ebook img

Conifold transitions via affine geometry and mirror symmetry PDF

96 Pages·2017·1.1 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Conifold transitions via affine geometry and mirror symmetry

Geometry & Topology18(2014)1769–1863 msp Conifold transitions via affine geometry and mirror symmetry RICARDO CASTAÑO-BERNARD DIEGO MATESSI MirrorsymmetryofCalabi–YaumanifoldscanbeunderstoodviaaLegendreduality betweenapairofcertainaffinemanifoldswithsingularitiescalledtropicalmanifolds. In this article, we study conifold transitions from the point of view of Gross and Siebert[11;12;13]. Weintroducethenotionsoftropicalnodalsingularity,tropical conifolds,tropicalresolutionsandsmoothings. Weinterpretknownglobalobstruc- tionstothecomplexsmoothingandsymplecticsmallresolutionofcompactnodal Calabi–Yaumanifoldsintermsofcertaintropical 2–cyclescontainingthenodesin theirassociatedtropicalconifolds. Weprovethattheexistenceofsuchcyclesimplies thesimultaneousvanishingoftheobstructiontosmoothingtheoriginalCalabi–Yau andtoresolvingitsmirror. Weformulateaconjecturesuggestingthattheexistence ofthesecyclesshouldimplythatthetropicalconifoldcanberesolvedanditsmirror can be smoothed, thus showing that the mirror of the resolution is a smoothing. Wepartiallyprovetheconjectureforcertainconfigurationsofnodesandforsome interestingexamples. 14J32;14J33,53D37 1 Introduction Ageometrictransitionbetweenapairofsmoothvarietiesistheprocessofdeforming thefirstvarietytoasingularoneandthenobtainingthesecondonebyresolvingthe singularities. Thefirstvarietyiscalledasmoothingandthesecondonearesolution. In [25], Morrison conjectures that, in certain circumstances, mirror symmetry should map a pair of smooth Calabi–Yau manifolds, related by a geometric transition, to anotherpair,alsorelatedbyageometrictransitionbutwiththerolesreversed,sothat themirrorofasmoothingshouldbearesolutionandvice-versa. Thisideaissupported byevidencesandexamples. Morrisonalsosuggeststhatanewunderstandingofthis phenomenoncouldcomefromtheSYZinterpretationofmirrorsymmetryasaduality of special Lagrangian torus fibrations. Building on ideas of Hitchin [18], Gross [7], Gross and Wilson [14], Kontsevich and Soibelman [20; 21] and others on the SYZ Published: 7July2014 DOI:10.2140/gt.2014.18.1769 1770 RicardoCastaño-BernardandDiegoMatessi conjecture, Gross and Siebert show that mirror pairs of Calabi–Yau manifolds can be constructed from a Legendre dual pair of affine manifolds with singularities and polyhedral decompositions, also called tropical manifolds [11; 12; 13]. Inthis article weconsiderthespecialcaseofconifoldtransitions. Weintroducethenotionoftropical conifold,ieoftropicalmanifoldwithnodes,andweshowthatthesmoothing/resolution processalsohasanaturaldescriptioninthiscontext(thiswasfirstobservedbyGross[7] andRuan [27]). Indeed thesmoothingofa tropicalconifoldsimultaneouslyinduces a resolution of its mirror, but in general the process is obstructed. To study global obstructions we introduce the notion of tropical 2–cycle in a tropical conifold. Our mainresultisthefollowing: MainTheorem Theexistenceofatropical 2–cyclecontainingthenodesinatropical conifoldimpliesthevanishingoftheobstructionstothesmoothingoftheassociated Calabi–Yauvarietyandtotheresolutionofitsmirror. SeeTheorem7.3fortheprecisestatement. Weformulateaconjectureclaimingthatthe inversealsoholds,iethatthevanishingoftheseobstructionscanalwaysbedetectedby tropical 2–cycles. Moreoverweexpectthattheexistenceofaresolution/smoothingof asetofnodesinthetropicalconifoldshouldbeequivalenttosomepropertyexpressible intermstropical 2–cyclescontainingthenodes. Thiswouldshowthatthesmoothing andtheresolutionarethemselvesmirrorpairsinthesenseofGrossandSiebert. We partially prove the conjecture for some special configurations of nodes and for an interestingfamilyofexamples. 1.1 Conifoldtransitions Anodeisthe 3–foldsingularitywithlocalequation xy(cid:0)zwD0. Asmallresolution ofanodehasa P1 asitsexceptionalcycle,withnormalbundle O .(cid:0)1/˚O .(cid:0)1/. P1 P1 The smoothing of a node (ie xy (cid:0)zw D (cid:15)) produces a Lagrangian 3–sphere as a vanishing cycle. A conifold transition is the geometric transition associated with a 3–fold with nodal singularities, ie a “conifold.” It was proved by Friedman [5] and Tian [32] that a compact complex conifold can be smoothed to a complex manifold ifandonlyif theexceptionalcyclesof asmallresolutionsatisfya“goodrelation” in homology;seeEquation(20). Similarly,onthesymplecticside,itwasshownbySmith, Thomas andYau[30] thata “symplectic conifold” has asymplectic (small)resolution, withsymplecticexceptionalcycles,ifandonlyifthevanishingcyclesofasmoothing satisfyagoodrelation. Thesetworesultsareamanifestationoftheideathatthemirror ofacomplexsmoothingshouldbeasymplecticresolution. Geometry & Topology,Volume18(2014) Conifoldtransitionsviaaffinegeometryandmirrorsymmetry 1771 1.2 SYZconjecture Mirror symmetry is usually computed when the Calabi–Yau manifold is the generic fibreofafamily W (cid:31)!C,wherethespecialfibre (cid:31) D (cid:0)1.0/ ishighlydegenerate 0 (eg one requires that (cid:31) has maximally unipotent monodromy). The Strominger–Yau– 0 { Zaslow(SYZ) Conjecture[31] claimsthat mirrorCalabi–Yau pairs X and X should admit“dual”specialLagrangianfibrations, fW X !B and f{W X{ !B. Thisoriginal ideahasbeenrevisedbyGrossandWilson[7;14]andKontsevichandSoibelman[20], whoclaimedthatspecialLagrangianfibrationsshouldexistonlyinsomelimitingsense asthefibre (cid:31) D (cid:0)1.s/ approachesthesingularfibre (cid:31) (seealsothesurveypaper s 0 byGross[10]). This“limitingfibration”canbedescribedintermsofacertainstructure onthebase B ofthefibration. Here B isarealmanifoldandthestructureon B should containinformationconcerningthecomplexandsymplecticstructureoftheCalabi–Yau manifold. Moreover, this data contains intrinsically a duality given by a Legendre transform. TheimportantfactisthatthestructureonB shouldallowthe“reconstruction” oftheoriginalCalabi–Yau. Thisisknownasthereconstructionproblem. Therefore, findingthe mirrorofagivenfamily W (cid:31)!C ofCalabi–Yaumanifolds becomesthe processofconstructing B,withitsstructure,applyingtheLegendretransformtoobtain { the dual base B, with dual structure, and then reconstructing the mirror family via somereconstructiontheorem. Forinstance,indimension 2,KontsevichandSoibelman [21]constructarigidanalytic K3 fromanaffinestructureon S2 with 24 punctures. 1.3 Tropicalmanifoldsandmirrorsymmetry In[11;12;13]GrossandSiebertcompletedthisprograminalldimensions. On B they considerthe structureofanintegralaffinemanifoldwith singularitiesandpolyhedral decompositions. Roughly this means B is obtainedby gluinga set of n–dimensional integralconvexpolytopesin Rn byidentifyingfacesviaintegralaffinetransformations (thisisthepolyhedraldecomposition,denoted P). Then,atthevertices v of P one definesafanstructure,whichidentifiesthetangentwedgesofthepolytopesmeeting at v with the cones of a fan †v in Rn. For a certain codimension-2 closed subset (cid:129) (cid:26) B, this structure determines an atlas on B D B(cid:0)(cid:129) such that the transition 0 mapsareintegralaffinetransformations. Theset (cid:129),calledthediscriminantlocus,is the set of singularities of the affine structure. An additional crucial piece of data is apolarisation,consistingofaso-called“strictlyconvexmultivaluedpiecewiselinear function” (cid:30) on B. Sucha (cid:30) isspecifiedbythedataofastrictlyconvexpiecewiselinear function (cid:30)v definedoneveryfan †v,pluscompatibilityconditionsbetween (cid:30)v and (cid:30)w for vertices v and w belonging to a common face. All these data, which we denote by the triple .B;P;(cid:30)/, are also called a polarised tropical manifold. The “discrete Geometry & Topology,Volume18(2014) 1772 RicardoCastaño-BernardandDiegoMatessi Legendretransform”associatesto .B;P;(cid:30)/ anothertriple .B{;P{;(cid:30){/. Essentially,at avertex v of B,thefan †v andfunction (cid:30)v providean n–dimensionalpolytope v{, bythestandardconstructionintoricgeometry. Twopolytopes v{ and w{,associatedto vertices v and w onacommonedgeof P,canbegluedtogetheralongafaceusing thecompatibilities betweenthepairs .†v;(cid:30)v/ and .†w;(cid:30)w/. Thisgives B{ andthe polyhedral decomposition P{. The fan structure and function (cid:30){ at the vertices of P{ comefromthe n–dimensionalpolytopesof P essentiallyusingtheinverseconstruction. In order to have satisfactory reconstruction theorems it is necessary to put further technical restrictions on .B;P;(cid:30)/. Gross and Siebert define such conditions and call them “positivity and simplicity.” For convenience, we will say that a polarised tropical manifold is smooth if it satisfies these nice conditions. In particular, in the 3–dimensional case smoothness of B amounts to the fact that (cid:129) is a 3–valent graph and the vertices can be of two types: “positive” or “negative”, depending on the local monodromy of the affine structure. The Gross–Siebert reconstruction theorem [13] ensures that given a smooth polarised tropical manifold .B;P;(cid:30)/, it is possible to construct a toric degeneration W (cid:31) ! C of Calabi–Yau varieties, such that B is the dual intersection complex of the singular fibre (cid:31) . The mirror 0 family {W (cid:31){ ! C is obtained by applying the reconstruction theorem to the Le- gendredual .B{;P{;(cid:30){/. The integral affine structure on B DB(cid:0)(cid:129) implies the existence of a local system 0 ƒ(cid:3)(cid:26)T(cid:3)B ,whosefibres ƒ ŠZn aremaximallatticesin T(cid:3)B . Thenonecanform 0 b b 0 the n–torusbundle X DT(cid:3)B =ƒ(cid:3) over B . Thestandardsymplecticformon T(cid:3)B B0 0 0 0 descends to X and the projection f W X !B is a Lagrangian torus fibration. B0 0 B0 0 In[4],weprovedthatif B isa 3–dimensionalsmoothtropicalmanifoldthenonecan formasymplecticcompactificationof X . Thisisasymplecticmanifold X ,con- B0 B taining X asadenseopensubset,togetherwithaLagrangianfibration fW X !B B0 B whichextends f . ThisisdonebyinsertingsuitablesingularLagrangianfibresover 0 points of (cid:129). Topologically the compactification X is based on the one found by B Grossin[8]. Itisexpectedthat X shouldbediffeomorphictoasmoothfibre (cid:31) ofthe B s family W (cid:31)!C intheGross–Siebertreconstructiontheorem,whosedualintersection complexis .B{;P{;(cid:30){/. ThisresulthasbeenannouncedinGross[9,Theorem0.1]. A completeproofforthequintic 3–foldin P4 isfoundin[8]. Wealsoexpectthat X B shouldbesymplectomorphicto (cid:31) withasuitableKählerform,althoughthereisno s proofofthisyet. 1.4 Summaryoftheresults Indimension 3,smoothnessof B ensuresthegeneralfibre (cid:31) of W (cid:31)!C issmooth. s Weintroducethenotionof(polarised)tropicalconifold,inwhichthediscriminantlocus Geometry & Topology,Volume18(2014) Conifoldtransitionsviaaffinegeometryandmirrorsymmetry 1773 isallowedtohave 4–valentvertices. Suchvertices,whichwecall(tropical)nodes,are of two types: negative and positive. Away from these nodes, a tropical conifold is a smoothtropicalmanifold. WebelievetheGross–Siebertreconstructiontheoremcanbe extended alsoto tropical conifolds, butthe generalfibre (cid:31) shouldbe avarietywith s nodes. Thisishintedbythefactthatthelocalconifold xy(cid:0)wzD0 has a pair of torus fibrations which induce on the base B the same structure as in a neighbourhoodofpositiveornegativenodes. Infact,inCorollary6.7weshowif B is a tropical conifold, then X can be topologically compactified to a topological B0 conifoldX (ieasingulartopologicalmanifoldwithnodalsingularities). Aninteresting B observationisthattheLegendretransformofapositivenodeisthenegativenode. In particular we also have the mirror conifold X{. This extends topological mirror B symmetryof[8]toconifolds. Thenwegivealocaldescriptionofthesmoothingand resolution of a node in a tropical conifold (see Figures 9 and 10). It turns out that the Legendre dual of a resolution is indeed a smoothing. At the topological level this was already observed by Gross [7] and Ruan [27], who also discusses a global example. Theinterestingquestion isglobal: givenacompact tropicalconifold,canwe simultaneously resolve or smooth its nodes? We give a precise procedure to do this. Itturnsout thatthesmoothingofnodes inatropicalconifold simultaneously induces the resolution of the nodes in the mirror. What are the obstructions to the tropical resolution/smoothing? Forthispurposewedefinethenotionoftropical 2–cycleinside a tropical conifold. These objects resemble the usual notion of a tropical surface as definedforinstancebyMikhalkinin[23]. Atropical 2–cycleisgivenbyaspace S andanembedding jW S !B withsomeadditionalstructure. Thespace S hasvarious types of interior and boundary points. For instance at generic points, S is locally Euclidean, at the codimension-1 points S is modelled on the tropical line times an intervalandatcodimension-2 points S ismodelledonthetropicalplane(seeFigure13) andsoon. InTheorem7.3weprovethatif j.S/ containstropicalnodes,thenboththe vanishingcyclesassociatedtothenodesin X andtheexceptionalcurvesassociatedto B thenodesin X{ satisfyagoodrelation. Theideaisthattropical 2–cyclescanbeused B toconstructeither 4–dimensionalobjectsin XB or 3–dimensionalonesin XB{ (see also Aspinwall, Bridgeland, Craw, Douglas, Gross, Kapustin, Moore, Segal, Szendro˝i, andWilson[1,Chapter6],wherethelocaldualitybetween A–branesand B–branesis explained.) Thus obstructions vanish on both sides of mirror symmetry. The results of Friedman, Tian, and Smith, Thomas and Yau then lead us to Conjecture 8.3. It statesanygoodrelationamongthevanishingcyclesofasetofnodesin X isalinear B combinationofgoodrelationscomingfromtropical 2–cyclesin B. Moreoverthere shouldexistsome propertyofthesetropical 2–cycleswhichis equivalentto thefact Geometry & Topology,Volume18(2014) 1774 RicardoCastaño-BernardandDiegoMatessi that B canbetropicallyresolved. Asapartialconfirmationofthisconjecture,weprove thenodescontainedinsomespecialconfigurationsoftropical 2–cyclescanalwaysbe tropicallyresolved(Theorems8.5,8.7,8.9andCorollary8.6). Finallyweapplytheseresultstospecificexamples. WeconsiderthecaseofSchoen’s Calabi–Yau[29],whichisafibredproductoftworationalellipticsurfaces. Acorre- spondingtropicalmanifoldhasbeendescribedbyGrossin[9]. Itispossibletomodify the example in many ways so that we obtain a tropical conifold with various nodes. We show how these nodes can be resolved/smoothed and thus obtain new tropical manifolds. Theinterestingfactisthatthisprocedureautomaticallyproducesthemirror families via discrete Legendre transform and the reconstruction theorems. For this classofexampleswealsopartiallyproveConjecture8.3. Notation We denote the convex hull of a set of points q ;:::;q in Rn by Conv.q ;:::;q /. 1 r 1 n Givenasetofvectors v ;:::;v 2Rn theconespannedbythesevectorsistheset 1 r (cid:26)Xr ˇ (cid:27) Cone.v ;:::;v /D t v ˇt (cid:21)0;j D1;:::;r : 1 r j j ˇ j jD1 2 Affine manifolds with polyhedral decompositions Wegiveaninformalintroductiontoaffinemanifoldswithsingularitiesandpolyhedral decompositions. Wereferto[11]forprecisedefinitionsandproofs. 2.1 Affinemanifoldswithsingularities Let M ŠZn bealatticeanddefine M DM ˝ R andlet R Z Aff.M/DM ÌGl.Z;n/ 0 bethegroupofintegralaffinetransformationsof M . If M and M aretwolattices, R then Aff.M;M0/ is the Z–module of integral affine maps between M and M0 . R R Recall that an integral affine structure A on an n–manifold B is given by an open cover fU g and an atlas of charts (cid:30) W U ! M whose transition maps (cid:30) ı(cid:30)(cid:0)1 i i i R j i are in Aff.M/. An integral affine manifold is a manifold B with an integral affine structure A. Acontinuousmap fW B !B0 betweentwointegralaffinemanifoldsis integralaffineif,locally, f isgivenbyelementsof Aff.M;M0/. Geometry & Topology,Volume18(2014) Conifoldtransitionsviaaffinegeometryandmirrorsymmetry 1775 An affine manifold with singularities is a triple .B;(cid:129);A/, where the B is an n– manifold, (cid:129) (cid:18) B is a closed subset such that B D B (cid:0)(cid:129) is dense in B and A 0 is an integral affine structure on B . The set (cid:129) is called the discriminant locus. A 0 continuousmap fW B !B0 ofintegralaffinemanifoldswithsingularitiesisintegral affine if f(cid:0)1.B00/\B0 is dense in B and fjf(cid:0)1.B00/\B0W f(cid:0)1.B00/\B0 ! B00 is integral affine. Furthermore f is an isomorphism of integral affine manifolds with singularitiesif fW .B;(cid:129)/!.B0;(cid:129)0/ isahomeomorphismofpairs. 2.2 Paralleltransportandmonodromy Given an affine manifold B, let .U;(cid:30)/ 2 A be an affine chart with coordinates u ;:::;u . Then the tangent bundle TB (resp. cotangent bundle T(cid:3)B) has a flat 1 n connection r definedby r@ D0 .resp. rdu D0/ uj j for all j D1;:::;n and all charts .U;(cid:30)/2A. Then parallel transport along loops basedat b2B givesthemonodromyrepresentation (cid:26)zW (cid:25) .B;p/!Gl.T B/. Gross 1 b andSiebertalsointroducethenotionofholonomyrepresentation,whichisdenoted (cid:26) and has values in Aff.T B/, and (cid:26)z coincides with the linear part of (cid:26). In the case b ofanaffinemanifoldwithsingularities .B;(cid:129);A/,themonodromyrepresentationis (cid:26)zW (cid:25) .B ;p/!Gl.T B /. 1 0 b 0 Integralityimpliestheexistenceofamaximalintegrallatticeƒ(cid:26)TB (resp.ƒ(cid:3)(cid:26)T(cid:3)B ) 0 0 definedby (1) ƒj Dspan h@ ;:::;@ i .resp. ƒ(cid:3)j Dspan hdu ;:::;du i/: U Z u1 un U Z 1 n Wecanthereforeassumethat (cid:26)z hasvaluesin Gl.Z;n/. 2.3 Polyhedraldecompositions Rather than recalling here the precise definition of an integral affine manifold with singularitiesandpolyhedraldecompositions (ie [11, Definition 1.22]), it is better to recall the standard procedure to construct them; see [11, Construction 1.26]. We 0 start with a finite collection P of n–dimensional integral convex polytopes in M . R 0 Themanifold B isformedbygluing together thepolytopesof P viaintegralaffine identificationsof theirproper faces. Then B hasa celldecomposition whosecells are 0 theimagesoffacesofthepolytopesof P . Denoteby P thissetofcells. Weassume that B isacompactmanifoldwithoutboundary. Wenowconstructtheintegralaffine atlas A on B. Firstofall,theinteriorofeachmaximalcellof P canberegardedasthe domainofanintegralaffinechart,sinceitcomesfromtheinteriorofapolytopein M . R Geometry & Topology,Volume18(2014) 1776 RicardoCastaño-BernardandDiegoMatessi To define a full atlas we need charts around points belonging to lower-dimensional cells. In factthis willbe possibleonly afterremovingfrom B aset (cid:129)0 whichwe now define. Let Bar.P/ bethefirstbarycentricsubdivisionof P. Thendefine (cid:129)0 tobethe unionofallsimplicesof Bar.P/ notcontainingavertexof P (ie 0–dimensionalcells) or the barycenter of a maximal cell. For a vertex v 2P, let Wv be the union of the interiorsof allsimplicesof Bar.P/ containing v. Then Wv isan openneighbourhood of v and fWv jv isavertexofPg[fInt.(cid:27)/j(cid:27) 2Pmaxg forms a covering of B(cid:0)(cid:129)0. A chart on the open set Wv is given by a fanstructure atthevertex v;see[11,Construction1.26]. Thisconstructiongivesanintegralaffine atlason B(cid:0)(cid:129)0. Inmanycasestheset (cid:129)0 istoocrudeandtheaffinestructurecanbe extendedtoalargersetthan B(cid:0)(cid:129)0. Thiscanbedoneasfollows. Noticethat (cid:129)0 isa unionofcodimension-2 simplices. Thenlet (cid:129) betheunionofthosesimplicesaround which local monodromy is not trivial. In [11, Proposition 1.27] it is proved that the affinestructureon B(cid:0)(cid:129)0 canbeextendedto B(cid:0)(cid:129). GrossandSiebertalsointroducethecrucialnotionoftoricpolyhedraldecomposition. Essentiallythis conditionestablishes certaincompatibilities between fans †v and †w atvertices v and w lyingonsomecommoncell. Wewillcomebacktothisinthenext twoparagraphs. 2.4 Localpropertiesofmonodromy Themonodromyrepresentationofaffinemanifoldswithpolyhedraldecompositions has someuseful distinguishedproperties, which wenowdescribe. Firstof allnotice that (cid:129) iscontainedinthecodimension-1 skeleton. Let (cid:28) beacellof P ofcodimension at least 1, then it is shown in [11, Proposition 1.29] that the tangent space to (cid:28) is monodromyinvariantwithrespecttothelocalmonodromynear(cid:28). Moreprecisely,there existsaneighbourhood U(cid:28) of Int.(cid:28)/ suchthat,if b2(cid:28)(cid:0)(cid:129) and (cid:13) 2(cid:25)1.U(cid:28)(cid:0)(cid:129);b/,then (cid:26)z.(cid:13)/.w/Dw forevery w tangentto (cid:28) in b. Moreover(see[11,Proposition1.32])the polyhedralsubdivisionistoricifandonlyifforevery (cid:28) thereexistsaneighbourhood U(cid:28) of Int.(cid:28)/ suchthat,if b2(cid:28)(cid:0)(cid:129) and (cid:13) 2(cid:25)1.U(cid:28)(cid:0)(cid:129);b/,then (cid:26)z.(cid:13)/.w/(cid:0)w istangent to (cid:28) forevery w2T B . b 0 2.5 Quotientfans If the polyhedral decomposition is toric (see above), then to every cell (cid:28) 2 P one can associate a complete fan †(cid:28), called the quotient fan of (cid:28), whose dimension is equal to the codimension of (cid:28). It is defined as follows. Let b 2Int.(cid:28)/(cid:0)(cid:129), then to Geometry & Topology,Volume18(2014) Conifoldtransitionsviaaffinegeometryandmirrorsymmetry 1777 every (cid:27) such that (cid:28) (cid:26)(cid:27), one can associate the tangent wedge of (cid:27) at b. This can be viewed as a convex rational polyhedral cone inside T B (with lattice structure b 0 given by ƒ). The union of all such cones forms a complete fan in T B , which is b 0 the pullback of a complete fan in the quotient TbB0=Tb(cid:28). Let †(cid:28) be such a fan. The toric condition ensures that the quotient spaces TbB0=Tb(cid:28) and the fan †(cid:28) are independentof b2(cid:28)(cid:0)(cid:129),infacttheycanbeall identified viaparalleltransportalong pathscontainedinasuitablysmallneighbourhood U(cid:28) of Int.(cid:28)/. Thelocalpropertiesof monodromy, assuming thetoric condition, implythat thisidentification is independent ofthechosenpath. 2.6 Examples Inthefollowingexamples B willbeallowedtohaveboundaryoreventobeconstructed usingunboundedpolytopes. Theconstructionabovecanbeeasilyadaptedtothesecases. Example2.1 (Thefocus-focussingularity) Herethedimensionis nD2. Theset P0 isgivenbytwopolytopes: astandardsimplexandasquare Œ0;1(cid:141)(cid:2)Œ0;1(cid:141). Gluethem along one edge to form B (see Figure 1). Let e be the common edge, and let v 1 and v betheverticesof e. Thediscriminantlocus (cid:129) consistsofthebarycenter of e. 2 Consider the fan in R2 whose 2–dimensional cones are two adjacent quadrants, ie Cone.e ;e / and Cone.e ;(cid:0)e /,where fe ;e g isthestandardbasisof R2. Thenthe 1 2 1 2 1 2 fanstructureat v , j D1;2,identifiesthetangentwedgesofthetwopolytopeswith j thesetwocones, insuchawaythat theprimitivetangentvectorto e at v ismapped j to e (seeFigure1). 1 v (cid:0)e 2 2 e 2 e 1 e 1 (cid:0)e v e 2 1 2 Figure1 Consider a loop (cid:13) which starts at v , goes into the square, passes through v and 1 2 comesbackto v whilepassinginsidethetriangle. Onecaneasilycalculatethat (cid:26)z.(cid:13)/, 1 computedwithrespecttothebasis fe ;e g,asdepictedinFigure1,isthematrix 1 2 (cid:18) (cid:19) 1 1 : 0 1 Thesingularpoint (cid:129) inthisexampleiscalledthefocus-focussingularity. Geometry & Topology,Volume18(2014) 1778 RicardoCastaño-BernardandDiegoMatessi Example2.2 (Genericsingularity) Thisa 3–dimensionalexampleand itisjust the productofthepreviousexampleby Œ0;1(cid:141). Here (cid:129) consistsofasegment. v v 2 2 e 2 e3 e2 (cid:0)e 3 v3 e1 v1 v1 e1 v3 Figure2 Example 2.3 (The negative vertex) Here nD3. Let Pn be the standard simplex in Rn. The set P0 consists of two polytopes: P3 and P2(cid:2)P1 which we glue by identifyingthetriangularface P2(cid:2)f0g withafaceof P3. InFigure2wehavelabelled theverticesofthesetwofacesby v ;v ;v andtheidentificationis donebymatching 1 2 3 the vertices with the same labelling. Now consider the fan in R3 whose cones are two adjacent octants (ie Cone.e ;e ;e / and Cone.e ;e ;(cid:0)e /, where fe ;e ;e g 1 2 3 1 2 3 1 2 3 is the standard basis of R3). At every vertex v identify the tangent wedges of the j two polytopes with these two cones, in such a way that the tangent wedge to the commonfaceismappedto Cone.e ;e /. Thereismorethanonewaytodothis(since 1 2 Cone.e ;e / hasnontrivialautomorphisms),butanychoiceisagoodchartoftheaffine 1 2 structure. If one fixes an orientation then a choice can be made so that the chart is oriented. The discriminant locus (cid:129) is the Y-shaped figure depicted in (red) dashed linesinFigure2. Nowlet (cid:13) bethepathgoingfrom v to v bypassinginto P3 and j 3 j thencomingbackto v bypassinginto P2(cid:2)P1. Itcanbeeasilyshownthat (cid:26)z.(cid:13) / 3 1 and (cid:26)z.(cid:13) / aregivenrespectivelybythematrices 2 0 1 0 1 1 0 1 1 0 0 @0 1 0A; @0 1 1A: 0 0 1 0 0 1 Thevertexof (cid:129) inthisexampleiscalledthenegativevertex. Example 2.4 (The positive vertex) In this case B D R2(cid:2)Œ0;1(cid:141) with polyhedral decompositiongivenbythefollowingunboundedpolytopes(seeFigure3): Q Dfx(cid:21)maxfy;0g;z2Œ0;1(cid:141)g 1 Q Dfy (cid:21)maxfx;0g;z2Œ0;1(cid:141)g 2 Q Dfx(cid:20)0;y (cid:20)0;z2Œ0;1(cid:141)g 3 Geometry & Topology,Volume18(2014)

Description:
of these cycles should imply that the tropical conifold can be resolved and its mirror can be smoothed . extended also to tropical conifolds, but the general fibre s should be a variety with nodes. This is suggesting to add the material in Section 9.5 and for helping us improve exposition. Referen
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.