Pacific Journal of Mathematics CONNECTED QUANDLES ASSOCIATED WITH POINTED ABELIAN GROUPS W. EDWIN CLARK, MOHAMED ELHAMDADI, XIANG-DONG HOU, MASAHICO SAITO AND TIMOTHY YEATMAN Volume264 No.1 July2013 PACIFICJOURNALOFMATHEMATICS Vol.264,No.1,2013 dx.doi.org/10.2140/pjm.2013.264.31 CONNECTED QUANDLES ASSOCIATED WITH POINTED ABELIAN GROUPS W. EDWIN CLARK, MOHAMED ELHAMDADI, XIANG-DONG HOU, MASAHICO SAITO AND TIMOTHY YEATMAN A quandle is a self-distributive algebraic structure that appears in quasi- groupandknottheories. Foreachabeliangroup Aand c∈ A,wedefinea quandleG(A,c)on(cid:90) ×A. Thesequandlesaregeneralizationsofaclassof 3 nonmedialLatinquandlesdefinedbyV.M.Galkin,sowecallthemGalkin quandles. Each G(A,c) is connected but not Latin unless A has odd or- der. G(A,c) is nonmedial unless 3A = 0. We classify their isomorphism classes in terms of pointed abelian groups and study their various proper- ties. AfamilyofsymmetricconnectedquandlesisconstructedfromGalkin quandles, and some aspects of knot colorings by Galkin quandles are also discussed. 1. Introduction Sets with certain self-distributive operations called quandles have been studied since the 1940s in various areas. They have been studied, for example, as an algebraicsystemforsymmetries[Takasaki1943],asquasigroups[Galkin1988], andinrelationtomodules[Nelson2003]. Thefundamentalquandlewasdefined inamannersimilarto thefundamentalgroup[Joyce1982;Matveev1982], which madequandlesanimportanttoolinknottheory. Algebraichomologytheoriesfor quandlesweredefined [Carteretal.2003b; Fennetal. 1995]anddevelopedand investigated([LitherlandandNelson2003;Mochizuki2011;Niebrzydowskiand Przytycki2009;2011;Nosaka2011],forexample),andextensionsofquandlesby cocycleshavebeenstudied[AndruskiewitschandGraña2003;Carteretal.2003a; Eisermann2007b]andappliedtovariouspropertiesofknotsandknottedsurfaces (see[Carteretal.2004]andreferencestherein). Beforealgebraictheoriesofextensionsweredeveloped, Galkin[1988]defineda familyofquandlesthatareextensionsofthe3-elementconnectedquandle R ,and 3 wecallthemGalkinquandles. EventhoughthedefinitionofGalkinquandlesisa M.S.wassupportedinpartbyNSFgrantDMS0900671. MSC2010: 57M25. Keywords: quandles,pointedabeliangroups,knotcolorings. 31 32 CLARK,ELHAMDADI,HOU,SAITOANDYEATMAN specialcaseofacocycleextensiondescribedin[AndruskiewitschandGraña2003], theyhavecuriouspropertiessuchastheexplicitandsimpledefiningformula,close connectionsto dihedralquandles,and thefactthattheyappearinthe listofsmall connectedquandles. Inthispaper,wegeneralizeGalkin’sdefinitionanddefineafamilyofquandles thatareextensionsof R ,characterizetheirisomorphismclasses,andstudytheir 3 properties. The definition is given in Section 3 after a brief review of necessary materialsinSection2. Isomorphismclassesarecharacterizedbypointedabelian groupsinSection4. VariousalgebraicpropertiesofGalkinquandlesareinvestigated inSection5,andtheirknotcoloringsarestudiedinSection6. 2. Preliminaries In thissection we briefly review somedefinitions and examplesof quandles. More details can be found, for example, in [Andruskiewitsch and Graña 2003; Carter etal.2004;Fennetal.1995]. A quandle X is a set with a binary operation (a,b) (cid:55)→ a ∗b satisfying the followingconditions. (1) (Idempotency) Foranya∈ X,a∗a=a. (2) (Invertibility) Foranyb,c∈ X, thereisauniquea∈ X suchthata∗b=c. (3) (Rightself-distributivity) Foranya,b,c∈ X, wehave(a∗b)∗c=(a∗c)∗(b∗c). Aquandlehomomorphismbetweentwoquandles X,Y isamap f : X →Y such that f(x∗ y)= f(x)∗ f(y),where∗ and∗ denotethequandleoperationsof X X Y X Y andY,respectively. Aquandleisomorphismisabijectivequandlehomomorphism, andtwoquandlesareisomorphicifthereisaquandleisomorphismbetweenthem. Typicalexamplesofquandlesincludethefollowing. • Anynonemptyset X withtheoperationx∗y=x foranyx,y∈X isaquandle calledthetrivialquandle. • Agroup X =G withtheoperationofn-foldconjugation,a∗b=b−nabn,isa quandle. • Letn beapositiveinteger. Fora,b∈(cid:90) (integersmodulon),define n a∗b≡2b−a (modn). Then ∗ defines a quandle structure called the dihedralquandle R . This set n canbeidentifiedwiththesetofreflectionsofaregularn-gonwithconjugation asthequandleoperation. CONNECTEDQUANDLESASSOCIATEDWITHPOINTEDABELIANGROUPS 33 • Any(cid:90)[T,T−1]-module M isaquandlewitha∗b=Ta+(1−T)bfora,b∈M. ThisiscalledanAlexanderquandle. AnAlexanderquandleisalsoregarded asapair(M,T),where M isanabeliangroupand T ∈Aut(M). Let X beaquandle. TherighttranslationR : X → X bya∈ X isdefinedby a R (x)=x∗aforx∈X. Similarly,thelefttranslationL isdefinedbyL (x)=a∗x. a a a ThenR isapermutationof X byAxiom(2). ThesubgroupofSym(X)generated a bythepermutationsR ,a∈ X,iscalledtheinnerautomorphismgroupof X and a isdenotedbyInn(X). Welistsomedefinitionsofcommonlyknownpropertiesof quandlesbelow. • AquandleisconnectedifInn(X)actstransitivelyon X. • ALatinquandleisaquandlesuchthatforeacha∈ X,thelefttranslationL a isabijection. Thatis,themultiplicationtableofthequandleisaLatinsquare. • Aquandleisfaithfulifthemappinga(cid:55)→R isaninjectionfrom X toInn(X). a • A quandle X is involutory, or a kei, if the right translations are involutions: R2 =idforalla∈ X. a • Theoperation∗¯ on X definedbya ∗¯ b=R−1(a)isaquandleoperation,and b (X,∗¯)iscalledthedualquandleof(X,∗). If(X,∗¯)isisomorphicto(X,∗), then(X,∗)iscalledself-dual. • Aquandle X ismedialif(a∗b)∗(c∗d)=(a∗c)∗(b∗d)foralla,b,c,d∈X. It is also called abelian. It is known and easily seen that every Alexander quandleismedial. Acoloringofanorientedknotdiagrambyaquandle X isamapC:A→X from thesetofarcsAofthediagramto X suchthattheimageofthemapsatisfiesthe relationdepictedinFigure1ateachcrossing. Moredetailscanbefoundin[Carter et al. 2004; Eisermann 2007a], for example. A coloring that assigns the same elementof X forallthearcsiscalledtrivial,andotherwisenontrivial. Thenumber ofcoloringsofaknotdiagrambyafinitequandleisknowntobeindependentofthe choiceofadiagram,andhenceisaknotinvariant. Acoloringbyadihedralquandle R for a positive integer n > 1 is called an n-coloring. If a knot is nontrivially n colored by a dihedral quandle R for a positive integer n > 1, then it is called n n-colorable. InFigure2,anontrivial3-coloringofthetrefoilknot(3 inacommon 1 notationinaknottable[ChaandLivingston2011])isindicated. Thisispresented y x x∗y Figure1. Acoloringruleatacrossing. 34 CLARK,ELHAMDADI,HOU,SAITOANDYEATMAN 0 1 2 0 1 Figure2. Trefoilastheclosureofσ3. 1 inaclosedbraidform. Eachcrossingcorrespondstoastandardgeneratorσ ofthe 1 2-strand braid group, and σ3 represents three crossings together as in the figure. 1 Thedottedlineindicatestheclosure;see[Rolfsen1976]formoredetailsofbraids. Thefundamentalquandleisdefinedinamannersimilartothefundamentalgroup [Joyce1982;Matveev1982]. Apresentationofaquandleisdefinedinamanner similartogroupsaswell,andapresentationofthefundamentalquandleisobtained from a knot diagram (see, for example, [Fenn and Rourke 1992]), by assigning generators to arcs of a knot diagram, and relations corresponding to crossings. The set of colorings of a knot diagram K by a quandle X is then in one-to-one correspondence with the set of quandle homomorphisms from the fundamental quandleof K to X. 3. DefinitionandnotationforGalkinquandles Let A beanabeliangroup,alsoregardednaturallyasa(cid:90)-module. Letµ:(cid:90) →(cid:90), 3 τ :(cid:90) → A be functions. These functions µ and τ need not be homomorphisms. 3 Defineabinaryoperationon(cid:90) ×A by 3 (x,a)∗(y,b)=(cid:0)2y−x,−a+µ(x−y)b+τ(x−y)(cid:1), x,y∈(cid:90) , a,b∈ A. 3 Proposition 3.1. For any abelian group A, the operation ∗ defines a quandle structureon(cid:90) ×Aifµ(0)=2,µ(1)=µ(2)=−1,andτ(0)=0. 3 Galkin[1988,p.950]gavethisdefinitionfor A=(cid:90) . Thepropositiongeneralizes p hisresulttoanyabeliangroup A. Fortheproof,weexaminetheaxioms. Lemma3.2. (A) Theoperationisidempotent—thatis,itsatisfiesAxiom(1)—if andonlyif(µ(0)−2)a=0foranya∈ A,andτ(0)=0. (B) Theoperationasarightactionisinvertible—thatis,itsatisfiesAxiom(2). Proof. Directcalculations. (cid:3) CONNECTEDQUANDLESASSOCIATEDWITHPOINTEDABELIANGROUPS 35 Lemma3.3. Theoperation∗on(cid:90) ×Aisrightself-distributive—thatis,itsatisfies 3 Axiom(3)—ifandonlyifµ,τ satisfythefollowingconditionsforany X,Y ∈(cid:90) 3 andb,c∈ A: (4) µ(−X)b=µ(X)b, (5) (cid:0)µ(X+Y)+µ(X−Y)(cid:1)c=(µ(X)µ(Y))c, (6) τ(X+Y)+τ(Y −X)=τ(X)+τ(−X)+µ(X)τ(Y). Proof. Rightself-distributivity,thatis, ((x,a)∗(y,b))∗(z,c)=((x,a)∗(z,c))∗((y,b)∗(z,c)) for x,y,z∈(cid:90) anda,b,c∈ A,issatisfiedifandonlyif 3 µ(x−y)b=µ(y−x)b, µ(2y−x−z)c=(cid:0)−µ(x−z)+µ(y−x)µ(y−z)(cid:1)c, −τ(x−y)+τ(2y−x−z)=−τ(x−z)+µ(y−x)τ(y−z)+τ(y−x). Thisisseenbyequatingthecoefficientsofb andc andtheconstantterm. Forthe equivalence of the first equation with (4), set X =x−y. For the equivalence of thesecondwith(5),set X = y−x and Y =z−y. Fortheequivalenceofthelast with(6),set X = y−x andY = y−z. (cid:3) ProofofProposition3.1. Assumetheconditionsstated. ByLemma3.2,Axioms(1) and (2) are satisfied under the specifications µ(0) = 2,µ(1) = µ(2) = −1, and τ(0)=0. If X =0orY =0,then(5)(togetherwith(4))becomesatautology. If X−Y =0 or X +Y =0, then (5) reduces to µ(2X)+2=µ(X)2, which is satisfied by the above specifications. For R , if X +Y (cid:54)=0 and X −Y (cid:54)=0, then either X =0 or 3 Y =0. Hence (5) is satisfied. For (6), it is checked similarly, for the two cases [X =0orY =0]and[X−Y =0or X+Y =0]. (cid:3) Definition3.4. Let A beanabeliangroup. Thequandledefinedby∗on(cid:90) ×A by 3 Proposition3.1, (x,a)∗(y,b)=(cid:0)2y−x,−a+µ(x−y)b+τ(x−y)(cid:1), x,y∈(cid:90) , a,b∈ A, 3 withµ(0)=2,µ(1)=µ(2)=−1,andτ(0)=0,iscalledtheGalkinquandleand denotedby G(A,τ). Sinceτ isspecifiedbythevaluesτ(1)=c andτ(2)=c wherec ,c ∈ A,we 1 2 1 2 alsodenoteitby G(A,c ,c ). 1 2 Example3.5. TheGalkinquandle G((cid:90) ,0,1)is(cid:90) ×(cid:90) asasetwiththequandle 2 3 2 operationdefinedasabovewithµ(0)=2,µ(1)=µ(2)=−1,τ(0)=τ(1)=0,and 36 CLARK,ELHAMDADI,HOU,SAITOANDYEATMAN τ(2)=1. Thus,(0,1)∗(1,0)=(2,−1+µ(2)0+τ(2))=(2,0)and(2,0)∗(1,1)= (0,0+µ(1)1+τ(1))=(0,1),forexample. Lemma 3.6. For any abelian group A and c ,c ∈ A, the quandles G(A,c ,c ) 1 2 1 2 andG(A,0,c −c )areisomorphic. 2 1 Proof. Letc=c −c . Defineη:G(A,c ,c )→G(A,0,c),asamapon(cid:90) ×A,by 2 1 1 2 3 η(x,a)=(x,a+β(x))whereβ(0)=β(1)=0andβ(2)=−c . Thisηisabijection, 1 and we show that it is a quandle homomorphism. We compute η((x,a)∗(y,b)) andη(x,a)∗η(y,b)for x,y∈(cid:90) anda,b∈ A. 3 Ifx=y,thenµ(x−y)=2andτ(x−y)=0forbothG(A,c ,c )andG(A,0,c), 1 2 sothat η((x,a)∗(x,b))=η(x,2b−a)=(x,2b−a+β(x)), η(x,a)∗η(x,b)=(x,a+β(x))∗(x,b+β(x))=(cid:0)x,2(b+β(x))−(a+β(x))(cid:1) =(x,2b−a+β(x)), asdesired. If x−y=1∈(cid:90) ,thenµ(x−y)=−1forbothG(A,c ,c )andG(A,0,c)and 3 1 2 τ(x−y)=c for G(A,c ,c )butτ(x−y)=0for G(A,0,c),sothat 1 1 2 η((x,a)∗(y,b))=η(2y−x,−a−b+c )=(2y−x,−a−b+c +β(2y−x)), 1 1 η(x,a)∗η(y,b)=(x,a+β(x))∗(y,b+β(y)) =(cid:0)2y−x, −(a+β(x))−(b+β(y))(cid:1). Thetwoexpressionsareequalifandonlyifβ(x)+β(y)+β(2y−x)=−c ,which 1 istruesince x (cid:54)= y impliesthatexactlyoneof x,y,2y−x is2∈(cid:90) . 3 If x−y=2∈(cid:90) ,thenµ(x−y)=−1forbothG(A,c ,c )andG(A,0,c)and 3 1 2 τ(x−y)=c for G(A,c ,c )butτ(x−y)=c −c =c for G(A,0,c),sothat 2 1 2 2 1 η((x,a)∗(y,b))=η(2y−x,−a−b+c )=(2y−x,−a−b+c +β(2y−x)), 2 2 η(x,a)∗η(y,b)=(x,a+β(x))∗(y,b+β(y)) =(cid:0)2y−x,−(a+β(x))−(b+β(y))+c −c (cid:1) 2 1 =(cid:0)2y−x,−a−b−β(x)−β(y)+(c −c )(cid:1), 2 1 andagaintheseareequalforthesamereasonasabove. (cid:3) Notation. Since,byLemma3.6,anyGalkinquandleisisomorphicto G(A,0,c) foranabeliangroup A andc∈ A,wedenote G(A,0,c)by G(A,c)forshort. Anyfiniteabeliangroupisaproduct(cid:90) ×···×(cid:90) ,wherethepositiveintegers n1 nk nj satisfynj|nj+1 for j=1,...,k−1. Inthiscase,anyelementc∈Aiswrittenin avectorform[c ,...,c ],wherec ∈(cid:90) . ThenthecorrespondingGalkinquandle 1 k j nj isdenotedby G(A,[c ,...,c ]). 1 k CONNECTEDQUANDLESASSOCIATEDWITHPOINTEDABELIANGROUPS 37 Remark3.7. WenotethatthedefinitionofGalkinquandlesinducesafunctor. Let Ab denote the category of pointed abelian groups; its objects are pairs (A,c), 0 where A is an abelian group and c ∈ A, and its morphisms f :(A,c)→(B,d) aregrouphomomorphisms f : A→ B suchthat f(c)=d. LetQbethecategory of quandles consisting of quandles as objects and quandle homomorphisms as morphisms. F Thenthecorrespondence(A,c)(cid:55)→G(A,c)definesafunctorF:Ab →Q. It 0 iseasytoverifythatifamorphism f :(A,c)→(B,d)isgiven,thenthemapping F(f)(x,a)=(x, f(a))with(x,a)∈G(A,c)=(cid:90) ×A isahomomorphismfrom 3 G(A,c)to G(B,d)andsatisfiesF(gf)=F(g)F(f)andF(id(A,c))=idG(A,c). Remark3.8. AreaderwillwondertowhatextentDefinition3.4ofaGalkinquandle canbegeneralized. Wetriedseveralgeneralizations. Forexample,ifoneattempts toreplace3byanarbitraryprime p inDefinition3.4,thenLemma3.3stillholds. Inthiscasefor p>3,weproveinLemma5.14thatµ(x)=2forall x ∈(cid:90) ,and p computer experiments indicate that one almost always obtains a quandle if and onlyifτ =0,inwhichcasethequandleobtainedissimplyaproductofdihedral quandles. We have also attempted to replace −x+2y by the Alexander quandle operationtx+(1−t)y inboththeleftandrightcoordinates,buthaveneitherbeen successfulinfindinginterestingnewquandles,norbeenabletoprovethatnosuch generalizations exist. We note that if a generalization for p >3 exists, then any such quandles will be less dense than Galkin quandles, since multiples of 3 are morenumerousthanmultiplesof p when p>3. 4. Isomorphismclasses InthissectionweclassifyisomorphismclassesofGalkinquandles. Lemma4.1. Let Abeanabeliangroup,andleth:A→A(cid:48)beagroupisomorphism. ThenGalkinquandlesG(A,τ)andG(A(cid:48),hτ)areisomorphicasquandles. Proof. Define f : G(A,τ) → G(A(cid:48),hτ), as a map from (cid:90) × A to (cid:90) × A(cid:48), 3 3 by f(x,a) = (x,h(a)). This f is a bijection, and we show that it is a quandle homomorphismbycomputing f((x,a)∗(y,b))and f(x,a)∗ f(y,b)forx,y∈(cid:90) 3 anda,b∈ A: f((x,a)∗(y,b))= f(2y−x,−a+µ(x−y)b+τ(x−y)) =(cid:0)2y−x,h(−a+µ(x−y)b+τ(x−y))(cid:1), f(x,a)∗ f(y,b)=(x,h(a))∗(y,h(b)) =(cid:0)2y−x,−h(a)+µ(x−y)h(b)+hτ(x−y)(cid:1). Theequality f((x,a)∗(y,b))= f(x,a)∗ f(y,b)followsfromthefactsthat h is agrouphomomorphismandµ(x−y)isaninteger. (cid:3) 38 CLARK,ELHAMDADI,HOU,SAITOANDYEATMAN Lemma 4.2. Let c,d,n be positive integers. If gcd(c,n) = d, then G((cid:90) ,c) is n isomorphictoG((cid:90) ,d). n Proof. If A = (cid:90) , then Aut(A) = (cid:90)∗ = unitsof(cid:90) , and the divisors of n are n n n representativesoftheorbitsof(cid:90)∗ actingon(cid:90) . (cid:3) n n Thus we may choose the divisors of n for the values of c for representing isomorphismclassesof G((cid:90) ,c). n Corollary4.3. If Aisavectorspace(elementary p-group),thenthereareexactly twoisomorphismclassesofGalkinquandlesG(A,τ). Proof. If A isavectorspacecontainingnonzerovectorsc andc ,thenthereisa 1 2 nonsingularlineartransformation h of A suchthat h(c )=c . That G(A,0)isnot 1 2 isomorphicto G(A,c)ifc(cid:54)=0followsfromLemma4.5. (cid:3) For distinguishing isomorphismclasses, cycle structures of the right action are useful,andweusethefollowinglemmas. Lemma4.4. Foranyabeliangroup A,theGalkinquandleG(A,τ)isconnected. Proof. Recallthattheoperationisdefinedbytheformula (x,a)∗(y,b)=(cid:0)2y−x,−a+µ(x−y)b+τ(x−y)(cid:1), with µ(0)=2, µ(1)=µ(2)=−1, and τ(0)=0. If x (cid:54)= y, then (x,a)∗(y,b)= (2y−x,−a−b+c )=(z,c),wherei =1or2and x,y∈(cid:90) anda,b∈ A. Note i 3 that{x,y,2y−x}=(cid:90) if x (cid:54)=y. Inparticular,forany(x,a)and(z,c)with x (cid:54)=z, 3 thereis(y,b)suchthat(x,a)∗(y,b)=(z,c). Forany(x,a )and(x,a )wherex∈(cid:90) anda ,a ∈A,take(z,c)∈(cid:90) ×Asuch 1 2 3 1 2 3 thatz(cid:54)=x. Thenthereare(y,b ),(y,b )suchthatx(cid:54)=y(cid:54)=zand(x,a )∗(y,b )= 1 2 1 1 (z,c)and(z,c)∗(y,b )=(x,a ). Hence G(A,τ)isconnected. (cid:3) 2 2 Lemma4.5. Thecyclestructureofarighttranslationin G(A,τ),whereτ(0)= τ(1)=0andτ(2)=c,consistsof1-cycles,2-cycles,and2k-cycles,wherek isthe orderofcinthegroup A. Sinceisomorphicquandleshavethesamecyclestructureofrighttranslations, G(A,c)andG(A,c(cid:48))forc,c(cid:48)∈ Aarenotisomorphicunlesstheordersofcandc(cid:48) coincide. Proof. Let τ(0) = 0, τ(1) = 0, and τ(2) = c. Then by Lemma 4.4, the cycle structureofeachcolumnisthesameasthe cyclestructureoftherighttranslation by(0,0),thatis,ofthepermutation f(x,a)=(x,a)∗(0,0)=(−x,−a+τ(x)). Weshowthatthispermutationhascyclesoflengthonly1,2andtwicetheorder ofc in A. Since f(0,a)=(0,−a)fora∈ A,a(cid:54)=0,wehave f2(0,a)=(0,a),so that(0,a)generatesa2-cycle,ora1-cycleif2a=0. Nowfrom f(1,a)=(2,−a) and f(2,a)=(1,−a+c) fora∈ A, by induction it is easy to see that for k >0, CONNECTEDQUANDLESASSOCIATEDWITHPOINTEDABELIANGROUPS 39 f2k(1,a)=(1,a+kc)and f2k(2,a)=(2,a−kc). Inthecaseof(1,a),a(cid:54)=0,the cyclecloseswhena+kc=a in A. Thesmallestk forwhichthisholdsistheorder ofc,inwhichcasethecycleisoflength2k. Acyclebeginningat(2,a)similarly hasthissamelength. (cid:3) Proposition4.6. Letn beapositiveinteger. Let A=(cid:90) andc ,c(cid:48) ∈(cid:90) fori =1,2. n i i n TwoGalkinquandles G(A,c ,c )and G(A,c(cid:48),c(cid:48))areisomorphicifandonlyif 1 2 1 2 gcd(c −c ,n)=gcd(c(cid:48) −c(cid:48),n). 1 2 1 2 Proof. Ifgcd(c −c ,n)=gcd(c(cid:48) −c(cid:48),n),thentheyareisomorphicbyLemmas3.6 1 2 1 2 and4.2. Thecyclestructuresaredifferentifgcd(c −c ,n)(cid:54)=gcd(c(cid:48) −c(cid:48),n)by 1 2 1 2 Lemma4.5,andhencetheyarenotisomorphic. (cid:3) Remark 4.7. The cycle structure is not sufficient for noncyclic groups A. For example,let A=(cid:90) ×(cid:90) . Then G(A,[1,0])and G(A,[0,2])havethesamecycle 2 4 structure for right translations, with cycle lengths {2,2,4,4,4,4} in a multiset notation,yettheyareknownnottobeisomorphic. (InthenotationofExample4.12 below, G(A,[1,0])=C[24,29]and G(A,[0,2])=C[24,31].) Wenotethatthere isnoautomorphismof A carrying[1,0]to[0,2]. Moregenerally,theisomorphismclassesofGalkinquandlesarecharacterizedas follows. Theorem 4.8. Suppose A,A(cid:48) are finite abelian groups. Two Galkin quandles G(A,τ) and G(A(cid:48),τ(cid:48)) are isomorphic if and only if there exists a group isomor- phismh: A→ A(cid:48) suchthathτ =τ(cid:48). OneimplicationintheproofofTheorem4.8isLemma4.1. Fortheother,first weprovethefollowingtwolemmas. Wewilluseawellknowndescriptionofthe automorphismsofafiniteabeliangroup,whichcanbefoundin[HillarandRhea 2007;Ranum1907]. Lemma 4.9. Let A be a finite abelian p-group and let f : pA → pA be an automorphism. Then f canbeextendedtoanautomorphismof A. Proof. Let A=(cid:90)n1 ×···×(cid:90)nk. Then p1 pk px px x 2 2 2 . . . (7) f .. = P .. , .. ∈(cid:90)n2 ×···×(cid:90)nk, p2 pk px px x k k k where P P ··· P 22 23 2k pP32 P33 ··· P3k (8) P = . . . , .. .. .. pk−2P pk−3P ··· P k2 k3 kk
Description: