1 k=1 Thenthecompletionof(E⊗F,(cid:17)·(cid:17)π)isE⊗(cid:4)F,theprojectivetensorproduct ofE andF. LetA beaBanachalgebra.ThenA ⊗(cid:4)A isaBanachA-bimoduleforthe moduleactionsgivenby a·(b⊗c)=ab⊗c, (b⊗c)·a =b⊗ca (a ∈A,b⊗c ∈A ⊗(cid:4)A). Define"A :A⊗(cid:4)A →A by"A(a⊗b)=ab.Then"A isanA-bimodule homomorphism.LetM ∈(A ⊗(cid:4)A)(cid:2)(cid:2) besuchthat a·M =M ·a, "(cid:2)(cid:2) (M)·a =κ (a) (a ∈A). A A The M is a virtual diagonal for A. It is well-known that A is an amenable BanachalgebraifandonlyifA hasavirtualdiagonal. 220 matthewdaws Definition 2.1. Let A be a dual Banach algebra with predual A∗, and let E be a Banach A-bimodule.Then x ∈ σWC(E) if and only if the maps A →E, (cid:5)a·x, a (cid:14)→ x ·a areσ(A,A∗)−σ(E,E(cid:2))continuous. It is clear that σWC(E) is a closed submodule of E. The A-bimodule homomorphism"A hasadjoint"(cid:2)A :A(cid:2) →(A⊗(cid:4)A)(cid:2).In[13,Corollary4.6] itisshownthat"(cid:2)A(A∗)⊆σWC((A⊗(cid:4)A)(cid:2)).Consequently,wecanview"(cid:2)A asamapA∗ →σWC((A⊗(cid:4)A)(cid:2)),andhenceview"(cid:2)A(cid:2) asamapσWC((A⊗(cid:4) A)(cid:2))(cid:2) →A∗(cid:2) =A,denotedby"˜A.LetM ∈σWC((A ⊗(cid:4)A)(cid:2))(cid:2)besuchthat a·M =M ·a, a"˜ (M)=a (a ∈A). A TheM isaσWC-virtualdiagonalforA. Theorem2.2. LetA beadualBanachalgebrawithpredualA∗.Thenthe followingareequivalent: (1) A isConnes-amenable; (2) A hasaσWC-virtualdiagonal. Proof. Thisis[13,Theorem4.8]. In particular, we see that a Connes-amenable Banach algebra is unital (which can of course be shown in an elementary fashion, as in [10, Proposi- tion4.1]). 3. Connes-amenability for biduals of algebras Recall Gantmacher’s theorem, which states that a bounded linear map T : E → F between Banach spaces E and F is weakly compact if and only if T(cid:2)(cid:2)(E(cid:2)(cid:2)) ⊆ κF(F).We write W(E,F) for the collection of weakly compact operatorsinB(E,F). Lemma 3.1. Let E be a dual Banach space with predual E∗, let F be a Banachspace,andletT ∈B(E,F(cid:2)).Thenthefollowingareequivalent,and inparticulareachimplythatT isweaklycompact: (1) T isσ(E,E∗)−σ(F(cid:2),F(cid:2)(cid:2))continuous; (2) T(cid:2)(F(cid:2)(cid:2))⊆κE (E∗); ∗ (3) thereexistsS ∈W(F,E∗)suchthatS(cid:2) =T. Proof. That(1)and(2)areequivalentisstandard. connes-amenabilityofbidualandweightedsemigroup... 221 Supposethat(2)holds,sothatwemaydefineS ∈B(F,E∗)byκE ◦S = ∗ T(cid:2)◦κF.Then,forx ∈E andy ∈F,wehave (cid:4)x,S(y)(cid:5)=(cid:4)T(cid:2)(κ (y)),x(cid:5)=(cid:4)T(x),y(cid:5), F so that S(cid:2) = T. Then S(cid:2)(cid:2)(F(cid:2)(cid:2)) = T(cid:2)(F(cid:2)(cid:2)) ⊆ κE (E∗), so that S is weakly ∗ compact,byGantmacher’sTheorem,sothat(3)holds. Conversely, if (3) holds, as S is weakly compact, we have κE∗(E∗) ⊇ S(cid:2)(cid:2)(F(cid:2)(cid:2))=T(cid:2)(F(cid:2)(cid:2)),sothat(2)holds. ItisstandardthatforBanachspacesEandF,wehave(E⊗(cid:4)F)(cid:2) =B(F,E(cid:2)) withdualitydefinedby (cid:4)T,x ⊗y(cid:5)=(cid:4)T(y),x(cid:5) (T ∈B(F,E(cid:2)),x ⊗y ∈E⊗(cid:4)F). Then we see, for a,b,c ∈ A and T ∈ (A ⊗(cid:4) A)(cid:2) = B(A,A(cid:2)), that (cid:4)a · T,b⊗c(cid:5) = (cid:4)T(ca),b(cid:5)andthat(cid:4)T ·a,b⊗c(cid:5) = (cid:4)T(c),ab(cid:5) = (cid:4)T(c)·a,b(cid:5) sothat (1) (a·T)(c)=T(ca), (T ·a)(c)=T(c)·a (a,c ∈A,T :A →A(cid:2)). Notice that we could also have defined (E ⊗(cid:4) F)(cid:2) to be B(E,F(cid:2)). This wouldinduceadifferentbimodulestructureonB(A,A(cid:2)),butweshallseein Section4thatourchosenconventionseemsmorenaturalforthetaskathand. Proposition3.2. LetA beadualBanachalgebrawithpredualA∗.For T ∈B(A,A(cid:2))=(A ⊗(cid:4)A)(cid:2),definemapsφr,φl :A ⊗(cid:4)A →A(cid:2) by φ (a⊗b)=T(cid:2)κ (a)·b, φ(a⊗b)=a·T(b) (a⊗b ∈A ⊗(cid:4)A). r A l ThenT ∈σWC(B(A,A(cid:2)))ifandonlyifφr andφl areweaklycompactand haverangescontainedinκA (A∗). ∗ Proof. For T ∈ B(A,A(cid:2)) = (A ⊗(cid:4)A)(cid:2), define RT,LT : A → (A ⊗(cid:4) A)(cid:2) by RT(a) = a · T and LT = T · a, for a ∈ A. By definition, T ∈ σWC(B(A,A(cid:2)))ifandonlyifRT andLT areσ(A,A∗)−σ(B(A,A(cid:2)), (A⊗(cid:4)A)(cid:2)(cid:2))continuous.ByLemma3.1,thisisifandonlyifthereexistϕr,ϕl ∈ W(A ⊗(cid:4)A,A∗)suchthatϕr(cid:2) =RT andϕl(cid:2) =LT. Fora⊗b ∈A ⊗(cid:4)A andc ∈A,weseethat (cid:4)c,ϕ (a⊗b)(cid:5)=(cid:4)R (c),a⊗b(cid:5)=(cid:4)c·T,a⊗b(cid:5)=(cid:4)T(bc),a(cid:5) r T =(cid:4)T(cid:2)κ (a),bc(cid:5)=(cid:4)T(cid:2)κ (a)·b,c(cid:5)=(cid:4)φ (a⊗b),c(cid:5), A A r (cid:4)c,ϕ(a⊗b)(cid:5)=(cid:4)L (c),a⊗b(cid:5)=(cid:4)T ·c,a⊗b(cid:5)=(cid:4)T(b),ca(cid:5) l T =(cid:4)a·T(b),c(cid:5)=(cid:4)φ(a⊗b),c(cid:5). l 222 matthewdaws Thus κA ◦ ϕr = φr and κA ◦ ϕl = φl. Consequently, we see that T ∈ ∗ ∗ σWC(B(A,A(cid:2)))ifandonlyifφr andφlareweaklycompactandtakevalues inκA (A∗). ∗ Thefollowingdefinitionis[13,Definition4.1]. Definition 3.3. Let A be a Banach algebra and let E be a Banach A- bimodule.Anelementx ∈E isweaklyalmostperiodicifthemaps (cid:5) a·x, A →E, a (cid:14)→ x ·a areweaklycompact.ThecollectionofweaklyalmostperiodicelementsinE isdenotedbyWAP(E). Lemma 3.4. Let A be a Banach algebra, and let T ∈ B(A,A(cid:2)) = (A⊗(cid:4)A)(cid:2).Letφr,φl :A⊗(cid:4)A →A(cid:2)beasabove.ThenT ∈WAP(B(A,A(cid:2))) ifandonlyifφr andφl areweaklycompact. Proof. LetRT,LT :A →B(A,A(cid:2))beasintheaboveproof.Bydefin- ition, T ∈ WAP(B(A,A(cid:2))) if and only if LT and RT are weakly compact. Wecanverifythat φ(cid:2) ◦κ =R , φ(cid:2)◦κ =L , R(cid:2) ◦κ =φ , L(cid:2) ◦κ =φ, r A T l A T T A⊗(cid:4)A r T A⊗(cid:4)A l whichcompletestheproof. Corollary3.5. LetA beaunital,dualBanachalgebrawithpredualA∗, and let T ∈ B(A,A(cid:2)) = (A ⊗(cid:4) A)(cid:2).The following are equivalent, and, in particular,eachimplythatT isweaklycompact: (1) T ∈σWC(B(A,A(cid:2))); (2) T(A)⊆κA (A∗),T(cid:2)(κA(A))⊆κA (A∗),andT∈σWC(B(A,A(cid:2))); ∗ ∗ (3) T(A)⊆κA (A∗),T(cid:2)(κA(A))⊆κA (A∗),andT∈WAP(B(A,A(cid:2))). ∗ ∗ Proof. Let eA be the unit of A, so that for a ∈ A, we have T(a) = φl(eA ⊗a) and T(cid:2)κA(a) = φr(a ⊗eA), which shows that (1) implies (2); clearly(2)implies(1). As A∗ is an A-bimodule, (2) and (3) are equivalent by an application of Lemma3.4andProposition3.2. Theorem3.6. LetA beadualBanachalgebrawithpredualA∗.ThenA isConnes-amenableifandonlyifA isunitalandthereexistsM ∈(A⊗(cid:4)A)(cid:2)(cid:2) suchthat: (1) (cid:4)M,a·T −T ·a(cid:5)=0fora ∈A andT ∈σWC(W(A,A(cid:2))); (2) κA(cid:2) "(cid:2)A(cid:2) (M)=eA,whereeA istheunitofA. ∗ connes-amenabilityofbidualandweightedsemigroup... 223 Proof. As σWC((A ⊗(cid:4) A)(cid:2))(cid:2) is a quotient of (A ⊗(cid:4) A)(cid:2)(cid:2), this is just a re-statementofTheorem2.2. When A is an Arens regular Banach algebra, A(cid:2)(cid:2) is a dual Banach al- gebrawithcanonicalpredualA(cid:2).Inthiscase,wecanmakesomesignificant simplificationsinthecharacterisationofwhenA(cid:2)(cid:2) isConnes-amenable. ForaBanachalgebraA,wedefinethemapκA⊗κA :A⊗(cid:4)A →A(cid:2)(cid:2)⊗(cid:4)A(cid:2)(cid:2) by (κ ⊗κ )(a⊗b)=κ (a)⊗κ (b) (a⊗b ∈A ⊗(cid:4)A). A A A A WeturnA(cid:2)(cid:2)⊗(cid:4)A(cid:2)(cid:2)intoaBanachA-bimoduleinthecanonicalway.ThenκA⊗ κA isanA-bimodulehomomorphism.Thefollowingisasimpleverification. Lemma3.7. LetA beaBanachalgebra.Themap ιA :B(A,A(cid:2))→B(A(cid:2)(cid:2),A(cid:2)(cid:2)(cid:2)); T (cid:14)→T(cid:2)(cid:2), is an A-bimodule homomorphism which is an isometry onto its range. Fur- thermore,wehavethat(κA⊗κA)(cid:2)◦ιA =IB(A,A(cid:2)).DefineρA :A(cid:2)(cid:2)⊗(cid:4)A(cid:2)(cid:2) → (A ⊗(cid:4)A)(cid:2)(cid:2) by (cid:4)ρ (τ),T(cid:5)=(cid:4)T(cid:2)(cid:2),τ(cid:5) (τ ∈A(cid:2)(cid:2)⊗(cid:4)A(cid:2)(cid:2),T ∈B(A,A(cid:2))=(A ⊗(cid:4)A)(cid:2)). A Then ρA is a norm-decreasing A-bimodule homomorphism which satisfies ρA ◦(κA ⊗κA)=κA⊗(cid:4)A. For a Banach algebra A, it is clear that W(A,A(cid:2)) is a sub-A-bimodule ofB(A,A(cid:2))=(A ⊗(cid:4)A)(cid:2). Theorem 3.8. Let A be anArens regular Banach algebra such that A(cid:2)(cid:2) is unital, and let T ∈ B(A(cid:2)(cid:2),A(cid:2)(cid:2)(cid:2)) = (A(cid:2)(cid:2) ⊗(cid:4) A(cid:2)(cid:2))(cid:2). Then the following are equivalent: (1) T ∈ σWC(B(A(cid:2)(cid:2),A(cid:2)(cid:2)(cid:2))), where we treat B(A(cid:2)(cid:2),A(cid:2)(cid:2)(cid:2)) as an A(cid:2)(cid:2)- bimodule; (2) T=S(cid:2)(cid:2)forsomeS∈WAP(W(A,A(cid:2))),wherenowwetreatW(A,A(cid:2)) asanA-bimodule. Proof. WeapplyCorollary3.5toA(cid:2)(cid:2),sothat(1)isequivalenttoT being weakly compact, T(A(cid:2)(cid:2)) ⊆ κA(cid:2)(A(cid:2)), T(cid:2)(κA(cid:2)(cid:2)(A(cid:2)(cid:2))) ⊆ κA(cid:2)(A(cid:2)), and T ∈ WAP(B(A(cid:2)(cid:2),A(cid:2)(cid:2)(cid:2))). Thus, if (1) holds, then there exists T ∈ W(A(cid:2)(cid:2),A(cid:2)) 0 suchthatT =κA(cid:2)◦T0,andthereexistsT1 ∈W(A(cid:2)(cid:2),A(cid:2))suchthatT(cid:2)◦κA(cid:2)(cid:2) = κA(cid:2)◦T1.LetS =T0◦κA ∈W(A,A(cid:2)).Asbefore,wecancheckthatS(cid:2) =T1 and that S(cid:2)(cid:2) = T. We know that the maps LT,RT : A(cid:2)(cid:2) → B(A(cid:2)(cid:2),A(cid:2)(cid:2)(cid:2)), 224 matthewdaws defined by LT((cid:26)) = T ·(cid:26) and RT((cid:26)) = (cid:26)·T for (cid:26) ∈ A(cid:2)(cid:2), are weakly compact. Define LS,RS : A → B(A,A(cid:2)) is an analogous manner, using S ∈W(A,A(cid:2)).Fora ∈A,S ·a ∈W(A,A(cid:2)),sofor(cid:27) ∈A(cid:2)(cid:2) andb ∈A, (cid:4)(S ·a)(cid:2)((cid:27)),b(cid:5)=(cid:4)(cid:27),(S ·a)(b)(cid:5)=(cid:4)(cid:27),S(b)·a(cid:5) =(cid:4)a·(cid:27),S(b)(cid:5)=(cid:4)S(cid:2)(a·(cid:27)),b(cid:5). Thus,fora ∈A and(cid:26),(cid:27) ∈A(cid:2)(cid:2),wehavethat (cid:4)ι (L (a))((cid:26)),(cid:27)(cid:5)=(cid:4)(S ·a)(cid:2)(cid:2)((cid:26)),(cid:27)(cid:5)=(cid:4)(cid:26),S(cid:2)(a·(cid:27))(cid:5)=(cid:4)S(cid:2)(cid:2)((cid:26))·a,(cid:27)(cid:5), A S sothatιA(LS(a))((cid:26))=S(cid:2)(cid:2)((cid:26))·a,andhencethatιA(LS(a))=S(cid:2)(cid:2)·a =T·a = T ·κA(a)=LT(κA(a)).ThuswehavethatLS =(κA ⊗κA)(cid:2)◦RT ◦κA,so thatLS isweaklycompact.AsimilarcalculationshowsthatRS isalsoweakly compact,sothatS ∈WAP(W(A,A(cid:2))).Thisshowsthat(1)implies(2). Conversely,if(2)holds,thenLSandRSareweaklycompact.AsSisweakly compact, T(A(cid:2)(cid:2)) = S(cid:2)(cid:2)(A(cid:2)(cid:2)) ⊆ κA(cid:2)(A(cid:2))andT(cid:2)(κA(cid:2)(cid:2)(A(cid:2)(cid:2))) = S(cid:2)(cid:2)(cid:2)(κA(cid:2)(cid:2)(A(cid:2)(cid:2))) = κA(cid:2)(S(cid:2)(A(cid:2)(cid:2))) ⊆ κA(cid:2)(A(cid:2)),andT isweaklycompact.Thus,toshow(1),we arerequiredtoshowthatLT andRT areweaklycompact. Fora,b ∈A and(cid:26)∈A(cid:2),wehave (cid:4)(a·S)(cid:2)((cid:26)),b(cid:5)=(cid:4)(cid:26),S(ba)(cid:5)=(cid:4)a·S(cid:2)((cid:26)),b(cid:5). Then,for(cid:26),(cid:27) ∈A(cid:2)(cid:2) anda ∈A,wethushave (cid:4)R(cid:2)(ρ ((cid:26)⊗(cid:27))),a(cid:5)=(cid:4)(a·S)(cid:2)(cid:2),(cid:26)⊗(cid:27)(cid:5)=(cid:4)(a·S)(cid:2)(cid:2)((cid:27)),(cid:26)(cid:5) S A =(cid:4)(cid:27),a·S(cid:2)((cid:26))(cid:5)=(cid:4)(cid:27) ·a,S(cid:2)((cid:26))(cid:5) =(cid:4)(cid:27) (cid:1)κ (a),S(cid:2)((cid:26))(cid:5)=(cid:4)S(cid:2)((cid:26))·(cid:27),a(cid:5). A HenceweseethatRS(cid:2)(ρA((cid:26)⊗(cid:27))) = S(cid:2)((cid:26))·(cid:27).LetU = RS(cid:2) ◦ρA : A(cid:2)(cid:2) ⊗(cid:4) A(cid:2)(cid:2) →A(cid:2),sothatasRS isweaklycompact,soisU.Then,for(cid:26),(cid:27),- ∈A(cid:2)(cid:2), wehavethat (cid:4)U(cid:2)(-),(cid:26)⊗(cid:27)(cid:5)=(cid:4)-,S(cid:2)((cid:26))·(cid:27)(cid:5)=(cid:4)(cid:27) ♦-,S(cid:2)((cid:26))(cid:5) =(cid:4)S(cid:2)(cid:2)((cid:27) (cid:1)-),(cid:26)(cid:5)=(cid:4)(-·S(cid:2)(cid:2))((cid:27)),(cid:26)(cid:5), so that U(cid:2)(-) = - · T, that is, U(cid:2) = RT, so that RT is weakly compact. Similarly,wecanshowthatLT isweaklycompact,completingtheproof. Theorem 3.9. Let A be an Arens regular Banach algebra. Then A(cid:2)(cid:2) is Connes-amenableifandonlyifA(cid:2)(cid:2) isunitalandthereexistsM ∈(A ⊗(cid:4)A)(cid:2)(cid:2) suchthat: connes-amenabilityofbidualandweightedsemigroup... 225 (1) "(cid:2)A(cid:2) (M)=eA(cid:2)(cid:2),theunitofA(cid:2)(cid:2); (2) (cid:4)M,a·T −T ·a(cid:5)=0foreacha ∈A andeachT ∈WAP(W(A,A(cid:2))). Proof. ByTheorem3.6,wewishtoshowthattheexistenceofsuchanM isequivalenttotheexistenceofN ∈(A(cid:2)(cid:2)⊗(cid:4)A(cid:2)(cid:2))(cid:2)(cid:2) suchthat: (N1) κA(cid:2) (cid:2)"(cid:2)A(cid:2) (cid:2)(cid:2)(N)=eA(cid:2)(cid:2); (N2) (cid:4)N,(cid:26)·S −S ·(cid:26)(cid:5)=0foreach(cid:26)∈A(cid:2)(cid:2) andeach S ∈σWC(B(A(cid:2)(cid:2),A(cid:2)(cid:2)(cid:2))). We can verify that ιA ◦ "(cid:2)A = "(cid:2)A(cid:2)(cid:2) ◦ κA(cid:2), so that (N1) is equivalent to "(cid:2)A(cid:2) ι(cid:2)A(N) = eA(cid:2)(cid:2). For S ∈ σWC(B(A(cid:2)(cid:2),A(cid:2)(cid:2)(cid:2))), we know that S = T(cid:2)(cid:2) for some T ∈ WAP(W(A,A(cid:2))), byTheorem 3.8.That is, the maps φr and φl, formedusingT asinProposition3.2,areweaklycompact.Then,for(cid:26)∈A(cid:2)(cid:2), φ(cid:2)((cid:26)),φ(cid:2)((cid:26))∈B(A,A(cid:2)),andwecancheckthat r l φ(cid:2)((cid:26))(a)=κ(cid:2) T(cid:2)(cid:2)(a·(cid:26)), φ(cid:2)((cid:26))(a)=T(a)·(cid:26) (a ∈A). r A l Thenφ(cid:2)((cid:26))(cid:2),φ(cid:2)((cid:26))(cid:2) ∈B(A(cid:2)(cid:2),A(cid:2))arethemaps r l φ(cid:2)((cid:26))(cid:2)((cid:27))=(cid:26)·T(cid:2)((cid:27)), φ(cid:2)((cid:26))(cid:2)((cid:27))=T(cid:2)((cid:26)(cid:1)(cid:27)) ((cid:27) ∈A(cid:2)(cid:2)), r l wherewerememberthatT(cid:2)(cid:2)(A(cid:2)(cid:2)) ⊆ κA(cid:2)(A(cid:2)).Consequentlyφr(cid:2)((cid:26))(cid:2)(cid:2),φl(cid:2)((cid:26))(cid:2)(cid:2) ∈B(A(cid:2)(cid:2),A(cid:2)(cid:2)(cid:2))aregivenby φ(cid:2)((cid:26))(cid:2)(cid:2)((cid:27))=T(cid:2)(cid:2)((cid:27) (cid:1)(cid:26)), φ(cid:2)((cid:26))(cid:2)(cid:2)((cid:27))=T(cid:2)(cid:2)((cid:27))·(cid:26) ((cid:27) ∈A(cid:2)(cid:2)), r l whereA(cid:2)(cid:2)(cid:2)isanA(cid:2)(cid:2)-bimodule,asA(cid:2)(cid:2)isArensregular.Thatis,φ(cid:2)((cid:26))(cid:2)(cid:2) =(cid:26)·S r andφ(cid:2)((cid:26))(cid:2)(cid:2) =S ·(cid:26).Hence(N2)isequivalentto l 0 =(cid:4)N,φr(cid:2)((cid:26))(cid:2)(cid:2)−φl(cid:2)((cid:26))(cid:2)(cid:2)(cid:5)=(cid:4)N,ιA(φr(cid:2)((cid:26))−φl(cid:2)((cid:26)))(cid:5) =(cid:4)ι(cid:2) (N),φ(cid:2)((cid:26))−φ(cid:2)((cid:26))(cid:5), A r l foreach(cid:26)∈A(cid:2)(cid:2) andS ∈σWC(B(A(cid:2)(cid:2),A(cid:2)(cid:2)(cid:2))).Thatis,(N2)isequivalentto φ(cid:2)(cid:2)ι(cid:2) (N)−φ(cid:2)(cid:2)ι(cid:2) (N)=0 (S ∈σWC(B(A(cid:2)(cid:2),A(cid:2)(cid:2)(cid:2)))). r A l A As φr and φl are weakly compact, φr(cid:2)(cid:2) and φl(cid:2)(cid:2) take values in κA(cid:2)(A(cid:2)), and so(N2)isequivalentto 0 =(cid:4)φr(cid:2)(cid:2)ι(cid:2)A(N)−φl(cid:2)(cid:2)ι(cid:2)A(N),κA(a)(cid:5)=(cid:4)ι(cid:2)A(N),φr(cid:2)(κA(a))−φl(cid:2)(κA(a))(cid:5), for each a ∈ A and each S ∈ σWC(B(A(cid:2)(cid:2),A(cid:2)(cid:2)(cid:2))). However, φr(cid:2)(κA(a))− φl(cid:2)(κA(a))=a·T −T ·a,sothat(N2)isequivalentto 0 =(cid:4)ι(cid:2) (N),a·T −T ·a(cid:5) (a ∈A), A 226 matthewdaws foreachT ∈W(A,A(cid:2))suchthatφr andφl areweaklycompact. Thuswehaveestablishedthat(N1)holdsforN ifandonlyif(1)holdsfor M =ι(cid:2) (N),andthat(N2)holdsforNifandonlyif(2)holdsforM =ι(cid:2) (N), A A completingtheproof. WeimmediatelyseethatA amenableimpliesthatA(cid:2)(cid:2)isConnes-amenable. Furthermore, if A is itself a dual Banach algebra, then Corollary 3.5 shows thatifA(cid:2)(cid:2)isConnes-amenable,thenA isConnes-amenable:noticethatifeA(cid:2)(cid:2) istheunitofA(cid:2)(cid:2),then (cid:4)κ(cid:2) (e )a,µ(cid:5)=(cid:4)e ·a,κ (µ)(cid:5) A∗ A(cid:2)(cid:2) A(cid:2)(cid:2) A∗ =(cid:4)κ (a),κ (µ)(cid:5)=(cid:4)a,µ(cid:5) (a ∈A,µ∈A ), A A ∗ ∗ sothatκA(cid:2) (eA(cid:2)(cid:2))istheunitofA. ∗ 4. Injectivity of the predual module LetA beaBanachalgebra,andletE andF beBanachleftA-modules.We write AB(E,F) for the closed subspace of B(E,F) consisting of left A- modulehomomorphisms,andsimilarlywriteBA(E,F)andABA(E,F)for rightA-moduleandA-bimodulehomomorphisms,respectively.Wesaythat T ∈ AB(E,F) is admissible if both the kernel and image of T are closed, complemented subspaces of, respectively, E and F. If T is injective, this is equivalenttotheexistenceofS ∈B(F,E)suchthatST =IE. Definition4.1. LetA beaBanachalgebra,andletEbeaBanachleftA- module.ThenEisinjectiveif,wheneverF andGareBanachleftA-modules, θ ∈ AB(F,G)isinjectiveandadmissible, andσ ∈ AB(F,E), thereexists ρ ∈AB(G,E)withρ ◦θ =σ. WesaythatE isleft-injectivewhenwewishtostressthatwearetreating E asaleftmodule.Similardefinitionsholdforrightmodulesandbimodules (writtenright-injectiveandbi-injectivewherenecessary). Let A be a Banach algebra, let E be a Banach left A-module, and turn B(A,E)intoaleftA-modulebysetting (a·T)(b)=T(ba) (a,b ∈A,T ∈B(A,E)). ThenthereisacanonicalleftA-modulehomomorphismι : E → B(A,E) givenby ι(x)(a)=a·x (a ∈A,x ∈E). Notice that if E is a closed submodule of A(cid:2), then B(A,E) is a closed submoduleof(A⊗(cid:4)A)(cid:2) = B(A,A(cid:2)),andιistherestrictionof"(cid:2) : A(cid:2) → A B(A,A(cid:2))toE.

Description:
We also show that for each one of these cancellative semigroup algebras and show that here, weighted semigroup algebras do not behave like C. ∗ .. result is useful, as it allows us to work with A and not its unitisation (which.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.