ebook img

Congruences for Franel numbers PDF

0.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Congruences for Franel numbers

Preprint, arXiv:1112.1034 CONGRUENCES FOR FRANEL NUMBERS Zhi-Wei Sun 2 1 Department of Mathematics, Nanjing University 0 2 Nanjing 210093, People’s Republic of China [email protected] n a http://math.nju.edu.cn/∼zwsun J 6 2 pAlbaystirmapcotr.taTntheroFlersaninelbnoutmhbceormsbgiinvaetnorbicysfannd=nuPmnkb=e0r(cid:0)tnkh(cid:1)e3or(yn. I=n 0th,1is,2p,a.p.e.)r ] T we initiate the systematic investigation of fundamental congruences for Franel N numbers. Let p>3 be a prime. We mainlyestablish the followingcongruences: . h at p−1(−1)kf ≡ p (mod p2), p−1(−1)kkf ≡−2 p (mod p2), m X k (cid:16)3(cid:17) X k 3 (cid:16)3(cid:17) k=0 k=0 0 [ pX−1 (−k1)kfk ≡0 (mod p2), pX−1 (−k12)kfk ≡0 (mod p). 1 k=1 k=1 v 4 We also pose several conjectural congruences. 3 0 1 . 2 1. Introduction 1 1 1 It is well known that : v n 2 i n 2n X = (n = 0,1,2,...) (cid:18)k(cid:19) (cid:18)n (cid:19) r kX=0 a and central binomial coefficients play important roles in mathematics. A fa- mous theorem of J. Wolstenholme [W] asserts that 1 2p 2p−1 = ≡ 1 (mod p3) for any prime p > 3. 2(cid:18)p(cid:19) (cid:18)p−1 (cid:19) The reader may consult [S11a], [S11b], [ST1] and [ST2] for recent work on congruences involving central binomial coefficients. 2010MathematicsSubjectClassification.Primary11A07,11B65;Secondary05A10,11B68, 11E25. Keywords. Franel numbers, Ap´ery numbers, binomial coefficients, congruences. Supported by the National Natural Science Foundation (grant 11171140) of China. 1 2 ZHI-WEI SUN In 1895 J. Franel [F] noted that the numbers n 3 n f = (n = 0,1,2,...) (1.1) n (cid:18)k(cid:19) X k=0 (cf. [Sl, A000172]) satisfy the recurrence relation: (n+1)2f = (7n(n+1)+2)f +8n2f (n = 1,2,3,...). n+1 n n−1 SuchnumbersarenowcalledFranelnumbers. Forcombinatorialinterpretations of Franel numbers and Barrucand’s identity n n 2 n n 2k f = g with g = , (1.2) k n n (cid:18)k(cid:19) (cid:18)k(cid:19) (cid:18)k (cid:19) X X k=0 k=0 the reader may consult D. Callan [C]. Recall that Ap´ery numbers given by n 2 2 n 2 2 n n+k n+k 2k A = = (n = 0,1,2,...) n (cid:18)k(cid:19) (cid:18) k (cid:19) (cid:18) 2k (cid:19) (cid:18)k (cid:19) X X k=0 k=0 were introduced by Ap´ery [Ap] (see also [Po]) in his famous proof of the irra- tionality of ζ(3) = ∞ 1/n3, and they can be expressed in terms of Franel n=1 numbers as follows:P n n n+k A = f (1.3) n k (cid:18)k(cid:19)(cid:18) k (cid:19) X k=0 (see V. Strehl [St92]). The Franel numbers are also related to the theory of modular forms. Let η be the Dedkind eta function given by ∞ η(τ) := eπiτ/12 (1−e2πinτ) nY=1 with Im(τ) > 0. It is known that ∞ η(τ)3η(6τ)9 n η(2τ)η(3τ)6 f = n(cid:18)η(2τ)3η(3τ)9(cid:19) η(τ)2η(6τ)3 nX=0 for any complex number τ with Im(τ) > 0. (See, e.g., D. Zagier [Z].) In this paper we study congruences for Franel numbers systematically. As usual, for an odd prime p and integer a, (a) denotes the Legendre symbol, and p q (a) stands for the Fermat quotient (ap−1 −1)/p if p ∤ a. p Now we state our main results. CONGRUENCES FOR FRANEL NUMBERS 3 Theorem 1.1. Let p > 3 be a prime. For any p-adic integer r we have p−1 p−1 2 k +r 2k k +r (−1)k f ≡ (mod p2). (1.4) k (cid:18) k (cid:19) (cid:18)k (cid:19)(cid:18) k (cid:19) X X k=0 k=0 In particular, p−1 p (−1)kf ≡ (mod p2), (1.5) k 3 X (cid:16) (cid:17) k=0 p−1 2 p (−1)kkf ≡− (mod p2), (1.6) k 3 3 X (cid:16) (cid:17) k=0 p−1 10 p (−1)kk2f ≡ (mod p2), (1.7) k 27 3 X (cid:16) (cid:17) k=0 and p−1 2k f p−1 2k 3 k k ≡ k (mod p2). (1.8) (cid:0)(−4(cid:1))k (cid:0)16(cid:1)k X X k=0 k=0 We also have p−1 (−1)k f ≡0 (mod p2), (1.9) k k X k=1 p−1 (−1)k f ≡0 (mod p), (1.10) k2 k X k=1 p−1 (−1)k f ≡3q (2)+3pq (2)2 (mod p2), (1.11) k−1 p p k X k=1 and p−1 f (3k +1) k ≡ p2 −2p3q (2)+4p4q (2)2 (mod p5). (1.12) 8k p p X k=0 Remark 1.1. Fix a prime p > 3. As f ≡ (−8)kf (mod p) for all k = k p−1−k 0,... ,p−1 by [JV, Lemma 2.6], (1.11) implies that p−1 p−1 p−1 f (−1)k (−1)p−k k ≡ f = f ≡ 3q (2) (mod p). k8k k p−1−k p−k k−1 p X X X k=1 k=1 k=1 4 ZHI-WEI SUN Concerning (1.8) the author [S11b, Conj. 5.2(ii)] conjectured that p−1 2k 3 4x2 −2p (mod p2) if p ≡ 1 (mod 3) & p = x2 +3y2 (x,y ∈ Z), k ≡ (cid:0)16(cid:1)k (cid:26) 0 (mod p2) if p ≡ 2 (mod 3). X k=0 We also have many such conjectures for p−1 2k f /mk mod p2. (1.10) can k=0 k k be extended as P (cid:0) (cid:1) p−1 (−1)kr (r) f ≡ 0 (mod p), (1.13) kr−1 k X k=1 where r is any positive integer and f(r) := k k r. Note that f(2) = 2k k j=0 j k k and p−1 2k /k ≡ 0 (mod p2) by [ST1]. P (cid:0) (cid:1) (cid:0) (cid:1) k=1 k P (cid:0) (cid:1) Let p > 3 be a prime. Similar to (1.5)-(1.7), we are also able to show that p−1 p−1 10 p 14 p (−1)kk3f ≡ − (mod p2) and (−1)kk4f ≡ − (mod p2). k 81 3 k 35 3 X (cid:16) (cid:17) X (cid:16) (cid:17) k=0 k=0 In general, for any positive integer r there should be an odd integer a such r that p−1 2a p (−1)kkrf ≡ r (mod p2). k 32r−1 3 X (cid:16) (cid:17) k=0 For example, if p > 5 then p−1 p−1 322 p 2030 p (−1)kk5f ≡ (mod p2), (−1)kk6f ≡ − (mod p2). k 37 3 k 39 3 X (cid:16) (cid:17) X (cid:16) (cid:17) k=0 k=0 The Ap´ery polynomials introduced in [S11c] are those n 2 2 n n+k A (x) = xk (n = 0,1,2,...). n (cid:18)k(cid:19) (cid:18) k (cid:19) X k=0 Here we define n 2 n 2k g (x) = xk n (cid:18)k(cid:19) (cid:18)k (cid:19) X k=0 for all n = 0,1,2,.... Note that g (1) = g . n n CONGRUENCES FOR FRANEL NUMBERS 5 Theorem 1.2. Let p > 3 be a prime. Then p−1 p−1 xk g (x) ≡ p (mod p2). (1.14) k 2k +1 X X k=0 k=0 Consequently, p−1 g ≡0 (mod p2), (1.15) k X k=1 p−1 −1 g (−1) ≡ (mod p2), (1.16) k (cid:18) p (cid:19) X k=0 p−1 p g (−3) ≡ (mod p2). (1.17) k 3 X (cid:16) (cid:17) k=0 We also have p−1 g (x) k ≡0 (mod p), (1.18) k X k=1 p−1 g p k−1 ≡− 2q (3) (mod p), (1.19) p k 3 X (cid:16) (cid:17) k=1 p−1 3 kg ≡− (mod p2), (1.20) k 4 X k=1 p−1 g (−1) k ≡0 (mod p) if p > 5. (1.21) k2 X k=1 Moreover, n−1 n−1 2 1 n−1 (4k+3)g = C (1.22) 3n2 k (cid:18) k (cid:19) k X X k=0 k=0 for all n = 1,2,3,..., where C denotes the Catalan number 2k /(k + 1) = k k 2k − 2k . (cid:0) (cid:1) k k+1 (cid:0) (cid:1) (cid:0) (cid:1) Remark 1.2. Let p > 3 be a prime. By [JV, Lemma 2.7], g ≡ (p)9kg k 3 p−1−k (mod p) for all k = 0,... ,p−1. So (1.17) implies that p−1 p−1 p−1 g p g p g k p−1−k k−1 ≡ = ≡ 2q (3) (mod p). k9k 3 k 3 p−k p X (cid:16) (cid:17)X (cid:16) (cid:17)X k=1 k=1 k=1 6 ZHI-WEI SUN We also introduce the polynomials n 2 n n 2k n k 2k f (x) = xk = xk (n = 0,1,2,...) n (cid:18)k(cid:19) (cid:18)n(cid:19) (cid:18)k(cid:19)(cid:18)n−k(cid:19)(cid:18) k (cid:19) X X k=0 k=0 which play a central role in our proof of Theorem 1.1. We are going to show Theorem 1.1 in the next section and investigate in Section 3 connections among the polynomials A (x), f (x) and g (x). In Sec- n n n tion 4 we will prove Theorem 1.2. In Section 5 we shall raise some conjectures for further research. 2. Proof of Theorem 1.1 Lemma 2.1. For any nonnegative integer n, the integer f (1) coincides with n the Franel number f . n Remark 2.1. This is a known result due to V. Strehl [St94]. Lemma 2.2. For any nonnegative integer k we have 2k 2 l k x+l x+k (−1)l = . (cid:18)k(cid:19)(cid:18)l−k(cid:19)(cid:18) l (cid:19) (cid:18) k (cid:19) X l=k Proof. Observe that 2k l k x+l (−1)l (cid:18)k(cid:19)(cid:18)l−k(cid:19)(cid:18) l (cid:19) X l=k 2k l k −x−1 = (cid:18)k(cid:19)(cid:18)l−k(cid:19)(cid:18) l (cid:19) X l=k 2k −x−1 −x−1−k k = (cid:18) k (cid:19) (cid:18) l−k (cid:19)(cid:18)l−k(cid:19) X l=k k 2 2 −x−1 −x−1−k k −x−1 x+k = = = (cid:18) k (cid:19) (cid:18) j (cid:19)(cid:18)k −j(cid:19) (cid:18) k (cid:19) (cid:18) k (cid:19) X j=0 with the help of the Chu-Vandemonde identity (cf. (3.1) of [G, p.22]). We are done. (cid:3) Lemma 2.3. For each positive integer m we have n−1 2k 2n P (k) = nm for all n = 1,2,3,... , m (cid:18)k (cid:19) (cid:18)n (cid:19) X k=0 CONGRUENCES FOR FRANEL NUMBERS 7 where P (x) := 2(2x+1)(x+1)m−1 −xm. m Proof. The desired result follows immediately by induction on n. (cid:3) Remark 2.2. The author thanks Prof. Qing-Hu Hou at Nankai Univ. for his comments on the author’s original version of Lemma 2.3. Lemma 2.4. Let p > 3 be a prime. (i) ([ST, (1.6)]) We have p−1 2k p ≡ (mod p2). (cid:18)k (cid:19) 3 X (cid:16) (cid:17) k=0 (ii) ([S11c]) We have p−1 (2k +1)A ≡ p (mod p4). k X k=0 Lemma 2.5. Let m be a positive integer. For n = 0,1,... ,m we have n x −x m−n x−1 −x = . (cid:18)k(cid:19)(cid:18)m−k(cid:19) m (cid:18) n (cid:19)(cid:18)m−n(cid:19) X k=0 Remark 2.3. This is a known result due to E. S. Andersen, see, e.g., (3.14) of [G, p.23]. Lemma 2.6 (Sun [S11b, Lemma 2.1]). Let p be an odd prime. For any k = 1,... ,p−1 we have 2k 2(p−k) k ≡ (−1)⌊2k/p⌋−12p (mod p2). (cid:18) k (cid:19)(cid:18) p−k (cid:19) Recall that harmonic numbers are given by 1 H = (n = 0,1,2,...). n k 0<Xk6n In general. for any positiveinteger m, harmonic numbers of order m aredefined by 1 H(m) := (n = 0,1,2,...). n km 0<Xk6n 8 ZHI-WEI SUN Let p > 3 be a prime. In 1862 J. Wolstenholme [W] proved that H ≡ 0 (mod p2) and H(2) ≡ 0 (mod p). p−1 p−1 Note that (p−1)/2 1 1 1 1 (2) (2) H = + = H ≡ 0 (mod p). (p−1)/2 2 (cid:18)k2 (p−k)2(cid:19) 2 p−1 X k=1 In 1938 E. Lehmer [L] showed that H ≡ −2q (2)+pq (2)2 (mod p2). (2.1) (p−1)/2 p p These fundamental congruences are quite useful. Recently the author [S12a] proved some further congruences involving harmonic numbers. Lemma 2.7. Let p > 3 be a prime. Then f ≡ 1+3pq (2)+3p2q (2)2 (mod p3). (2.2) p−1 p p Proof. For any k = 1,... ,p−1, we obviously have k p−1 p (−1)k = 1− (cid:18) k (cid:19) (cid:18) j(cid:19) jY=1 p2 2 p2 ≡1−pH + = 1−pH + H2 −H(2) (mod p3). k 2 ij k 2 k k 16Xi<j6k (cid:16) (cid:17) Thus p−1 p−1 3 p−1 p2 3 f −1 = ≡ (−1)k 1−pH + H2 −H(2) p−1 (cid:18) k (cid:19) (cid:18) k 2 k k (cid:19) X X (cid:16) (cid:17) k=1 k=1 p−1 p−1 p−1 9 3 =−3p (−1)kH + p2 (−1)kH2 − p2 (−1)kH(2) (mod p3). k 2 k 2 k X X X k=1 k=1 k=1 Clearly p−1 p−1 k (−1)k p−1 p−1(−1)k p−1 1 (−1)kH = = k=j = k j P j j Xk=1 kX=1Xj=1 Xj=1 Xj=1 2|j 1 p = H ≡ −q (2)+ q (2)2 (mod p2) (by (2.1)) (p−1)/2 p p 2 2 CONGRUENCES FOR FRANEL NUMBERS 9 and p−1 p−1 p−1(−1)k (p−1)/2 1 (−1)kH(2) = k=j = ≡ 0 (mod p). k P j2 (2i)2 Xk=1 Xj=1 Xi=1 Observe that p−1 p−1 p−1 2 1 (−1)kH2 = (−1)p−kH2 = (−1)k−1 H − k p−k (cid:18) p−1 p−j(cid:19) X X X X k=1 k=1 k=1 0<j<k p−1 2 1 ≡− (−1)k H − k (cid:18) k(cid:19) X k=1 p−1 p−1 p−1 (−1)k (−1)k ≡− (−1)kH2 +2 H − (mod p). k k k k2 X X X k=1 k=1 k=1 Clearly, p−1 p−1 (p−1)/2 (−1)k 1+(−1)k 2 ≡ = ≡ 0 (mod p), k2 k2 (2j)2 kX=1 kX=1 Xj=1 and p−1 (−1)k p−1 H p−1 H q (2)2 q (2)2 k k p p H = − ≡ − − (mod p) k k k k 2 (cid:18) 2 (cid:19) X X X k=1 k=1 k=1 2|k 2∤k by [S12a, Lemma 2.3]. Therefore p−1 p−1 (−1)k (−1)kH2 ≡ H ≡ q (2)2 (mod p). k k k p X X k=1 k=1 Combining the above, we finally obtain p 9 f −1 ≡−3p −q (2)+ q (2)2 + p2q (2)2 (mod p3) p−1 p p p 2 2 (cid:16) (cid:17) and hence (2.2) holds. (cid:3) Proof of Theorem 1.1. (i) Let r be any p-adic integer. Observe that p−1 p−1 l l+r l+r l k 2k (−1)l f (x) = (−1)l xk l (cid:18) l (cid:19) (cid:18) l (cid:19) (cid:18)k(cid:19)(cid:18)l−k(cid:19)(cid:18) k (cid:19) X X X l=0 l=0 k=0 p−1 min{2k,p−1} 2k l k l+r = xk (−1)l . (cid:18)k (cid:19) (cid:18)k(cid:19)(cid:18)l−k(cid:19)(cid:18) l (cid:19) X X k=0 l=k 10 ZHI-WEI SUN If (p−1)/2 < k 6 p−1 and k 6 l 6 2k, then 2k (2k)! l l! = ≡ 0 (mod p) and = ≡ 0 (mod p). (cid:18)k (cid:19) (k!)2 (cid:18)k(cid:19) k!(l−k)! Therefore p−1 p−1 2k l+r 2k l k l+r (−1)l f (x) ≡ xk (−1)l (mod p2). l (cid:18) l (cid:19) (cid:18)k (cid:19) (cid:18)k(cid:19)(cid:18)l−k(cid:19)(cid:18) l (cid:19) X X X l=0 k=0 l=k Applying Lemma 2.2 we obtain p−1 p−1 2 l+r 2k k +r (−1)l f (x) ≡ xk (mod p2). (2.3) l (cid:18) l (cid:19) (cid:18)k (cid:19) (cid:18) k (cid:19) X X l=0 k=0 In the case x = 1 this yields (1.4). Taking r = 0 in (1.4) and applying Lemma 2.4(i), we immediately get (1.5). By (2.3) with r = 0,1, p−1 (3(k +1)−1)(−1)kf (x) k X k=0 p−1 p−1 2k 2k ≡ xk 3(k+1)2 −1 = P (k) xk (mod p2) 2 (cid:18)k (cid:19) (cid:18)k (cid:19) kX=0 (cid:0) (cid:1) kX=0 where P (x) = 2(2x+1)(x+1) −x2 = 3x2 +6x+ 2. Thus, with the help of 2 Lemma 2.3, we have p−1 (3k +2)(−1)kf ≡ 0 (mod p2) (2.4) k X k=0 and hence (1.6) holds in view of (1.5). Taking r = 2 in (2.3) we get p−1 p−1 2k 2 (k2 +3k +2)(−1)kf (x) ≡ xk((k+1)(k +2))2 (mod p2). k (cid:18) k (cid:19) X X k=0 k=0 In view of (2.4), this yields p−1 p−1 2k 2 (−1)kk2f ≡ (k2 +3k +2)2 (mod p2). k (cid:18) k (cid:19) X X k=0 k=0

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.