Preprint, arXiv:1112.1034 CONGRUENCES FOR FRANEL NUMBERS Zhi-Wei Sun 2 1 Department of Mathematics, Nanjing University 0 2 Nanjing 210093, People’s Republic of China [email protected] n a http://math.nju.edu.cn/∼zwsun J 6 2 pAlbaystirmapcotr.taTntheroFlersaninelbnoutmhbceormsbgiinvaetnorbicysfannd=nuPmnkb=e0r(cid:0)tnkh(cid:1)e3or(yn. I=n 0th,1is,2p,a.p.e.)r ] T we initiate the systematic investigation of fundamental congruences for Franel N numbers. Let p>3 be a prime. We mainlyestablish the followingcongruences: . h at p−1(−1)kf ≡ p (mod p2), p−1(−1)kkf ≡−2 p (mod p2), m X k (cid:16)3(cid:17) X k 3 (cid:16)3(cid:17) k=0 k=0 0 [ pX−1 (−k1)kfk ≡0 (mod p2), pX−1 (−k12)kfk ≡0 (mod p). 1 k=1 k=1 v 4 We also pose several conjectural congruences. 3 0 1 . 2 1. Introduction 1 1 1 It is well known that : v n 2 i n 2n X = (n = 0,1,2,...) (cid:18)k(cid:19) (cid:18)n (cid:19) r kX=0 a and central binomial coefficients play important roles in mathematics. A fa- mous theorem of J. Wolstenholme [W] asserts that 1 2p 2p−1 = ≡ 1 (mod p3) for any prime p > 3. 2(cid:18)p(cid:19) (cid:18)p−1 (cid:19) The reader may consult [S11a], [S11b], [ST1] and [ST2] for recent work on congruences involving central binomial coefficients. 2010MathematicsSubjectClassification.Primary11A07,11B65;Secondary05A10,11B68, 11E25. Keywords. Franel numbers, Ap´ery numbers, binomial coefficients, congruences. Supported by the National Natural Science Foundation (grant 11171140) of China. 1 2 ZHI-WEI SUN In 1895 J. Franel [F] noted that the numbers n 3 n f = (n = 0,1,2,...) (1.1) n (cid:18)k(cid:19) X k=0 (cf. [Sl, A000172]) satisfy the recurrence relation: (n+1)2f = (7n(n+1)+2)f +8n2f (n = 1,2,3,...). n+1 n n−1 SuchnumbersarenowcalledFranelnumbers. Forcombinatorialinterpretations of Franel numbers and Barrucand’s identity n n 2 n n 2k f = g with g = , (1.2) k n n (cid:18)k(cid:19) (cid:18)k(cid:19) (cid:18)k (cid:19) X X k=0 k=0 the reader may consult D. Callan [C]. Recall that Ap´ery numbers given by n 2 2 n 2 2 n n+k n+k 2k A = = (n = 0,1,2,...) n (cid:18)k(cid:19) (cid:18) k (cid:19) (cid:18) 2k (cid:19) (cid:18)k (cid:19) X X k=0 k=0 were introduced by Ap´ery [Ap] (see also [Po]) in his famous proof of the irra- tionality of ζ(3) = ∞ 1/n3, and they can be expressed in terms of Franel n=1 numbers as follows:P n n n+k A = f (1.3) n k (cid:18)k(cid:19)(cid:18) k (cid:19) X k=0 (see V. Strehl [St92]). The Franel numbers are also related to the theory of modular forms. Let η be the Dedkind eta function given by ∞ η(τ) := eπiτ/12 (1−e2πinτ) nY=1 with Im(τ) > 0. It is known that ∞ η(τ)3η(6τ)9 n η(2τ)η(3τ)6 f = n(cid:18)η(2τ)3η(3τ)9(cid:19) η(τ)2η(6τ)3 nX=0 for any complex number τ with Im(τ) > 0. (See, e.g., D. Zagier [Z].) In this paper we study congruences for Franel numbers systematically. As usual, for an odd prime p and integer a, (a) denotes the Legendre symbol, and p q (a) stands for the Fermat quotient (ap−1 −1)/p if p ∤ a. p Now we state our main results. CONGRUENCES FOR FRANEL NUMBERS 3 Theorem 1.1. Let p > 3 be a prime. For any p-adic integer r we have p−1 p−1 2 k +r 2k k +r (−1)k f ≡ (mod p2). (1.4) k (cid:18) k (cid:19) (cid:18)k (cid:19)(cid:18) k (cid:19) X X k=0 k=0 In particular, p−1 p (−1)kf ≡ (mod p2), (1.5) k 3 X (cid:16) (cid:17) k=0 p−1 2 p (−1)kkf ≡− (mod p2), (1.6) k 3 3 X (cid:16) (cid:17) k=0 p−1 10 p (−1)kk2f ≡ (mod p2), (1.7) k 27 3 X (cid:16) (cid:17) k=0 and p−1 2k f p−1 2k 3 k k ≡ k (mod p2). (1.8) (cid:0)(−4(cid:1))k (cid:0)16(cid:1)k X X k=0 k=0 We also have p−1 (−1)k f ≡0 (mod p2), (1.9) k k X k=1 p−1 (−1)k f ≡0 (mod p), (1.10) k2 k X k=1 p−1 (−1)k f ≡3q (2)+3pq (2)2 (mod p2), (1.11) k−1 p p k X k=1 and p−1 f (3k +1) k ≡ p2 −2p3q (2)+4p4q (2)2 (mod p5). (1.12) 8k p p X k=0 Remark 1.1. Fix a prime p > 3. As f ≡ (−8)kf (mod p) for all k = k p−1−k 0,... ,p−1 by [JV, Lemma 2.6], (1.11) implies that p−1 p−1 p−1 f (−1)k (−1)p−k k ≡ f = f ≡ 3q (2) (mod p). k8k k p−1−k p−k k−1 p X X X k=1 k=1 k=1 4 ZHI-WEI SUN Concerning (1.8) the author [S11b, Conj. 5.2(ii)] conjectured that p−1 2k 3 4x2 −2p (mod p2) if p ≡ 1 (mod 3) & p = x2 +3y2 (x,y ∈ Z), k ≡ (cid:0)16(cid:1)k (cid:26) 0 (mod p2) if p ≡ 2 (mod 3). X k=0 We also have many such conjectures for p−1 2k f /mk mod p2. (1.10) can k=0 k k be extended as P (cid:0) (cid:1) p−1 (−1)kr (r) f ≡ 0 (mod p), (1.13) kr−1 k X k=1 where r is any positive integer and f(r) := k k r. Note that f(2) = 2k k j=0 j k k and p−1 2k /k ≡ 0 (mod p2) by [ST1]. P (cid:0) (cid:1) (cid:0) (cid:1) k=1 k P (cid:0) (cid:1) Let p > 3 be a prime. Similar to (1.5)-(1.7), we are also able to show that p−1 p−1 10 p 14 p (−1)kk3f ≡ − (mod p2) and (−1)kk4f ≡ − (mod p2). k 81 3 k 35 3 X (cid:16) (cid:17) X (cid:16) (cid:17) k=0 k=0 In general, for any positive integer r there should be an odd integer a such r that p−1 2a p (−1)kkrf ≡ r (mod p2). k 32r−1 3 X (cid:16) (cid:17) k=0 For example, if p > 5 then p−1 p−1 322 p 2030 p (−1)kk5f ≡ (mod p2), (−1)kk6f ≡ − (mod p2). k 37 3 k 39 3 X (cid:16) (cid:17) X (cid:16) (cid:17) k=0 k=0 The Ap´ery polynomials introduced in [S11c] are those n 2 2 n n+k A (x) = xk (n = 0,1,2,...). n (cid:18)k(cid:19) (cid:18) k (cid:19) X k=0 Here we define n 2 n 2k g (x) = xk n (cid:18)k(cid:19) (cid:18)k (cid:19) X k=0 for all n = 0,1,2,.... Note that g (1) = g . n n CONGRUENCES FOR FRANEL NUMBERS 5 Theorem 1.2. Let p > 3 be a prime. Then p−1 p−1 xk g (x) ≡ p (mod p2). (1.14) k 2k +1 X X k=0 k=0 Consequently, p−1 g ≡0 (mod p2), (1.15) k X k=1 p−1 −1 g (−1) ≡ (mod p2), (1.16) k (cid:18) p (cid:19) X k=0 p−1 p g (−3) ≡ (mod p2). (1.17) k 3 X (cid:16) (cid:17) k=0 We also have p−1 g (x) k ≡0 (mod p), (1.18) k X k=1 p−1 g p k−1 ≡− 2q (3) (mod p), (1.19) p k 3 X (cid:16) (cid:17) k=1 p−1 3 kg ≡− (mod p2), (1.20) k 4 X k=1 p−1 g (−1) k ≡0 (mod p) if p > 5. (1.21) k2 X k=1 Moreover, n−1 n−1 2 1 n−1 (4k+3)g = C (1.22) 3n2 k (cid:18) k (cid:19) k X X k=0 k=0 for all n = 1,2,3,..., where C denotes the Catalan number 2k /(k + 1) = k k 2k − 2k . (cid:0) (cid:1) k k+1 (cid:0) (cid:1) (cid:0) (cid:1) Remark 1.2. Let p > 3 be a prime. By [JV, Lemma 2.7], g ≡ (p)9kg k 3 p−1−k (mod p) for all k = 0,... ,p−1. So (1.17) implies that p−1 p−1 p−1 g p g p g k p−1−k k−1 ≡ = ≡ 2q (3) (mod p). k9k 3 k 3 p−k p X (cid:16) (cid:17)X (cid:16) (cid:17)X k=1 k=1 k=1 6 ZHI-WEI SUN We also introduce the polynomials n 2 n n 2k n k 2k f (x) = xk = xk (n = 0,1,2,...) n (cid:18)k(cid:19) (cid:18)n(cid:19) (cid:18)k(cid:19)(cid:18)n−k(cid:19)(cid:18) k (cid:19) X X k=0 k=0 which play a central role in our proof of Theorem 1.1. We are going to show Theorem 1.1 in the next section and investigate in Section 3 connections among the polynomials A (x), f (x) and g (x). In Sec- n n n tion 4 we will prove Theorem 1.2. In Section 5 we shall raise some conjectures for further research. 2. Proof of Theorem 1.1 Lemma 2.1. For any nonnegative integer n, the integer f (1) coincides with n the Franel number f . n Remark 2.1. This is a known result due to V. Strehl [St94]. Lemma 2.2. For any nonnegative integer k we have 2k 2 l k x+l x+k (−1)l = . (cid:18)k(cid:19)(cid:18)l−k(cid:19)(cid:18) l (cid:19) (cid:18) k (cid:19) X l=k Proof. Observe that 2k l k x+l (−1)l (cid:18)k(cid:19)(cid:18)l−k(cid:19)(cid:18) l (cid:19) X l=k 2k l k −x−1 = (cid:18)k(cid:19)(cid:18)l−k(cid:19)(cid:18) l (cid:19) X l=k 2k −x−1 −x−1−k k = (cid:18) k (cid:19) (cid:18) l−k (cid:19)(cid:18)l−k(cid:19) X l=k k 2 2 −x−1 −x−1−k k −x−1 x+k = = = (cid:18) k (cid:19) (cid:18) j (cid:19)(cid:18)k −j(cid:19) (cid:18) k (cid:19) (cid:18) k (cid:19) X j=0 with the help of the Chu-Vandemonde identity (cf. (3.1) of [G, p.22]). We are done. (cid:3) Lemma 2.3. For each positive integer m we have n−1 2k 2n P (k) = nm for all n = 1,2,3,... , m (cid:18)k (cid:19) (cid:18)n (cid:19) X k=0 CONGRUENCES FOR FRANEL NUMBERS 7 where P (x) := 2(2x+1)(x+1)m−1 −xm. m Proof. The desired result follows immediately by induction on n. (cid:3) Remark 2.2. The author thanks Prof. Qing-Hu Hou at Nankai Univ. for his comments on the author’s original version of Lemma 2.3. Lemma 2.4. Let p > 3 be a prime. (i) ([ST, (1.6)]) We have p−1 2k p ≡ (mod p2). (cid:18)k (cid:19) 3 X (cid:16) (cid:17) k=0 (ii) ([S11c]) We have p−1 (2k +1)A ≡ p (mod p4). k X k=0 Lemma 2.5. Let m be a positive integer. For n = 0,1,... ,m we have n x −x m−n x−1 −x = . (cid:18)k(cid:19)(cid:18)m−k(cid:19) m (cid:18) n (cid:19)(cid:18)m−n(cid:19) X k=0 Remark 2.3. This is a known result due to E. S. Andersen, see, e.g., (3.14) of [G, p.23]. Lemma 2.6 (Sun [S11b, Lemma 2.1]). Let p be an odd prime. For any k = 1,... ,p−1 we have 2k 2(p−k) k ≡ (−1)⌊2k/p⌋−12p (mod p2). (cid:18) k (cid:19)(cid:18) p−k (cid:19) Recall that harmonic numbers are given by 1 H = (n = 0,1,2,...). n k 0<Xk6n In general. for any positiveinteger m, harmonic numbers of order m aredefined by 1 H(m) := (n = 0,1,2,...). n km 0<Xk6n 8 ZHI-WEI SUN Let p > 3 be a prime. In 1862 J. Wolstenholme [W] proved that H ≡ 0 (mod p2) and H(2) ≡ 0 (mod p). p−1 p−1 Note that (p−1)/2 1 1 1 1 (2) (2) H = + = H ≡ 0 (mod p). (p−1)/2 2 (cid:18)k2 (p−k)2(cid:19) 2 p−1 X k=1 In 1938 E. Lehmer [L] showed that H ≡ −2q (2)+pq (2)2 (mod p2). (2.1) (p−1)/2 p p These fundamental congruences are quite useful. Recently the author [S12a] proved some further congruences involving harmonic numbers. Lemma 2.7. Let p > 3 be a prime. Then f ≡ 1+3pq (2)+3p2q (2)2 (mod p3). (2.2) p−1 p p Proof. For any k = 1,... ,p−1, we obviously have k p−1 p (−1)k = 1− (cid:18) k (cid:19) (cid:18) j(cid:19) jY=1 p2 2 p2 ≡1−pH + = 1−pH + H2 −H(2) (mod p3). k 2 ij k 2 k k 16Xi<j6k (cid:16) (cid:17) Thus p−1 p−1 3 p−1 p2 3 f −1 = ≡ (−1)k 1−pH + H2 −H(2) p−1 (cid:18) k (cid:19) (cid:18) k 2 k k (cid:19) X X (cid:16) (cid:17) k=1 k=1 p−1 p−1 p−1 9 3 =−3p (−1)kH + p2 (−1)kH2 − p2 (−1)kH(2) (mod p3). k 2 k 2 k X X X k=1 k=1 k=1 Clearly p−1 p−1 k (−1)k p−1 p−1(−1)k p−1 1 (−1)kH = = k=j = k j P j j Xk=1 kX=1Xj=1 Xj=1 Xj=1 2|j 1 p = H ≡ −q (2)+ q (2)2 (mod p2) (by (2.1)) (p−1)/2 p p 2 2 CONGRUENCES FOR FRANEL NUMBERS 9 and p−1 p−1 p−1(−1)k (p−1)/2 1 (−1)kH(2) = k=j = ≡ 0 (mod p). k P j2 (2i)2 Xk=1 Xj=1 Xi=1 Observe that p−1 p−1 p−1 2 1 (−1)kH2 = (−1)p−kH2 = (−1)k−1 H − k p−k (cid:18) p−1 p−j(cid:19) X X X X k=1 k=1 k=1 0<j<k p−1 2 1 ≡− (−1)k H − k (cid:18) k(cid:19) X k=1 p−1 p−1 p−1 (−1)k (−1)k ≡− (−1)kH2 +2 H − (mod p). k k k k2 X X X k=1 k=1 k=1 Clearly, p−1 p−1 (p−1)/2 (−1)k 1+(−1)k 2 ≡ = ≡ 0 (mod p), k2 k2 (2j)2 kX=1 kX=1 Xj=1 and p−1 (−1)k p−1 H p−1 H q (2)2 q (2)2 k k p p H = − ≡ − − (mod p) k k k k 2 (cid:18) 2 (cid:19) X X X k=1 k=1 k=1 2|k 2∤k by [S12a, Lemma 2.3]. Therefore p−1 p−1 (−1)k (−1)kH2 ≡ H ≡ q (2)2 (mod p). k k k p X X k=1 k=1 Combining the above, we finally obtain p 9 f −1 ≡−3p −q (2)+ q (2)2 + p2q (2)2 (mod p3) p−1 p p p 2 2 (cid:16) (cid:17) and hence (2.2) holds. (cid:3) Proof of Theorem 1.1. (i) Let r be any p-adic integer. Observe that p−1 p−1 l l+r l+r l k 2k (−1)l f (x) = (−1)l xk l (cid:18) l (cid:19) (cid:18) l (cid:19) (cid:18)k(cid:19)(cid:18)l−k(cid:19)(cid:18) k (cid:19) X X X l=0 l=0 k=0 p−1 min{2k,p−1} 2k l k l+r = xk (−1)l . (cid:18)k (cid:19) (cid:18)k(cid:19)(cid:18)l−k(cid:19)(cid:18) l (cid:19) X X k=0 l=k 10 ZHI-WEI SUN If (p−1)/2 < k 6 p−1 and k 6 l 6 2k, then 2k (2k)! l l! = ≡ 0 (mod p) and = ≡ 0 (mod p). (cid:18)k (cid:19) (k!)2 (cid:18)k(cid:19) k!(l−k)! Therefore p−1 p−1 2k l+r 2k l k l+r (−1)l f (x) ≡ xk (−1)l (mod p2). l (cid:18) l (cid:19) (cid:18)k (cid:19) (cid:18)k(cid:19)(cid:18)l−k(cid:19)(cid:18) l (cid:19) X X X l=0 k=0 l=k Applying Lemma 2.2 we obtain p−1 p−1 2 l+r 2k k +r (−1)l f (x) ≡ xk (mod p2). (2.3) l (cid:18) l (cid:19) (cid:18)k (cid:19) (cid:18) k (cid:19) X X l=0 k=0 In the case x = 1 this yields (1.4). Taking r = 0 in (1.4) and applying Lemma 2.4(i), we immediately get (1.5). By (2.3) with r = 0,1, p−1 (3(k +1)−1)(−1)kf (x) k X k=0 p−1 p−1 2k 2k ≡ xk 3(k+1)2 −1 = P (k) xk (mod p2) 2 (cid:18)k (cid:19) (cid:18)k (cid:19) kX=0 (cid:0) (cid:1) kX=0 where P (x) = 2(2x+1)(x+1) −x2 = 3x2 +6x+ 2. Thus, with the help of 2 Lemma 2.3, we have p−1 (3k +2)(−1)kf ≡ 0 (mod p2) (2.4) k X k=0 and hence (1.6) holds in view of (1.5). Taking r = 2 in (2.3) we get p−1 p−1 2k 2 (k2 +3k +2)(−1)kf (x) ≡ xk((k+1)(k +2))2 (mod p2). k (cid:18) k (cid:19) X X k=0 k=0 In view of (2.4), this yields p−1 p−1 2k 2 (−1)kk2f ≡ (k2 +3k +2)2 (mod p2). k (cid:18) k (cid:19) X X k=0 k=0