History of Mathematics Education Ole Ravn Ole Skovsmose Connecting Humans to Equations A Reinterpretation of the Philosophy of Mathematics History of Mathematics Education Series Editors Nerida F. Ellerton Illinois State University Normal, IL, USA M. A. (Ken) Clements Illinois State University Normal, IL, USA More information about this series at http://www.springer.com/series/13545 Ole Ravn • Ole Skovsmose Connecting Humans to Equations A Reinterpretation of the Philosophy of Mathematics Ole Ravn Ole Skovsmose Department of Learning and Philosophy Department of Learning and Philosophy Aalborg University Aalborg University Aalborg, Denmark Aalborg, Denmark Department of Mathematics Education State University of São Paulo (Universidade Estadual Paulista, Unesp) São Paulo, Brazil ISSN 2509-9736 ISSN 2509-9744 (electronic) History of Mathematics Education ISBN 978-3-030-01336-3 ISBN 978-3-030-01337-0 (eBook) https://doi.org/10.1007/978-3-030-01337-0 Library of Congress Control Number: 2018959751 © Springer Nature Switzerland AG 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Acknowledgements On the following pages we have attempted to present some of the most important posi- tions in the philosophy of mathematics. At the same time, we have tried to add new dimensions to this special domain of philosophy. It is our hope that our presentation can help to broaden the conception of mathematics as a general human concern. We see mathematics as an integral part of human social life, meaning that a philosophy of mathematics turns relevant to any kind of social theorising. In 2011 we published the book Matematikfilosofi in Danish. The present book is not a translation of the Danish version; it includes reformulations, specifications and additions. During the process we realised that we were working with a new manuscript. We have received help and comments from many people. We want to thank Ana Carolina Faustino, Denival Biotto Filho, Peter Gates, Renato Marcone, Raquel Milani, Amanda Queiroz Moura, João Luiz Muzinatti, Miriam Godoy Penteado, Marianne Ravn, Guilherme Henrique Gomes da Silva, Lucas Penteado Lopes da Silva, Paola Valero, and Keiko Yasukawa for all their support. Finally we want to thank Sarah Freire-Gibb and the good people at The Golden Pen for preparing the manuscript for the publisher and Guilherme Francisco Ferreira for mak- ing the figures and tables. Aalborg, 2018 Ole Ravn and Ole Skovsmose v Contents Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Abstracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii Part I Where is Mathematics? 1 Mathematics in Eternity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Platonism after Plato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Platonism before Plato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Plato’s Platonism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Axiomatisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Euclid’s Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 Mathematics in Nature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Celestial Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Circles and Ellipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Earthly Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Mathematics Everywhere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Unnatural Mathematics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Mathematics in Mind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Mathematics as Mental Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Mathematics as Associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Mathematics as Forms of Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Incomprehensible Mathematics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Part II How Certain is Mathematics? 4 A Solid House of Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Frege’s Criticism of Former Philosophy of Mathematics . . . . . . . . . . . . . . . . . . . . . . . . 56 Begriffsschrift—A Philosophic Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Begriffsschrift—A Logical System of Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Begriffsschrift—A Farewell to Subjects with Predicates . . . . . . . . . . . . . . . . . . . . . . . . . 61 Mathematics as Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 A Mind-Blowing Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Principia Mathematica—A Begriffsschrift after the Blow . . . . . . . . . . . . . . . . . . . . . . . 66 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 vii viii Contents 5 The Magnificent Disaster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Tables, Chairs and Beer Mugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Mathematics about Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 The Systems Are Not What They Seem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Gödel’s Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6 Mathematics Without Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Tractatus: What is Science? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Tractatus: What is a Tautology? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Tractatus: What Can be Said? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Logical Positivism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Part III How Social is Mathematics? 7 Mathematics as Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Brouwer’s Intuitionism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Beyond the Border of Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Intuitionism on a Fine Summer Day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Implications for Doing Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 8 Mathematics as Dialogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Popper: Conjectures and Refutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Lakatos: Proofs and Refutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Euler’s Polyhedron Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 The Method of Proofs and Refutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 The Quasi-Empirical Social Turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9 Mathematics as Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Wittgenstein Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Mathematics as Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Mathematics as Rule-Following . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Mathematics as Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Proving as Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Certain or Fallible Knowledge? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Part IV How Good is Mathematics? 10 B eyond the Isolation of Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Metaphysics: The Case of Geometric Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Metaphysics: The Case of Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Technology: Computer-Based Investigations in Mathematics . . . . . . . . . . . . . . . . . . . . . 141 Technology: Computer-Based Imagination and Proving . . . . . . . . . . . . . . . . . . . . . . . . . 143 Contents ix Anything But Isolated: Intertwined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 11 Beyond the Neutrality of Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Mathematics as Picturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Mathematics as Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Fabrication of Fictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Fabrication of Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Fabrication of Risks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Illusions of Objectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Anything but Neutral: Powerful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 12 What is the Philosophy of Mathematics? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Four Dimensions in a Philosophy of Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Beyond the Four Dimensions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Beyond the “Western” in a Philosophy of Mathematics? . . . . . . . . . . . . . . . . . . . . . . . . 167 Beyond “Philosophy” in a Philosophy of Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Beyond Our Limited Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Composite Reference List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 List of Figures Figure 1.1 The most beautiful number according to Pythagoras. .................... 8 Figure 1.2 Illustration of 1 + 3 + 5 + … (2n + 1) = (n + 1)2. ........................ 9 Figure 1.3 Plato’s graduation of knowledge and opinion. .......................... 14 Figure 1.4 Construction of an equilateral triangle. ............................... 18 Figure 2.1 Kepler’s second law for the movements of the planets: The law of areas.. . . . . 25 Figure 3.1 Construction of the Cantor set, which is continued indefinitely. ............ 47 Figure 3.2 Construction of the Sierpinski triangle. ............................... 47 Figure 3.3 Construction of Peano’s curve. ..................................... 48 Figure 8.1 A box as an example of a polyhedron. ................................ 111 Figure 8.2 An unfolded box, Step 1 in the proof. ................................ 112 Figure 8.3 A triangulated box, Step 2 in the proof. ............................... 112 Figure 8.4 Removing triangles, Step 3 in the proof. .............................. 113 Figure 8.5 A hollow polyhedron. ............................................. 115 Figure 8.6 Two “deviant” polyhedrons. ........................................ 116 Figure 10.1 The plane, catenoid and helicoid. .................................... 144 Figure 10.2 Costa’s minimal surface as a computer picture. ......................... 145 Figure 11.1 The standard model of mathematical modelling. ........................ 153 xi List of Tables Table 3.1 Kant’s Knowledge Categories for Propositions .......................... 42 Table 5.1 A Gödel Numbering of Symbols by Primes ............................. 78 Table 6.1 The Truth-Table for Four Logical Connectives .......................... 87 Table 6.2 The Truth-Table for a Logical Valid Statement .......................... 88 Table 10.1 Number of Publications Relating to Wavelet- and Fourier-Transformations .... 143 xiii
Description: