ebook img

Connecting Faint End Slopes of the Lyman-$\alpha$ emitter and Lyman-break Galaxy Luminosity Functions PDF

0.89 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Connecting Faint End Slopes of the Lyman-$\alpha$ emitter and Lyman-break Galaxy Luminosity Functions

Mon.Not.R.Astron.Soc.000,1–8(2015) Printed3February2015 (MNLATEXstylefilev2.2) Connecting Faint End Slopes of the Lyman-α emitter and Lyman-break Galaxy Luminosity Functions M. Gronke1(cid:63), M. Dijkstra1, M. Trenti2,3, S. Wyithe3,4 1Institute of Theoretical Astrophysics, University of Oslo, Postboks 1029, 0315 Oslo, Norway 2Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Cambridge, England 3School of Physics, University of Melbourne, Parkville, VIC 3010, Australia 4ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO) 5 1 3February2015 0 2 n ABSTRACT a We predict Lyman-α (Lyα) luminosity functions (LFs) of Lyα-selected galaxies (Lyα J emitters,orLAEs)atz =3−6usingthephenomenologicalmodelofDijkstra&Wyithe 0 (2012). This model combines observed UV-LFs of Lyman-break galaxies (LBGs, or 3 drop out galaxies), with constraints on their distribution of Lyα line strengths as a function of UV-luminosity and redshift. Our analysis shows that while Lyα LFs of ] LAEsaregenerallynotSchechterfunctions,theseprovideagooddescriptionoverthe O luminosity range of log (L /ergs−1)=41−44. Motivated by this result, we predict 10 α C Schechter function parameters at z = 3−6. Our analysis further shows that (i) the . faint end slope of the Lyα LF is steeper than that of the UV-LF of Lyman-break h galaxies, (with a median α <−2.0 at z >4), and (ii) a turn-over in the Lyα LF of p Lyα ∼ - LAEs at Lyα luminosities 1040 erg s−1 <Lα <∼1041 erg s−1 may signal a flattening of o UV-LF of Lyman-break galaxies at −12 > M > −14. We discuss the implications r UV t of these results – which can be tested directly with upcoming surveys – for the Epoch s of Reionization. a [ Key words: galaxies: high-redshift – galaxies: luminosity function, mass function – cosmology: reionization – ultraviolet: galaxies 1 v 2 2 0 1 INTRODUCTION fraction of their radiation as Lyman-α (Lyα) emission, and 0 this method has been proved to be very efficient in finding 0 Theluminosityfunction(LF)ofgalaxiesprovidesoneofthe . samples out to z ∼ 7 (e.g. Rhoads et al. 2000; Rhoads & 2 most basic statistical descriptions of a population of galax- Malhotra 2001; Ouchi et al. 2008; Bond et al. 2009, 2010; 0 ies. It describes the number density of galaxies in a given Guaitaetal.2010;Kashikawaetal.2011;Hibonetal.2012; 5 luminosityinterval.Generally,theLFiswelldescribedbya Onoetal.2012;Ota&Iye2012;Rhoadsetal.2012;Shibuya 1 Schechter (1976) function et al. 2012; Finkelstein et al. 2013; Konno et al. 2014). : v (cid:18) L (cid:19)α (cid:18) L (cid:19) (cid:18) L (cid:19) i φ(L)dL=φ∗ exp − d (1) Galaxiesthathavebeenselected(found)onthebasisof X L∗ L∗ L∗ their Lyα lines are referred to as ‘Lyα emitters’ (or LAEs). r with a normalization parameter φ∗, an exponential cutoff LAEsareusefulbecausetheyareselectedonhavingastrong a at L (cid:38) L∗, and, a power law with faint-end-slope α for LyαlinefluxirrespectiveoftheirassociatedUV-continuum L(cid:28)L∗.Theparametersdependonwavelengthconsidered, emission. Therefore, LAEs can be fainter in the continuum galaxy type (e.g., passive versus star forming), and cosmic comparedtoLyman-breakgalaxies,andcomplementgalaxy time. samples obtained via broadband searches which have been At high redshift, galaxies are typically identified ei- extensivelycarriedoutwiththeHubbleSpaceTelescopeout ther through their broadband colors, for example using the toz∼10(e.g.Yan&Windhorst2004;Beckwithetal.2006; drop-outorLyman-breaktechnique(Steideletal.1996),or Bouwens et al. 2006; Wilkins et al. 2010; Trenti et al. 2011; through narrow-band searches aimed at detecting emission Grazian et al. 2012; Finkelstein et al. 2012; Bouwens et al. lines (Partridge & Peebles 1967; Djorgovski et al. 1985) In 2014a; Finkelstein et al. 2014; Oesch et al. 2014; Schmidt particular, young star forming galaxies emit a significant et al. 2014). Moreover, the sensitivity of the observed Lyα fluxtointerveningneutralhydrogengasmakesLAEsanex- cellentprobeoftheEpochofReionization(seee.g.Dijkstra (cid:63) E-mail:[email protected] 2014, for a review). (cid:13)c 2015RAS 2 M. Gronke, M. Dijkstra, M. Trenti, S. Wyithe Since the range of observed Lyα luminosities at high-z 2 METHOD typically extends only over ∼ 1−1.5 orders of magnitude, ThenumberdensityofLAEswithluminositiesintheinter- the shape of the Lyα LF is not strongly constrained and a val [L ±dL /2] is given by fitwithaSchechterfunctionleadstosignificantdegeneracy α α in the parameters. In particular the faint-end slope αLyα is MU(cid:90)V,max essentially unconstrained: for example, Henry et al. (2012) φ (L )dL =dL F dM φ(M )P(L |M ) usedasampleofsix(three)LAEstofindα =−1.70+0.73 LAE α α α UV UV α UV Lyα −0.57 (α = −1.45+0.92) at z = 5.7. Other approaches include MUV,min Lyα −0.70 (2) assuming a fixed value for α and resorting to the data Lyα Here,φ(M )dM denotesthenumberdensityofLBGsas to constrain the other parameters (van Breukelen et al. UV UV afunctionofintherangeM ±dM /2.Thisfunctioncan 2005;Dawsonetal.2007;Ouchietal.2008;Huetal.2010; UV UV be represented by the Schechter function with parameters Kashikawa et al. 2011; Ciardullo et al. 2012; Zheng et al. (α ,M∗ ,φ∗ ). 2013).Incontrast,theultraviolet(UV)LFofLyman-break UV UV UV The term P(L |M )dL is the conditional probabil- galaxies(LBGs)ismuchbetterconstrainedduetoavailable α UV α ity that a galaxy has a Lyα luminosity L given an abso- data stretching over several orders of magnitude in lumi- α lute UV magnitude M . This conditional probability can nosity (McLure et al. 2010; Yan et al. 2011; Bouwens et al. UV be recast in terms of the equivalent width (EW) prob- 2011;Bradleyetal.2012;Oeschetal.2012;Yanetal.2012; ability density function P(EW|M ) as P(L |M ) = Lorenzoni et al. 2013; Schenker et al. 2013). For the faint UV α UV P(EW|M )∂EW ifEW >EW ,whereL andEW are end slope, the most recent by Bouwens et al. (2014a) finds UV ∂Lα LAE α related as L = EWL = EW[νL /λ]. Here, the luminos- α =−1.91±0.09(α =−1.64±0.04)atz∼6(z∼4). α λ ν UV UV ity/flux densities, frequency and wavelength are evaluated justlongwardoftheLyαresonanceatλ=(1216+(cid:15))˚A.We There exists a clear opportunity to connect LAEs and canextrapolatetheseflux/luminositiestotheirvalueswhere LBGs via the Lyα line emission properties of LBGs. Shap- theUV-continuummeasurementsareusuallymade(seee.g. ley et al. (2003) provided a probability distribution func- Dijkstra & Westra 2010)1. Furthermore, EWLAE denotes tion (PDF) of the rest-frame equivalent-width (EW) of the the equivalent width threshold that determines whether a Lyα line in their sample of ∼ 800 z ∼ 3 LBGs. Dijk- galaxy would make it into an LAE sample. We adopt that stra & Wyithe (2012) showed that this observed PDF was EWLAE = 0˚A, but note that some surveys adopt colour well described by an exponential function, and that the criteria for selecting LAEs as large as EWLAE = 64˚A characteristicscale-lengthofthisfunctionincreasedtowards (see Dijkstra & Wyithe 2012). If EW (cid:54) EWLAE, then fainter UV-luminosities. While there do not exist equally P(Lα|MUV)=0sinceinthiscasethegalaxydoesnotqual- well measured PDFs at higher redshifts and/or fainter UV- ify as an LAE. This threshold more closely represents de- luminosities, recent studies have constrained both the red- tectionthresholdforLyαemittinggalaxiesinspectroscopic shift and UV-luminosity dependence of the so-called ‘Lyα surveys2 – e.g., with MUSE (Bacon et al. 2010), HETDEX fraction’, which quantifies the fraction of LBGs for which (Hilletal.2008)and/orVIMOS (Cassataetal.2011,2015). the Lyα EW exceeds a certain value. The Lyα fractions – Wehaveverifiedthatourmainresultsdonotdependonthis which represent integrated versions of the full EW PDF – choice3. increase from z = 2 to z = 6 at fixed M (Stark et al. TheprecedingfactorF inEq.(2)ismerelyanormaliza- UV 2010; Cassata et al. 2015) and from UV-bright to UV-faint tionconstanttofitthedataand,hence,canbethoughtofas galaxies(Starketal.2010,2011;Pentericcietal.2011;Ono theratioofpredictedversusthetotalnumberofLAEs.This et al. 2012; Schenker et al. 2012). factorshouldideallybeF =1.However,Dijkstra&Wyithe (2012) required that F ∼ 0.5. The origin of this number is not known (see Dijkstra & Wyithe 2012, for an extensive There have been several attempts to link the redshift discussion)4,butwestressitonlyaffectsthepredictednor- evolutionofLBGsandtheirLyαfractionstoLAEluminos- malization linearly and not the predicted faint-end slopes. ity functions (Dijkstra & Wyithe 2012; Faisst et al. 2014; Hence,thekeyfunctioninouranalysisisP(EW|M ). UV Schenker et al. 2014). In this paper, we follow the work of Dijkstra & Wyithe (2012) and combine the most recent constraints on UV-LFs & Lyα fractions to make predic- 1 We use the relation Lα = C1EWLUV,ν where LUV,ν ∝ tions for Lyα LFs. Dijkstra & Wyithe (2012) showed that ν−β−2 is the UV luminosity density LUV,ν and C1 ≡ this phenomenological model reproduces observed Lyα LFs να/λα(λUV/λα)−β−2 converts the flux density at λ = (1216+ andtheirredshiftevolutionremarkablywell.Here,wefocus (cid:15))˚A to that at λUV = 1600˚A, which is the wavelength where specifically on the faint-end slope of the Lyα LF of LAEs, LUV,ν wasmeasured(Dijkstra&Westra2010). because(i)wecanmakerobustpredictionsforthisfaintend 2 NotethatinpractiseanEWcutislikelystillneededtodistin- guishbetweenLAEsandlower-z interlopers,suchas[OII]emit- slope, (ii) as we will show later, this faint end slope can be highlyrelevantforunderstandingtheEpochofReionization. ters.ThisEWcutcanneverthelessbelowerthanEWLAE∼20˚A (Leungetal.2015) 3 We have verified that varying EWLAE in the range [0,50]˚A Thispaperisstructuredasfollows.InSec.2,welayout changesαLyα by∼0.02. 4 The value of F depends weakly on the adopted UV Schechter our method. We present our results in Sec. 3 and discuss function parameters.Forexample,Bowleret al. (2014) reported them in Sec. 4. Finally, we conclude in Sec. 5. The cosmo- slightlydifferentbest-fitvalues,whichdriveF uptoF ∼0.7−0.8. logical parameters we adopt are Ωm = 0.3,ΩΛ = 0.7,h = TheFinkelsteinetal.(2014)parameters,ontheotherhand,also 0.7,σ8 =0.9. suggestF ∼0.5. (cid:13)c 2015RAS,MNRAS000,1–8 Faint End Slopes of LAE and LBG LFs 3 Severalfunctionalformshavebeenexploredintheliterature. ��-� �=��� Schenker et al. (2014) compared the maximum likelihood ) valuesforseveralEWdistributionstotheirKeckMOSFIRE �α � (McLeanetal.2012)data,andconcludedthattheexponen- -�� ��-� ● ● tial distribution introduced by Dijkstra & Wyithe (2012) � ● � provides an adequate fit. This functional form is -� ����(��) ● ● � (cid:20) EW (cid:21) (�� ��-� ����(���) ● P(EW|MUV,z)=Nexp −EWc(MUV,z) (3) Ψ ����(�����=����) with EW = EW +µ (M +M )+µ (z+z ) c c,0 MUV UV UV,0 z 0 ��� wetheersr.eTµhMeUseV,paµrza,mMetUeVr,s0,wze0r,eacnhdosEenWtco,0maartechmtohdeelopbaserravma-- ΔΨ -���� tionsof(Shapleyetal.2003)andStarketal.(2010,2011)as ���� ���� ���� ���� ���� ���� ���� closely as possible. Furthermore, N is a normalization con- ��� (� /����-�) �� α stantwhichisforcedtobezerooutsideof[EW , EW ]. min max Our choice of values for the model parameters is described in Sec. 3.3 where we present the numerical results. In Ap- Figure 1. Upper panel: The predicted number of LAEs in the pendix A we show explicitly that the main results in this range log10(cid:0)Lα/ergs−1(cid:1)±dlog10(cid:0)Lα/ergs−1(cid:1) using the UV LF evolution from Bouwens et al. (2014a) taken at z = 5.7 paperareinsensitivetoboththefunctionalformofP(EW) (blacksolidline).Thegreydashedlinemarksthefaintendslope and the parameterization of EW . c (αLyα = −1.90) and the dashed dotted lines show Schechter fits to our numerical findings. Once the fit was carried out over the whole shown luminosity range (blue) and once only in log (L/ergs−1) = [42,43.5] (green). The red discs are the 10 3 RESULTS z=5.7observationsbyOuchietal.(2008)andtheblackarrows denotetheMUSE deepfieldandmediumdeepfieldaswellasthe We first present results in which EW =constant (in § 3.1). c JWST limitsatthatredshift(seetextfordetails).Lowerpanel: This allows us to demonstrate that for models in which the Relativedeviationofthefitstothenumericalresults. LyαfractiondoesnotevolvewithM ,thefaintendslope UV oftheLFofLAEsapproachesthatofLBGs.Wethenpresent a simplified model in § 3.2 in which the mean Lyα EW- 3.2 Exemplary case where P(EW|MUV) evolves PDFincreasestowardsfainterUV-luminosityfunction.This with MUV model demonstrates quantitatively that the faint end slope If EW depends on M a general analytic solution for c UV of the LF of LAEs is steeper than that of LBGs if the Lyα φ(L )doesnotexist.Forillustrationpurposeswefirstcon- α fraction increases towards fainter UV-luminosities. In § 3.3 sider a case in which we replace Eq. (3) with a Dirac-δ dis- we present the results that we obtained from the EW-PDF tribution, given in Eq. (3). p(EW|L )∝δ(EW −EW ), (7) UV d where EW (L ) ≡ EW (L /L∗ )γ. The parameter d UV d,0 UV UV 3.1 Exemplary case with EWc =const. EWd can be interpreted as the mean of the full PDF. This δ-function PDF leads5 to We consider the case P(EW|M )=P(EW), i.e. EW = UV c const. ≡ λ/C . Furthermore, we set N = 0 for EW < 1 φ(L )dL ∝dL ×LαUV/(γ+1) EW . Under these assumptions we find α α α α LAE (cid:34) (cid:18) L (cid:19)1/(γ+1)(cid:35) φ(Lα)dLα ∝ (cid:90)∞LαU−V,1νexp(cid:20)−LLU∗V,ν − λLLα (cid:21) dLUV,ν ×exp − C1EWdα,0L∗UV . (8) UV UV,ν 0 Here, the faint end slope is αLyα = αUV/(γ +1). he Lyα (4) LF thus has a steeper faint-end slope than the LBG LF, (cid:32) (cid:115) (cid:33) if γ < 0 (i.e. if EW decreases towards fainter L , as has L d UV ∝LααUV/2K−αUV 2 λL∗α dLα (5) beenobserved).AlsonotethatweagainobtainαLyα =αUV UV if EW does not evolve with M . d UV where K (x) is the modified Bessel function of the second n kind and L∗ is the luminosity corresponding to M∗ . UV UV 3.3 Realistic case with P(EW|M ) inferred from UV Eq.(5)showsthattheLyαLFgenerallydoesnottake- observations on a Schechter form. The slope of the LF is given by √ √ For the model parameters of P(EW|MUV) in Eq. (3) we αLyα ≡ ddlolgoφg(LLα) =− yKKαUV(−21√(2y)y) (6) adoptthevaluesfromDijkstra&Wyithe(2012)6.Example α αUV with y≡Lα/(L∗UVλ). For Lα (cid:28)L∗UVλ we have y(cid:28)1, and 5 For simplicity, we set the minimum and maximum UV lumi- weobtaintoleadingorderα ≈−Γ(1−α )/Γ(−α )= Lyα UV UV nositytozeroandinfinity,respectively. αUV. Thus, having a constant EWc corresponds to an un- 6 Specifically the model parameters related to EWc changed faint end slope, aLyα =αUV. are given by (EWc,0,µMUV,µz,MUV,0,z0,F) = (cid:13)c 2015RAS,MNRAS000,1–8 4 M. Gronke, M. Dijkstra, M. Trenti, S. Wyithe �����=�×��������-���-� -��� �� �) � �� � -��� -� */��� � ��α���=��������-� α --������ ��α -����� ����� ��α � � ���� ( -��� *ϕ ���� � � � � � � � � � � � � � � � � � � � � � Figure2.EvolutionoftheSchechterparametersoftheUVLFfromBouwensetal.(2014a)(asbluedashedlines)andtheparametersof thecomputedLyαLF(blacklines).Inparticular,theleftpanelshowsthecharacteristicluminosityL∗ (notethedifferentnormalization constants),thecentralpanelthefaintendslopeα,andtherightpaneltheoverallnormalizationφ∗.Predictionsatz>6(withintheshaded grey area) do not account for reionization (see § 4.3). In this region, the black solid lines correspond to models with an uninterrupted EWevolution,whereasthedashed-dotted linesrepresentamodelinwhichwefreezetheEWevolution,i.e.,EWc(z>6)=EWc(z=6) (thisassumptionhasbeenadoptedinpreviousworks). EW-PDFs are shown in Appendix A1. For a more detailed ��� � motivation of this P(EW) we refer the reader to Dijkstra ��� �� α & Wyithe (2012). We integrate the UV-LF over the range �� ) MUV,(min,max) =(−30, −12) when predicting Lyα luminos- �α ��� ity functions, and discuss the impact of varying M in |� �� Sec. 4. max �� ��� ���� The redshift evolution of the best fit Schechter param- (� ��� (�∼�) �� eters of the UV LF is taken from Bouwens et al. (2014a) �� and given as M∗ = −20.89 + 0.12z, φ∗ = 0.48 × ��� UV UV 10−0.19(z−6)10−3cMpc−3, and, α = −1.85−0.09(z−6). -�� -�� -�� -�� -�� -�� UV Followingtheseanalyses,weuseλ =1600˚Aasrestframe UV � �� wavelength in which the UV continuum was measured and assume a UV spectral slope β = −1.7. This choice for β Figure 3. p(MUV|Lα) ∝ p(Lα|MUV)φ(MUV) versus MUV for does not affect our results (see Appendix A4 for detailed someexemplaryvaluesofLα.TheblackarrowshowstheJWST discussion). photometric limit quoted by Windhorst et al. (2006) for z ∼ 6 The upper panel of Fig. 1 shows the resulting number whichcorrespondstoTint.∼106sintegrationtime. densityofLAEsatz=5.7intheluminosityrangelog L ± 10 α dlog L /2,i.e.,ψ(L )dlog L ,asafunctionofL .This 10 α α 10 α α quantity is related to φ(L ) as ψ(L ) = φ(L )L log10 α α α α (‘log’denotesthenaturallogarithm).Wecomparethesepre- dictiontothedatafromOuchietal.(2008).Inaddition,we show theMUSE detectionlimits7 foritsmediumdeep field (MDF, limiting flux F > 1.1×10−18ergs−1cm−2, integra- ThiscanalsobeseeninthelowerpanelofFig.1,wherewe display the relative deviation of the fits to the LF. tion time T = 10h), and, deep field (DF, F > 3.9 × int. 10−19ergs−1cm−2,T =80h)surveysaswellasanexem- Fig.2showstheredshiftevolutionoftheSchechterbest int. plary JWST8 limit (F (cid:38)10−18ergs−1cm−2, T =104s). fit parameters (as black lines). Predictions for z >6 do not int. account for reionization effects and are calculated with an Figure.1alsoshowstwoSchechterfunctionapproxima- unaltered EW evolution (solid line) as well as an EW-PDF tionstoournumericalfindingsfittedoverthefullluminosity- range shown (in blue) and over log (L /ergs−1) = which does not evolve after z = 6 (dash-dotted line). We 10 α discuss this result separately in § 4.3. For comparison, we [40.5,42](ingreen).Althoughwedonotexpecttheresulting plot the corresponding redshift parameterization of the UV LyαLFtobeaSchechterfunction(asshowninSec.3.2),it LF by Bouwens et al. (2014a) (as blue dashed lines). The providesareasonablefitoverthedisplayedluminosityrange. left panel shows that L∗ increases by a factor ∼ 2 over the redshift range z = 3−6, which differs from the redshift (23˚A,7˚A,6˚A,21.9,−4.0,0.53). The EW-PDF covers the evolution in the characteristic UV-luminosity which drops range [EWmin,EWmax]. Here, the lower limit EWmin ≡ −a1, by 20%. This difference is driven by the redshift evolu- where a1(MUV) follows the form a1 = 20˚A for MUV < −21.5, tion in the Lyα EW-PDF, which in turn was inferred from a1 = (20−6(MUV +21.5)2)˚A for −21.5 (cid:54) MUV (cid:54) −19.0 and the observed redshift-evolution of Lyα ‘fractions’ over this a1 =−17.5˚A,otherwise(seeDijkstra&Wyithe2012).Weused redshift range. The central panel shows that α < α . EWmax=1000˚Abutweverifiedthatthischoicedoesnotaffect This is again a consequence of inferred redshiLftyαevolutUioVn ourresultsquantitatively. 7 MUSE surveylimitstakenfromhttp://muse.univ-lyon1.fr/ of the Lyα-EW PDF (see § 3.2). This figure also illustrates theclose-to-linearα –z relation.Thisevolutionismostly IMG/pdf/science_case_gal_formation.pdf. Lyα 8 JWST survey limits obtained from http://www.stsci.edu/ driven by the redshift evolution of αUV. Finally, the right jwst/science/sensitivity/ panel shows the predicted redshift evolution in φ∗. (cid:13)c 2015RAS,MNRAS000,1–8 Faint End Slopes of LAE and LBG LFs 5 4 DISCUSSION )�α ��� �=��� ������� 4.1 Low-L turnover -� ■ ■ -� Theintegraloverφ(Lα)dLα divergesforα<−2.Wethere- ��� ��-� ■ -�� � fore expect that the luminosity function flattens or turns- -� ���� -�� over below some luminosity. The minimum luminosity that �� ��-� (���) -�� we can account for in our models is (� ���� Ψ (��) -�� L =EW (M ) C L , (9) ��-� α,min min UV,max 1 UV,min ���� ���� ���� ���� ���� where EWmin = −a1 = 17.5˚A (see footnote 6 in § 3.3) � (����-�) denotes the minimum equivalent width in our EW-PDF at α the maximum absolute UV-magnitude (i.e. the lowest UV- Figure 4. ψ(Lα)dLα versus Lα at z = 3.1 for different values luminosity). For example, we obtain Lα,min ∼ 1039ergs−1 of MUV,max illustrating the cutoff at low Lyα luminosities. The for MUV,max = −12. At this luminosity we expect the pre- dashedanddottedlinesshowthe“cutoff”and“deviation”points dictedLyαluminositytogotozero,asisshowninFigure4. foreachMUV,maxdiscussedinSec.4.DatapointsarefromRauch An estimate for where we may start to see departures et al. (2008) taken at that redshift (see the text for a discussion from a power-law slope can be obtained by considering the on the error bars). And the black (grey) arrow denotes planned conditional probability p(M |L ). Bayes’ theorem states futureMUSE (ultra)deepfieldlimits. UV α that p(M |L ) ∝ φ(L |M )φ(M ), of which we show UV α α UV UV examples in Fig. 3 for four different values of L . This Fig- α 4.2 Implications for the Epoch of Reionization ureillustratesforexamplethatLyαobservationsthatprobe afluxcorrespondingtoLα =1040 ergs−1 –alevelthatcan Lowluminositygalaxiesareexpectedtoplayamajorrolein be reached in MUSE ultra deep fields – effectively probe drivingthereionizationoftheUniverse(e.g.Robertsonetal. galaxies with −14 < MUV < −11, which are fainter than 2010; Trenti et al. 2010; Kuhlen & Faucher-Gigu`ere 2012; can be probed directly even with the JWST. The JWST Boylan-Kolchinetal.2014).Determiningthefaintendofthe detection limit shown in Figure 3 is taken from Windhorst LF such as its slope and a turnover luminosity is essential etal.(2006).Figure3furthershowsthatiftheUV-LFflat- for constraining the volume emissivity of ionizing photons. tens off at – say – MUV >∼−12 that then the effects should However, even future experiments will have difficulties de- becomenoticeableinthepredictedLyαluminosityfunction tectingthesegalaxiesdirectlyviatheirUVcontinuumflux. aroundLα =1040ergs−1,asheregalaxieswithMUV ∼−12 Currentconstraintsrely,therefore,onextrapolationoflocal dominate the contribution to the Lyα LF. propertiestohigherredshifts(Weiszetal.2014),(relatively In Figure 4 we make these points more explicit, and few) gravitationally lensed objects (Alavi et al. 2014; Atek show the predicted faint end of the LAE LF for four val- etal.2014)orinferencesfromgamma-rayburstobservations ues of MUV,max (calculated with the UV LF parameters at (Trenti et al. 2012). In this work, we have shown that the z=3.1).ForeachcurvewemarkedLα,minwithdottedlines. Lyα LF can provide an independent probe of the faint end Forexample,apotentialUVturnoveratMUV ∼−12leads of the UV LF, and that for example the MUSE DF survey todeviations9oftheLyαLFatLα ∼1040ergs−1andacut- couldalreadydetect(orruleout)aturnoveratMUV (cid:46)−15. off at Lα ∼1039ergs−1. Figure 4 also contains data points RecentstudieshaveshownthatLyαescapemaybecor- taken from Rauch et al. (2008). Rauch et al. (2008) per- related with the escape of ionizing photons (Behrens et al. formed an ultra deep (92-hr) exposure with VLTs FORS2 2014;Verhammeetal.2014),astheescapeofionizingpho- low resolution spectrograph. The goal of these observations tons requires low HI-column density (N < 1017 cm−2) HI was to detect fluorescent Lyα emission from optically thick channels,whichcanalsoprovideescaperoutesforLyαpho- cloudspoweredbytheionizingbackground.Whiletheirsen- tons.ThefactthatLyαLFsarelikelysteeperthantheUV sitivity turned out not to be good enough to detect this LFsimpliesthattheLyαvolumeemissivity–andtherefore fluorescentemission(revisedestimatesoftheionizingback- possiblytheionizingemissivity–areweightedmorestrongly ground and the conversion efficiency into Lyα), they de- towardslowluminositygalaxies.Thisisconsistentwiththe tected numerous ultra faint Lyα emitting sources charac- expectation that ionizing photons escape more easily from terizing their LF down to Lα ∼ 6×1040ergs−1. We com- lowermass–andhencelowerluminosity–galaxies.Asteep puted the uncertainties with the cosmic variance calcula- faint-end slope of the Lyα LF may therefore provide obser- tor of Trenti & Stiavelli (2008). These data-points fall on vational support for this scenario. the predicted LF for M = −16. However we caution UV,max thattheturn-overoccursatthelowestluminositydata-point only, which might suffer from incompleteness (although it 4.3 Predictions for redshifts z=6−8 lies above the detection threshold). In the same figure we We extrapolated our predictions for the best-fit Schechter provide the estimated MUSE limits for the deep field (DF) parameters of the LAE LF to z >6 in two ways (shown in and the gravitationally lensed ultra deep field (UDF) sur- Fig.2):(i)inthefirst,weassumethattheEW-PDFcontin- veys. uestoevolveasinferredfromtheobservationsatz=3−6. 9 The first deviations in the Lyα LF can be found at Lα,dev. = describes the half width of p(MUV|Lα) at a chosen probability C1LUV(x)EWc(x) with x ≡ MUV,max−∆MUV. Here, ∆MUV threshold. (cid:13)c 2015RAS,MNRAS000,1–8 6 M. Gronke, M. Dijkstra, M. Trenti, S. Wyithe Thismodelisrepresentedbythesolid lines,and,(ii) inthe ACKNOWLEDGEMENTS second, we ‘freeze’ the EW distribution for z > 6 at the We thank Masami Ouchi for kindly providing the data value it had at z=6 (dashed lines). This latter assumption points shown in Fig. 1. MD and MT thank Alan Dressler hasbeencommoninpreviousworks(seee.g.Dijkstraetal. givingapresentationwhichinspiredthisworkattheUCSB 2011; Bolton & Haehnelt 2013; Jensen et al. 2013; Choud- GLASS meeting in May 2014. hury et al. 2014; Mesinger et al. 2015). We show results for thesetwomodelstogetasensefortheuncertaintiesonour predictions. We stress that we have purposefully not mod- elled the impact of reionization on the EW-PDF. Reion- REFERENCES ization is likely responsible for the observed ‘drop’ in the observed Lyα fractions at z>6 (e.g. Pentericci et al. 2011; Alavi A., et al., 2014, ApJ, 780, 143 Schenkeretal.2012;Onoetal.2012;Treuetal.2013;Caru- Atek H., et al., 2014, ApJ, 786, 60 ana et al. 2014; Tilvi et al. 2014). Understanding this drop Bacon R., et al., 2010, in Society of Photo-Optical In- has been the main focus of previous works, and is outside strumentation Engineers (SPIE) Conference Series. , the scope of this paper. Our predictions for z=6−8 are doiXX:10.1117/12.856027 usefulinadifferentway,astheyprovidepredictionsforthe Beckwith S. V. W., et al., 2006, AJ, 132, 1729 Lyα LFs of LAEs in the absence of reionization. Compari- Behrens C., Dijkstra M., Niemeyer J., 2014, preprint son to observed LFs at these redshifts highlight the impact (arXiv:1401.4860) of reionization. Bolton J. S., Haehnelt M. G., 2013, MNRAS, 429, 1695 Bond N. A., Gawiser E., Gronwall C., Ciardullo R., Alt- mann M., Schawinski K., 2009, ApJ, 705, 639 Bond N. A., Feldmeier J. J., Matkovi´c A., Gronwall C., Ciardullo R., Gawiser E., 2010, ApJ, 716, L200 Bouwens R. J., Illingworth G. D., Blakeslee J. P., Franx 5 CONCLUSIONS M., 2006, ApJ, 653, 53 Bouwens R. J., et al., 2011, ApJ, 737, 90 We predicted Lyα luminosity functions (LFs) of Lyα- Bouwens R. J., et al., 2014a, preprint (arXiv:1403.4295) selected galaxies (Lyα emitters, or LAEs) at z = 3 − 6 Bouwens R. J., et al., 2014b, ApJ, 793, 115 using the phenomenological model of Dijkstra & Wyithe Bowler R. A. A., et al., 2014, ArXiv e-prints, (2012). This model combines observed UV-LFs of Lyman- Boylan-Kolchin M., Bullock J. S., Garrison-Kimmel S., breakgalaxies(LBGs),withobservationalconstraintsonthe 2014, MNRAS, 443, L44 LyαEWPDFoftheseLBGs,asafunctionofM andred- UV Bradley L. D., et al., 2012, ApJ, 760, 108 shift. The results from our analysis can be summarized as Caruana J., Bunker A. J., Wilkins S. M., Stanway E. R., follows: LorenzoniS.,JarvisM.J.,EbertH.,2014,MNRAS,443, • While Lyα luminosity functions of LAEs are generally 2831 not Schechter functions, these provide a good description Cassata P., et al., 2011, A&A, 525, A143 over the luminosity range of log (L /ergs−1) = 41−44 Cassata P., et al., 2015, A&A, 573, A24 10 α (see Fig. 1). Choudhury T. R., Puchwein E., Haehnelt M. G., Bolton • We predict Schechter function parameters at z=3−6 J. S., 2014, preprint (arXiv:1412.4790), (shown in Fig. 2). The faint end slope of the Lyα LF is Ciardullo R., et al., 2012, ApJ, 744, 110 steeper than that of the UV-LF of LBGs, with a median Dawson S., Rhoads J. E., Malhotra S., Stern D., Wang J., α <−2.0atz >4(seethecentralpanelinFig.2).While Dey A., Spinrad H., Jannuzi B. T., 2007, ApJ, 671, 1227 Lyα ∼ the current work was in the advanced stage of completion, Dijkstra M., 2014, PASA, 31, 40 Dressler et al. (2014) posted a preprint in which they ob- Dijkstra M., Westra E., 2010, MNRAS, 401, 2343 servationally infer a very steep faint end slope at z ∼ 5.7 Dijkstra M., Wyithe J. S. B., 2012, MNRAS, 419, 3181 (−2.35 < α < −1.95, also see Dressler et al. (2011)). The DijkstraM.,MesingerA.,WyitheJ.S.B.,2011,MNRAS, central value α = −2.15 is in excellent agreement with the 414, 2139 value α∼−2.1 predicted in our framework. Djorgovski S., Spinrad H., McCarthy P., Strauss M. A., • ThefaintendoftheLAELFprovidesindependentcon- 1985, ApJ, 299, L1 straints on the very faint end of the UV-LF of LBGs. For DresslerA.,MartinC.L.,HenryA.,SawickiM.,McCarthy example,thepredictedLAELFatLyαluminosities1040erg P., 2011, ApJ, 740, 71 s−1 <L <1041 erg s−1 is sensitive to the UV-LF of LBGs DresslerA.,HenryA.,MartinC.L.,SawickiM.,McCarthy α ∼ in the range −11 > M > −15 (see Fig. 3 and Fig. 4). P., Villaneuva E., 2014, preprint (arXiv:1412.0655), UV TheseLBGsaretoofainttobedetecteddirectly(evenwith FaisstA.L.,CapakP.,CarolloC.M.,ScarlataC.,Scoville JWST). A turn-over in the Lyα LF of LAEs may signal a N., 2014, ApJ, 788, 87 flattening of UV-LF of LBGs. We discuss implications of Finkelstein S. L., et al., 2012, ApJ, 756, 164 these results for the Epoch of Reionization in § 4.2. Finkelstein S. L., et al., 2013, Nature, 502, 524 Finkelstein S. L., et al., 2014, preprint (arXiv:1410.5439), Wehaveverifiedthattheseresultsareinsensitivetoour Grazian A., et al., 2012, A&A, 547, A51 assumedfunctionalformofP(EW)andhowweparameter- Guaita L., et al., 2010, ApJ, 714, 255 ized its dependence on z and M . Our predictions can be Henry A. L., Martin C. L., Dressler A., Sawicki M., Mc- UV tested directly with various upcoming surveys. Carthy P., 2012, ApJ, 744, 149 (cid:13)c 2015RAS,MNRAS000,1–8 Faint End Slopes of LAE and LBG LFs 7 Hibon P., Kashikawa N., Willott C., Iye M., Shibuya T., ����� 2012, ApJ, 744, 89 ����� Hill G. J., et al., 2008, in Kodama T., Yamada T., Aoki K., eds, Astronomical Society of the Pacific Conference )� ����� Series Vol. 399, Panoramic Views of Galaxy Formation �� ����� -�� |� and Evolution. p. 115, arXiv:0806.0183 � -�� HuE.M.,CowieL.L.,BargerA.J.,CapakP.,KakazuY., (� ��×������-�� -�� Trouille L., 2010, ApJ, 725, 394 Jensen H., Laursen P., Mellema G., Iliev I. T., Sommer- ��×��-� Larsen J., Shapiro P. R., 2013, MNRAS, 428, 1366 � ��� ��� ��� ��� Kashikawa N., et al., 2011, ApJ, 734, 119 �� Konno A., et al., 2014, preprint (arXiv:1404.6066), Kuhlen M., Faucher-Gigu`ere C.-A., 2012, MNRAS, 423, FigureA1.ThePDFP(EW|MUV,z)asdescribedinEq.(3)for 862 threedifferentvaluesofMUV.Thesolid(dashed)linesshowsthe EWdistributionforz=5.7(z=3.1).NegativeEWscorresponds Leung A. S., Gawiser E. J., Acquaviva V., Hetdex Collab- to having Lyα in absorption. Note that for about half of z ∼ oration 2015, in American Astronomical Society Meeting 3 LBGs, Lyα is seen in absorption (Shapley et al. 2003). Our Abstracts. p. 336.49 formalismincorporatesthismeasurement(seeDijkstra&Wyithe Lorenzoni S., Bunker A. J., Wilkins S. M., Caruana J., 2012). Stanway E. R., Jarvis M. J., 2013, MNRAS, 429, 150 McLean I. S., et al., 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. , doiXX:10.1117/12.924794 J. M., Illingworth G. D., Bradley L. D., Carollo C. M., McLure R. J., Dunlop J. S., Cirasuolo M., Koekemoer 2010, ApJ, 714, L202 A. M., Sabbi E., Stark D. P., Targett T. A., Ellis R. S., Trenti M., et al., 2011, ApJ, 727, L39 2010, MNRAS, 403, 960 Trenti M., Perna R., Levesque E. M., Shull J. M., Stocke Mesinger A., Aykutalp A., Vanzella E., Pentericci L., Fer- J. T., 2012, ApJ, 749, L38 rara A., Dijkstra M., 2015, MNRAS, 446, 566 TreuT.,SchmidtK.B.,TrentiM.,BradleyL.D.,Stiavelli Oesch P. A., et al., 2012, ApJ, 759, 135 M., 2013, ApJ, 775, L29 Oesch P. A., et al., 2014, ApJ, 786, 108 Verhamme A., Orlitova I., Schaerer D., Hayes M., 2014, Ono Y., et al., 2012, ApJ, 744, 83 preprint (arXiv:1404.2958) Ota K., Iye M., 2012, MNRAS, 423, 444 Weisz D. R., Johnson B. D., Conroy C., 2014, preprint Ouchi M., et al., 2008, ApJS, 176, 301 (arXiv:1409.4772) Partridge R. B., Peebles P. J. E., 1967, ApJ, 147, 868 WilkinsS.M.,BunkerA.J.,EllisR.S.,StarkD.,Stanway Pentericci L., et al., 2011, ApJ, 743, 132 E.R.,ChiuK.,LorenzoniS.,JarvisM.J.,2010,MNRAS, Rauch M., et al., 2008, ApJ, 681, 856 403, 938 Rhoads J. E., Malhotra S., 2001, ApJ, 563, L5 WindhorstR.A.,CohenS.H.,JansenR.A.,ConseliceC., Rhoads J. E., Malhotra S., Dey A., Stern D., Spinrad H., Yan H., 2006, New A Rev., 50, 113 Jannuzi B. T., 2000, ApJ, 545, L85 Yan H., Windhorst R. A., 2004, ApJ, 612, L93 Rhoads J. E., Hibon P., Malhotra S., Cooper M., Weiner Yan H., et al., 2011, ApJ, 728, L22 B., 2012, ApJ, 752, L28 Yan H., et al., 2012, ApJ, 761, 177 Robertson B. E., Ellis R. S., Dunlop J. S., McLure R. J., Zheng Z.-Y., et al., 2013, MNRAS, 431, 3589 Stark D. P., 2010, Nature, 468, 49 vanBreukelenC.,JarvisM.J.,VenemansB.P.,2005,MN- Schechter P., 1976, ApJ, 203, 297 RAS, 359, 895 Schenker M. A., Stark D. P., Ellis R. S., Robertson B. E., DunlopJ.S.,McLureR.J.,KneibJ.-P.,RichardJ.,2012, ApJ, 744, 179 Schenker M. A., et al., 2013, ApJ, 768, 196 Schenker M. A., Ellis R. S., Konidaris N. P., Stark D. P., 2014, ApJ, 795, 20 Schmidt K. B., et al., 2014, ApJ, 786, 57 APPENDIX A: VARYING THE EW ShapleyA.E.,SteidelC.C.,PettiniM.,AdelbergerK.L., DISTRIBUTION 2003, ApJ, 588, 65 Shibuya T., Kashikawa N., Ota K., Iye M., Ouchi M., Fu- In this appendix, we demonstrated that our main results rusawaH.,ShimasakuK.,HattoriT.,2012,ApJ,752,114 and conclusions do not depend on our assumed EW-PDF. Stark D. P., Ellis R. S., Chiu K., Ouchi M., Bunker A., 2010, MNRAS, 408, 1628 Stark D. P., Ellis R. S., Ouchi M., 2011, ApJ, 728, L2 Steidel C. C., Giavalisco M., Pettini M., Dickinson M., A1 Fiducial P(EW) Adelberger K. L., 1996, ApJ, 462, L17 Tilvi V., et al., 2014, ApJ, 794, 5 OurdefaultEWdistributionisgivenbyEq.(3).Weplotthe Trenti M., Stiavelli M., 2008, ApJ, 676, 767 PDFforthreeUVmagnitudesandtworedshiftsinFig.A1. Trenti M., Stiavelli M., Bouwens R. J., Oesch P., Shull (cid:13)c 2015RAS,MNRAS000,1–8 8 M. Gronke, M. Dijkstra, M. Trenti, S. Wyithe A2 Schenker et al. (2014) parameterization ��-� �=��� As mentioned in Sec. 2, Schenker et al. (2014) suggest an ) α alternative parameterization of the EW-PDF, namely � � A (cid:20) (logEW −µ(β))2(cid:21) -� P(EW|β)= √2πσemEW exp − 2σ2 . (A1) ��� ��-� ● ● - This log-normal PDF possesses the parameters Aem, σ and ��� Schenker+14(1) ● µ. The latter is given by � Schenker+14(2) ● µ(β)=µ +µ (β−2.0), (A2) (Ψ MUVfreeze ● α s βnotconst. ● where β is the UV continuum slope. Schenker et al. (2014) ��-� found their EW distribution to depend more strongly on β ���� ���� ���� ���� ���� ���� ���� thanon(MUV,z),andthereforeconstrainedP(EW|β).We �����(�α/����-�) can include this parameterization into our formalism if we map P(EW|β) onto P(EW|M ,z). UV Figure A2. The Lyα LF at z = 5.7 for different EW distribu- This mapping is based on three results from Bouwens tions. The solid black line and Ouchi et al. (2008) data points et al. (2014b): arethesameasshowninFig.1.AscomparisonweshowtheLyα LFcomputedusingtheSchenkeretal.(2014)parameterizationof (i) We use their empirical linear correlation between β− theEWPDFoncewiththefullβ−MUVrelationasgivenin§A2 MUV at z∼7. This relation constrains β(MUV =−19.5)= (blue dashed line) and once with a constant µ(β) =−0.2 over −2.05±0.09±0.13. MUV (ii) Furthermore, we apply their measured change per all MUV (green dashed-dotted line). Also shown are our results when freezing the EW PDF at MUV = −19 (purple) and when unit redshift ∆β/∆z=−0.1±0.05. usingtheβ−MUV relationinsteadofaconstantβ (orange). (iii) Finally,weusetheirmeasurementthat∆β/∆M = UV −0.2 (−0.08) for M (cid:54)−19 (>−19). UV troduces some additional dispersion in the predicted Lyα Accordingly, our mapping can be written as fluxatafixedM .However,varyingβ within[−2.0, −1.5] UV β =β +µ(β) (M +19)+µ(β)(z−7), (A3) changestheLyαfluxonlyby1−(λ /λ )1.5−2.0 ∼13%. 0 MUV UV z UV Lyα ThisdispersionissmallerthanthatintroducedbytheEW- where µ(β) ≡∆β/∆M and µ(β) ≡∆β/∆z. MUV UV z PDF. If we replace the constant β with the empirical fit In Eq. (A1) we used the best parameters by described in § A2, then our predicted Lyα LF (represented Schenker et al. (2014), i.e., (A , σ, µ , µ ) = em α s by the orange line in Fig. A2) is barely any different from (1.0, 1.3,2.875, −1.125). In addition, since A is de- em our fiducial model that used β = −1.7 (represented by the generate with F, we set F = 1. The orange dashed line black solid line). in Fig. A2 shows the resulting Lyα LF at z = 5.7. The agreement in the faint-end between the two procedures is remarkable.Forgreaterluminosities,however,theSchenker et al. (2014) parameterization leads to a (much) higher number density of LAEs. While there are significant uncertainties in the above procedure, the agreement we get at the faint end slope is especially encouraging. Future surveys can be extremely useful in further connecting the LAE and LBG populations by constraining the bright end of the LAE luminosity function. A3 ‘Freezing’ the EW PDF for faint galaxies Since the evolution in the EW PDF for fainter sources in- volves a (modest) extrapolation of observationally inferred P(EW), we have also tested and alternative PDF where we ‘froze’ the evolution at M = −19. That is, we also UV conservatively assume that the EW-PDF stops evolving at M >−19(eventhoughobservationshintthatthisisnot UV the case, see fig. 13 of Stark et al. (2010)). Fig. A2 shows the resulting Lyα LF (purple line). It is clear that our re- sultsareonlyaffectedslightly,i.e.,thefaint-end-slopeα Lyα is reduced by ∼ 0.05. We also tested this over a variety of redshifts. A4 Non-constant UV spectral slope The spectral slope β is not a constant, but depends on UV magnitude and redshift (as discussed above). This in- (cid:13)c 2015RAS,MNRAS000,1–8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.