ebook img

Confronting uncertainties in stellar physics II. exploring differences in main-sequence stellar evolution tracks PDF

0.59 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Confronting uncertainties in stellar physics II. exploring differences in main-sequence stellar evolution tracks

Astronomy&Astrophysicsmanuscriptno.CUSPII˙v3 (cid:13)c ESO2016 January14,2016 Confronting uncertainties in stellar physics II. exploring differences in main-sequence stellar evolution tracks R.J.Stancliffe1,L.Fossati2,1,J.-C.Passy1,andF.R.N.Schneider1,3 1 Argelander-Institutfu¨rAstronomie,UniversityofBonn,AufdemHu¨gel71,D-53121Bonn,Germany 2 SpaceResearchInstitute,AustrianAcademyofSciences,Schmiedlstrasse6,A-8042Graz,Austria 3 DepartmentofPhysics,UniversityofOxford,DenysWilkinsonBuilding,KebleRoad,OxfordOX13RH,U.K. 6 1 ABSTRACT 0 2 Weassess thesystematic uncertainties in stellar evolutionary calculations for low- to intermediate-mass, main-sequence stars. We comparepublishedstellartracksfromseveraldifferentevolutioncodeswithourowntrackscomputedusingthestellarcodesstars n andmesa.Inparticular, wefocusontracksof1and3M atsolar metallicity.Wefindthatthespreadintheavailable1M tracks ⊙ ⊙ a (computedbeforetherecentsolarcompositionrevisionbyAsplundetal.)canbecoveredbytracksbetween0.97-1.01M computed ⊙ J withthestarscode.Weassesssomepossiblecausesoftheoriginofthisuncertainty,includinghowthechoiceofinputphysicsand 2 thesolarconstraintsusedtoperformthesolarcalibrationaffectthetracks.Wefindthatfora1M track,uncertaintiesofaround10% ⊙ 1 intheinitialhydrogenabundanceandinitialmetallicityproducearounda2%errorinmass.Forthe3M tracks,thereisverylittle ⊙ differencebetweenthetracksfromthevariousdifferentstellarcodes.Themaindifferencecomesintheextentofthemainsequence, ] whichwebelieveresultsfromthedifferentchoicesoftheimplementationofconvectiveovershootinginthecore.Uncertaintiesinthe R initialabundancesleadtoa1-2%errorinthemassdetermination.Theseuncertaintiescoveronlypartofthetotalerrorbudget,which S shouldalsoincludeuncertaintiesintheinputphysics(e.g.,reactionrates,opacities,convectivemodels)andanymissingphysics(e.g., . radiativelevitation,rotation,magneticfields).Uncertaintiesinstellarsurfacepropertiessuchasluminosityandeffectivetemperature h willfurtherreducetheaccuracyofanypotentialmassdeterminations. p - Keywords.stars:evolution,stars:interiors,stars:low-mass o r t s a 1. Introduction to dramatically wrong conclusions: a planet presumed to be a [ super-Earthin the habitablezonemay instead byan uninhabit- Stellar evolution codes are a lot like religions: there are many able gaseousplanet.Thisis particularlyrelevantbecausemany 1 of them to choose from, they possess many similarities, and it planet-finding facilities, which are about to begin their opera- v isnotobviouswhichofthem(ifany)iscorrect.Theoutputsof tions (e.g., NGTS [Wheatleyetal. 2013], TESS [Rickeretal. 4 these codes, in the form of evolutionarytracksand isochrones, 5 2014], andCHEOPS[Broegetal. 2013]), aredesignedto have 0 areusedinseveralfieldsofastrophysics,rangingfromthestudy their maximum efficiency in finding mini-Neptunesand super- of extra-solar planets (exoplanets)to stellar populations.Many 3 Earthsorbitingnearbylate-typestars. 0 grids of tracks and isochrones, computed with different stellar With the “Confronting Uncertainties in Stellar Physics” . evolutioncodes,arefreelyavailableandareusedtoderivefun- (CUSP)projectwe intendtoestimatethesystematicuncertain- 1 damental properties of stars (e.g., mass, radius, age) and star 0 tiesinvolvedinthecalculationofstellarevolutiontracks,forex- clusters (e.g., age, distance) on the basis of observables (e.g., 6 ampletoevaluatetheirimpactintermsofplanetparameters.For 1 magnitudes, effective temperature, surface gravity, luminosity, thistask,wewillusebonnsai1(Schneideretal.2014),which,to : chemical composition). When comparing observations to stel- thebestofourknowledge,istheonlypubliclyavailabletoolal- v lar evolution tracks one often considers only the observational lowingonetoderivestellarparameters(e.g.,mass,radius,age) i X uncertainties in the error budget. This neglects the systematic from a set of observational parameters (e.g., effective temper- theoretical uncertainties in the stellar codes (see below), some r ature, surface gravity, luminosity), using Bayesian statistics to a ofwhicharedifficulttoquantify. properlyaccountfor the observationaluncertainties. In its cur- In the exoplanet field, evolutionary tracks are commonly rentstatus,bonnsaicontainsevolutionarytracksonlyformassive used to derive the mass and radius of planet-hosting stars on stars (M>5M ; Brottetal. 2011; Ko¨hleretal. 2015). We wish ⊙ the basis of properties measured from spectra and transit light to extend the model database to lower mass stars from 0.8 to curves(e.g.,effectivetemperature,surface gravity,andaverage 10M onthebasisofgridscalculatedusingthestars(Eggleton ⊙ density). The stellar parameters are then used to directly de- 1971;Stancliffe&Eldridge2009)andmesa(Paxtonetal.2011, rive the planet mass and radius, and age of the system; as a 2013,2015)stellarevolutioncodes. consequence, systematic uncertainties in the stellar parameters In the first paper of this series (Stancliffeetal. 2015), we propagate to the planet parameters as well. It is important to useda setof12eclipsingbinaries,withcomponentmassesbe- note that small systematic uncertainties in the stellar parame- tween 1.3 and 6.2M , to constrain the convective core over- ⊙ ters may be strongly significant in terms of planet properties, shootingparameterto beadoptedforthe modelgrids.We con- for example for planets in the 5–10M transition region be- ⊕ tween gaseous and rocky planets. For these planets underes- 1 The bonnsai web-service is available at timating the uncertainty of their mass and/or radius may lead www.astro.uni-bonn.de/stars/bonnsai. 1 R.J.Stancliffeetal.:CUSPII–stellartracks cluded that the majority of the analysed systems can be well – BASTI.TracksfromBASTIaretakenfromtheBASTIweb- describedwithamass-independentovershootingparametercor- site4. Details of the code are described in Pietrinfernietal. respondingto an extensionof the mixed region abovethe core (2004). of about 0.1–0.3 pressure scale heights. In this work, we aim – Padova.ThePadovatrackshavebeentakenfromtheirweb- atincreasingtheawarenessofusers(observersinparticular)of site5. Details of the code and the models are described in gridsofstellarevolutionmodelsandisochronesonthepresence Bertellietal.(2008). of theoretical uncertainties and systematics. We also highlight – Dartmouth. The Darmouth stellar evolution code is de- caveatspresentwhenconvertingstellaratmosphericparameters scribedinBjork&Chaboyer(2006)andDotteretal.(2007). (i.e.,effectivetemperature,surfacegravity,andmetallicity)into The models used here come from the work of Dotteretal. fundamentalparameters(i.e.,mass,radius,andage).Wedothis (2008)andareavailableonline6. here by investigating the uncertainties in main-sequence, low- – Geneva. These models are taken from the work of mass stellar evolution tracks, based on comparisons between Mowlavietal. (2012) and are available from the Geneva tracksfor1and3M models(comparisonsforhigh-massstars website7. ⊙ have recently be carried out by Martins&Palacios 2013 and – PARSEC.ThisisanupdatedversionofthePadovacodeand Jonesetal.2015).We limitourselftothemainsequencephase isdescribedinBressanetal.(2012).Tracksmaybeobtained ofevolution,becauseitistheonewhichismostintensivelycon- online8. sideredintermsofstellarspectroscopicanalysisandconversion – Victoria-Regina.ThiscodeisdescribedinVandenBergetal. oftheatmosphericparametersintostellarmass,radius,andage (2012)andreferencestherein.Thetrackspresentherecome (e.g.,thevastmajorityoftheknownplanet-hostingstarsareon fromtheworkofVandenBergetal.(2014),andareavailable themainsequence).Wewillconsideruncertaintiesinlaterstages fordownload9. ofevolutioninfuturework. Manyofthesecodesandgridsaremassivelyused,mostlybyob- Uncertainties in stellar modelling can be divided into two servers,toconvertspectroscopicallyderivedstellaratmospheric groups:physicaluncertaintiesandcomputational/numericalun- parametersintofundamentalparameters.Thisconversionisof- certainties.Theformergroupincludesuncertaintiesinmeasured tendonewithoutconsideringthephysicsincludedbythediffer- quantitiesusedasinputsforcomputations,suchasreactionrates ent grids, whether the adopted input parameters (e.g., reaction and opacities. It also includes our ignorance of physical pro- rates) are up to date, the calibration procedures, and the true cesses such as the efficiency of mixing processes and the na- meaning of some of the basic parameters (e.g., present-day vs tureofmixingatconvectiveboundaries(Vialletetal.2015).The initialmetallicity).Giventhelargeamountandqualityofobser- second group relates to how the equations of stellar structure vationaldataalreadyavailable,forexamplefromlargespectro- and evolution are solved. It includes issues related to spatial scopicsurveys,andsoontocome,forexamplefromGAIA,itis and temporal resolution in models, the use of simultaneous or imperativethatthedifferentcommunitiesarefullyawareofthe non-simultaneous solution of the equations of stellar structure presenceandsizeofthesystematicuncertaintiesassociatedwith (Stancliffe 2006), the choice of solution scheme (Meynetetal. stellarevolutioncalculations. 2004), and the algorithmic treatment of mixing at convective- It should be stressed that this paper is not intended to rep- radiativeboundaries(Gabrieletal. 2014) to name a few exam- resentacodecomparison,thatistosay,atestofthemechanics ples. of the various stellar evolution codes. Such comparisons have Wehavecollectedstellartracksfromvariouspubliclyavail- beenperformedbymanygroups(e.g.atTheAarhusRedGiants ablesources,aswellascomputingtrackswithtwoothercodes. Workshop10). The mostimportantaspectof a codecomparison Thisis byno meansan exhaustivelist ofwhatis available,but istocompletelystandardizetheinputphysicsandthencompare we believe it provides a representative range of current stellar theoutputs,andthusassesswhetherthemachineryofthestellar evolutioncalculations.Thecodesusedare: codesworksthesame way.However,forthe variouspublished tracksproducedbydifferentgroupsthechoicesofinputphysics isnotthesame.Atsomepoint,choiceshavetobemade(forex- – mesa. This code is described extensively by Paxtonetal. ample,fortheinclusionofdiffusionaswillbediscussedbelow) (2011),Paxtonetal.(2013)andPaxtonetal.(2015).Weuse and it is these choices that lead to the differences between the revision7503ofthecode. calculations made by different groups. Although we are mak- – stars.Thestarsstellarevolutioncodewasoriginallydevel- ing no assertions in this work as to which choices are correct, opedbyEggleton(1971)andhasbeenupdatedbymanyau- usersofpublishedstellarmodelsshouldcriticallyexaminehow thors(e.g.Polsetal.1995).Thecodeisfreelyavailablefor welltheavailablegridssatisfyempiricalconstraints(e.g.theso- download2. This code solves the equations of stellar struc- lar calibration, binary stars) and the extent to which they take tureandchemicalevolutioninafullysimultaneousmanner, intoaccountrecentadvancesinstellarphysics(e.g.updatedre- iterating on all variables at the same time in order to con- actionrates,opacities).Thisrepresents(someof)thetheoretical vergeamodel(seeStancliffe2006,foradetaileddiscussion). uncertaintiesinherentinstellarmodelling.Ouraimistoputour- The version employed here is that of Stancliffe&Eldridge selves in the perspective of someone who needs to derive e.g., (2009) which was developed for doing binary stellar evo- themassofastaronthebasisofspectroscopically-derivedatmo- lution. The code treats all forms of mixing by means of a sphericparameters,andtoestimatetheuncertaintiesinvolvedin diffusiveformalism(Eggleton1972). – Y2.TracksfromtheYonsei-Yalecollaborationareavailable 4 http://basti.oa-teramo.inaf.it/index.html online3.Detailsofthecodeanditscalibrationcanbefound 5 http://stev.oapd.inaf.it/YZVAR/ inYietal.(2001). 6 http://stellar.dartmouth.edu/models/index.html 7 http://obswww.unige.ch/Recherche/evol/-Database- 8 http://stev.oapd.inaf.it/cgi-bin/cmd 2 http://www.ast.cam.ac.uk/∼stars 9 http://www.canfar.phys.uvic.ca/vosui/#/VRmodels 3 http://www.astro.yale.edu/demarque/yystar.html 10 http://users-phys.au.dk/victor/rgwork/ 2 R.J.Stancliffeetal.:CUSPII–stellartracks thisprocesscausedsimplybychoosingonesetoftracksinstead ofanother.We willaddresstheissueofuncertaintiesinagesin aseparatepaper. 2. Comparisonof1M tracks ⊙ In Fig. 1, we plot evolutionary tracks for a 1M model com- ⊙ putedwiththeevolutioncodeslistedabove.We haveseparated thetracksintotwogroupsbasedontheirmetallicity:thoseplot- tedwithan‘old’solarmetallicityareshownintheupperpanel, while those with the Asplundetal. (2009) metallicity are plot- tedinthelowerpanel.Asashorthand,wewillusetheterm‘old’ torefertopre-Asplundetal.(2009)solarmodels,and‘new’to refer to modelscomputedwith the Asplundetal. (2009) abun- dances.PerfectagreementwiththeSunshouldnotbeexpected asweare plotting1M evolutionarytrackscomputedforgrids ⊙ ofstellarmodelswhicharenotnecessarilythesolarcalibration tracks themselves. The exceptions here are stars and mesa, as these are our own solar-calibration tracks. In some cases, e.g. BASTI,thesolarcalibrationisperformedwithdiffusion,butthe publiclyavailabletrackiscomputedwithout.Forthe‘old’Sun, mostofthecodesgiveeffectivetemperatureswithin20-30Kof the solar value of 5777 K (Christensen-Dalsgaardetal. 1996). Inallcases,luminosityvariationsareextremelysmall.Thebox drawninFig.1showswhatweconsidertobetypicalpost-GAIA uncertainties.The errorbaron the luminosityhasbeen derived assumingthatthewholeuncertaintyisinthebolometriccorrec- tion (0.05mag; see e.g., Flower 1996). The uncertainty on the effectivetemperatureistheaverageonetypicallyexpectedfrom state-of-the-artanalysis of high quality, high resolutionspectra of solar-like stars (70K; see e.g. Ryabchikovaetal. 2016). All these tracks would lie comfortably within the estimated post- GAIA errors.Thespreadin temperaturesbetweenthe tracksat thesolarageiscomparabletotheinitialspreadintemperatures at500Myr,whichisaround80K.Atthe10Gyrpoint,thespread intemperaturesismuchlarger,around150Kwhichisaboutthe size of the whole error box. The spread in luminosity remains smallataround0.03dex.Thespreadinthestellartracksrepre- Fig.1.Evolutionarytracksfor a 1M⊙ modelfor variousstellar sentstheuncertaintyinthecalculationofa1M star.Thehottest evolution codes. The box represents the estimated post-GAIA ⊙ trackisroughlyreproducedbya1.01M starsmodel,whilethe uncertainties of the luminosity and effective temperature.Top: ⊙ coolestrequiresa0.97M model.Thusifweweretoobservea Models comuputed with a metallicity of Z≈ 0.02. The inset ⊙ starwiththeSun’sluminosityandtemperature(andmetallicity), showsazoomedinregionaroundthesolarluminosityandtem- theerroronthemasswedeterminebyfittinga1M tracktoit perature, with the box displaying the uncertainties of the solar ⊙ wouldbearound±0.02M . luminosityandeffectivetemperature.Bottom:Modelscomput- ⊙ Much of the spread between the various ‘old’ solar tracks ing using the abundancesof Asplundetal. (2009). The Padova comesfromthevarietyofinputphysics.Welistsomeofthesein track, which is intermediate in metallicity is included in both Table1.NoteveryonecalibratestheSunusingthesamephysics. panels. Thereareavarietyofchoicesofpresent-daysolarabundances, whichaffectsthebulkmetallicityandinitialhydrogenmassfrac- tion.Gravitationalsettling/diffusion11ofelementsisconsidered a process that should be included in stellar calculations. by many, but not all codes. On top of this, not everyone uses Christensen-Dalsgaardetal.(1993)showedthattheinclusionof thesamesetofconstraintsforthecalibration.Inadditiontous- helium settling has a significant effect on the structure and os- ingthecurrentsolarluminosityandradius,somecodesalsouse cillationfrequenciesoftheSun.However,diffusionaloneistoo thedepthofthesolarconvectionzone.We shalldiscusstheef- efficientatdepletingmaterialsandanadditionalmixingprocess fects of these different choices below. In the case of the ‘new’ seems to be necessary. Brunetal. (1999) showed that for the solarmodel,theagreementbetweencodesisfarbetter(see the Sun, turbulentmixingcan inhibitsettling by 25%and thatthis lower panel of Fig. 1) presumably as a result of a much more leadstoasignificantimprovementinthesolarsoundspeedpro- homogenoussetofinputphysics:allthecodesuseverysimilar file. At low metallicity, diffusion together with turbulent mix- abundancesandallincludetheeffectsofdiffusion,althoughthe ing may present an explanationfor the uniform Li abundances Victoria-Reginacodeonlyappliesdiffusiontohelium. observedinunevolvedstars(theso-calledSpiteplateau)which The inclusion of diffusion in stellar codes presents some solvesthecosmiclithiumproblemwithouttheneedforanyex- issues. From a purely physical perspective, diffusion is oticphysicsduringBigBangnucleosynthesis(seeRichardetal. 2005,andreferencestherein).Asimilarconclusionisreachedby 11 Weshallusethesetwotermsinterchangeably. Kornetal.(2006)fromtheobservationoflithiuminthemetal- 3 R.J.Stancliffeetal.:CUSPII–stellartracks Code solar Z X α diffusion X X˜ σ Reference 0 0 MLT X abundance logL/L 0.0 4×10−4 Fro¨hlich&Lean(2004) ⊙ stars GN93 0.0184 0.7012 2.090 yes T 5777K 5K Scottetal.(2015) eff A09 0.0142 0.7293 2.025 yes Z/X 0.0231or0.0181 0.002 GS98,A09 mesa GS98 0.0185 0.7101 1.877 yes He 0.2485 0.0034 Basu&Antia(2004) A09 0.0149 0.7193 1.783 yes R /R 0.713 10−3 Basu&Antia(1997) cz ⊙ Y2 GNS96 0.0181 0.7149 1.7432 Heonly δc 0.0 10−4 Rhodesetal.(1997) s BASTI GN93 0.198 0.7068 1.913 yes Padova GS98 0.017 0.723 1.68 no Table 2. Observed values used for the mesa calibration. The Dartmouth GS98 0.0188 0.7063 1.938 yes value of Z/X dependson the use of the GS98 (0.0231)or A09 Geneva A05 0.014 0.7200 1.6467 yes PARSEC GS98+C11 0.0177 0.7027 1.74 yes (0.0181)abundances. Victoria- A09 0.0133 0.7367 2.007 Heonly Regina 2.1.Theeffectsofthechoiceofsolarcalibration Table 1. Details of the parameters for the solar calibra- tions of the various codes included in this study. The ab- To calibrate stellar evolutionarytracks, it is typical to calibrate breviations for the choice of solar abundances are: GN93, acode’smixinglengthparameterusingasinglereferencepoint, Grevesse&Noels (1993); GNS96, Grevesseetal. (1996); namely the Sun. It is well known that with the current avail- GS98, Grevesse&Sauval (1998); A05, Asplundetal. (2005); able input physics and the Asplundetal. (2009) abundances a A09,Asplundetal.(2009);C11,Caffauetal.(2011).Notethat 1M star at the currentage of the Solar System does not give ⊙ the quoted values for mesa are based on the calibration with a structureconsistentwith helioseismicmeasurements(see e.g. L,Teff andZ/Xalone. Villanteetal. 2014, and references therein). Specifically, one cannotproduceamodelthatfitsthecurrentradiusandluminos- ityoftheSunwhichalsohasthecorrectdepthoftheconvective envelope. To test the effects of the choice of calibration constraints, we perform the following tests using the mesa code. We first poorglobularclusterNGC6397.Thebehaviourofheavierele- calibrate the solar model using only the solar luminosity, tem- mentsinthissameclusterisalsoconsistentwithstellarmodels perature and Z/X. We then repeat the calibration adding addi- including diffusion and turbulent mixing (Lindetal. 2008). In tionalconstraints.First,weaddthedepthofthesolarconvection additionto these surface effects, theinclusionof diffusionmay zoneR ,followedbytheheliumabundanceinthesolarconvec- reduce the age of a low-mass star at a given turn-off luminos- cz tionzone.Lastly,weconsidertheRMSdeviationofthemodel’s ity (Proffitt&Vandenberg 1991) and is therefore an important sound speed profile δc from that deduced from helioseismol- s considerationifonewishestodeterminestellarages. ogy(Rhodesetal.1997).ThevaluesusedaregiveninTable2. Itthereforeseemsthatoneshouldpreferstellartrackscom- Ineachcasea χ2 minimisationisusedtodeterminethebestfit puted with the inclusion of diffusion. However,there is an im- model,i.e. portantcaveat. First, the above evidence points to the need for more than justdiffusion alone.An additionalmixingprocesses 1 X¯ −X˜ 2 χ2 = i i (1) isrequiredtoinhibittheeffectsofdiffusion.Nophysicalcause n σ ! forthismixinghasbeenidentifiedandsotheprescriptionsused Xi Xi are entirely ad hoc. Additionally, most of the codes presented where n is the number of observables, X is a given observ- i heredonotemploysuchturbulentmixing.BoththeDartmouth able, X¯ its value for the model, X˜ its observedvalue, and σ and PARSEC codes inhibit the action of diffusion in an ad the obsierved uncertainty. This is eivaluated at the solar age oXfi hoc way, but with different prescriptions. The Victoria-Regina 4.57Gyrs (Bahcalletal. 1995). We use the simplex algorithm code adds a turbulent diffusion coefficient which is similar in (Nelder&Mead1965)implementedinmesatominimizetheχ2 formtotheRichardetal.(2005)prescription(VandenBergetal. andstopthecalibrationoncechangesintheinitialparametersno 2012). None of the codes describe here includes the effects of longeraffecttheobtainedχ2.Thecodeisfreetochangetheini- radiativelevitation,whichisthecounterpartofgravitationalset- tialmetallicity,hydrogenabundanceandmixinglengthparame- tling, though it typically only influences the heavier elements ter.WeperformthiscalibrationforboththeGrevesse&Sauval (Richardetal. 2002). There is clearly more to the issue of set- (1998)andtheAsplundetal.(2009)solarabundances,usingOP tling than we currently understand. For this reason, we do not opacities (Badnelletal. 2005) and including gravitational set- dismisscodesthatdonotincludeit.Weshallseebelowthepo- tling.TheresultsofthiscalibrationareshowninFig.2andthe tentialerrorthatmaybeintroducedbynotincludingdiffusion. detailsofthebestfitmodelsarepresentedintableA.1. Diffusionalsoprovidestheobserverwithanotherheadache: FortheGS98abundances,thecalibrationsallgiveextremely which composition should the stellar tracks used for compari- similarresults.Thisisnotparticularlysurprising–itiswelles- son have? Theoristslabel their tracks by initial abundance,but tablished that the ‘old’ solar abundances were extremely well anobserverseesonlythepresent-daysurfaceabundance.Ifset- reconciledwithhelioseismicmeasurements.Theexactchoiceof tlinghassubstantiallyalteredthelatter,itnolongerreflectsthe calibration should not be crucial when using ‘old’ solar abun- former.FortheSun,thecurrentsurfacemetallicityisthoughtto dances.Forthe‘new’Sun,thechoiceofcalibrationconstraints bearound10%lowerthantheinitialmetallicity(Asplundetal. hasa noticeableeffect. Whenthe depthof the solar convection 2009). We are able to estimate this because we know the solar zoneisadded,thetracknolongerhasaluminosityandeffective ageandhenceweknowtheSun’sevolutionarystate.Foragiven temperaturethat fit the Sun:the modelis 20K too hot and has field star, this information is not available and we have to live logL/L =−4×10−4(i.e.about0.1%belowthesolarluminos- ⊙ withtheconsequencesofourignorance. ity).Whenweincludethesoundspeedprofileinthecalibration, 4 R.J.Stancliffeetal.:CUSPII–stellartracks 0.4 0.4 0.3 0.3 0.2 0.2 (cid:12) (cid:12) L L L/ L/ g 10 0.1 g 10 0.1 o o l l 0 0 -0.1 -0.1 -0.2 -0.2 5900 5850 5800 5750 5700 5650 5600 5900 5850 5800 5750 5700 5650 5600 T (K) T (K) eff eff 0.4 Fig.3. Calibrated evolutionary tracks for the ‘old’ (red) and ‘new’ (black) Sun. The solid lines were computed using grav- 0.3 itationalsettlingwhilethedashedlineswerecomputedwithout. Plusesmarkagesof500Myr,4.57Gyrand10Gyr.Theredcir- 0.2 clerepresentsthelocationoftheSun. (cid:12) L L/ og 10 0.1 Oncethecalibrationpointispassed,thesituationisreversedand l 0 themodelswithoutsettlingarehotterthanthosewithsettling. One additional point to consider here is the effect of using -0.1 an α value that has been calibrated using diffusion and then applied to a grid where diffusion is not considered. The use ofgravitationalsettlingbecomesproblematicathighermasses. -0.2 5900 5850 5800 5750 5700 5650 5600 As the size of the convective envelope decreases, the surface Teff (K) layers can more readily be depleted, leading to models whose abundancesare clearly inconsistent with observations. For this Fig.2. The effect of different calibrations for the Sun using reason,the Genevagridproducedby Mowlavietal. (2012) ne- MESA. The solid line indicates the track for calibration per- glectssettlingforstarsabove1.1M⊙,whiletheBASTIgriddoes formedusingjustthesolarluminosity,temperatureandZ/X.The not use settling even though it is included in the solar calibra- dashedlineadditionallyincludesthedepthofthesolarconvec- tion(Pietrinfernietal.2004).InFig.4weshowtracksforboth tionzone.Thedottedline includesallconstraintsincludingthe the ‘old’ and ‘new’ Sun, whose calibrations have been made RMSsoundspeed.TheredpointrepresentstheSun.Theupper withgravitationalsettlingincluded.Alongsidethese,weinclude panelshowstrackscomputedwiththeGS98abundances,while tracks for the same initial conditions, but without settling in- theloweroneshowstrackscomputedwiththeA09abundances. cluded.Atthesolarage,themodelswithoutsettlingarearound 30Khotterthanthosewithsettling.By10Gyrthespreadintem- perature has increased to around 100K (which is still smaller the fit in the HR diagram is much improved. However, this is thanourestimatedGAIAerrorbox)12.Thispresumablyexplains achievedattheexpenseofthesurfaceZ/X,whichis0.0246and whytheBASTItrackissomewhathotterthanothermodels. thus clearly incompatible with the Asplundetal. (2009) abun- dances. This model cannot be considered a reasonable calibra- 2.2.Uncertaintiesininputphysics tion. We now turn our attention to how small changes in the input physics can affect the stellar tracks. We use the stars model 2.1.1. Settling with A09 abundances and settling included as a baseline. We Hereweillustratethedifferencebetweenmodelscalibratedwith will first deal with the effectsof changesin the assumed abun- gravitationalsettlingandthosewithout.InFig.3,weshow1M⊙ dances. When one applies a stellar track to a given observa- tracks for both the ‘old’ and ‘new’ Sun computed with and tion,anyuncertaintyintheobject’scompositionwillimpactthe without settling. These tracks have been calculated using the fit of the stellar model. In Fig. 5, we show evolutionary tracks starscode.Thecalibrationforthemodelswithoutdiffusion(Z , wherewehavealteredtheinitialhydrogenabundanceby±0.01. 0 X , α ) give (0.0132, 0.7279, 1.900) for the ‘new’ Sun and Decreasingthehydrogenabundanceby0.01(andthusincreasing 0 MLT (0.0171,0.7000,1.965)forthe‘old’Sun.Thecalibrationshave theheliumabundancebythesameamount)makesthestarhotter more of an effect on temperature than they do on luminosity. andmoreluminous.Forcomparison,wehavealsoplottedtracks ClosetotheZAMS,theeffectivetemperaturesofthefourmod- for stars of 0.98M and 1.02M . These tracks are extremely ⊙ ⊙ els differ by about 20K. By 10Gyr, this spread has grown to similartoourtrackswithmodifiedinitialabundances.Thissug- around 80K. At the hottest point, the spread in temperature is geststhattheuseofastellartrackwhosehydrogenabundanceis around30K.Priortothesolarcalibrationpoint,modelswithout gravitationalsettlingare coolerthanthosethatincludesettling. 12 Wefindsimilarresultswhenweperformthistestusingmesa. 5 R.J.Stancliffeetal.:CUSPII–stellartracks 0.4 0.4 0.3 0.3 0.2 0.2 (cid:12) (cid:12) L L L/ L/ g 10 0.1 g 10 0.1 o o l l 0 0 -0.1 -0.1 -0.2 -0.2 5900 5850 5800 5750 5700 5650 5600 5900 5850 5800 5750 5700 5650 5600 T (K) T (K) eff eff Fig.4.Evolutionarytracksforthe‘old’(red)and‘new’(black) Fig.6.Evolutionarytracksfora1M modelshowingtheeffect ⊙ Sun for the initial conditions listed in Table 1. The solid lines of a small change in the total metallicity, Z. The solid line in- were computed using gravitational settling while the dashed dicates the calibrated model,while the dotted and dashed lines lines were computed without. The red circle represents the lo- showmodelswhereZhasbeendecreasedandincreasedby10% cationoftheSun. respectively.Plusesmarkagesof500Myr,4.57Gyrand10Gyr. TheredcirclerepresentsthelocationoftheSun.Redlinesmark stellartrackswithmassesof0.98M and1.02M . 0.4 ⊙ ⊙ 0.3 0.4 0.2 0.3 (cid:12) L L/ g 10 0.1 (cid:12) 0.2 lo L 0 g L/10 0.1 o l -0.1 0 -0.2 -0.1 5900 5850 5800 5750 5700 5650 5600 T (K) eff -0.2 5900 5850 5800 5750 5700 5650 5600 Fig.5. Evolutionary tracks for a 1M⊙ model showing the ef- Teff (K) fect of a small change in the hydrogen abundance. The solid lineindicatesthecalibratedmodel,whilethedottedanddashed Fig.7.Evolutionarytracksfora1M modelshowingtheeffect ⊙ lines show models where the initial hydrogen abundances has of a smallchangein the mixinglengthparameter,α. The solid been increased and decreased by 0.01 (a change of 14% from lineindicatesthecalibratedmodel,whilethedottedanddashed thecalibratedvalue)respectively.Plusesmarkagesof500Myr, linesshowmodelswhereαhasbeensetto2.00and2.05respec- 4.57Gyrand10Gyr.Theredcirclerepresentsthelocationofthe tively.Plusesshowmarkagesof500Myr,4.57Gyrand10Gyr. Sun. Red lines mark stellar trackswith masses of 0.98M and ⊙ TheredcirclerepresentsthelocationoftheSun. 1.02M . ⊙ offby0.01(about14%)canleadtoa2%errorinthedetermina- 0.98M⊙ and1.02M⊙ (showningreyinthefigure)suggestthat tionofthestellarmass. a 10% error in Z amounts to an error of over 2% in the mass In Fig. 6 we show the effectsof a 10%variationin the ini- determination. tialmetallicity.Noteforthesemodelsthatwehavenotincluded InFig.7,weshowtheeffectsofsmallchangesinthemixing anyscalingoftheheliumabundancewithZasistypicallydone lengthcoefficientα.WhiletherangeofαgiveninTable1varies whenconstructinggridsofmodelsoverlargemetallicityranges. from 1.65 to 2.09, such a large variation in α would produce Becausewehavekepttheinitialhydrogenabundanceconstant, tracksthatareclearlyinconsistentwiththesolarcalibration.We our 10% change in metallicity corresponds to less than a 1% adoptachangeoftheorderof0.05torepresentanotunreason- changeintheinitialheliumabundance.Theeffectofmetallicity ableerrorinthesolarcalibration.Theluminosityofeachofthe changesis slightly more pronouncedthat changesin the initial threeagemarkersonourtracksisscarcelychangedbythe≈1% hydrogenabundance.Forourthreeagemarkers,theluminosity changein α and theyvaryat the levelof≈ 0.05%.Changesin variesbyabout7-15%whilethetemperaturediffersbynomore thetemperatureofthese3timepointsarealsosmall,atthelevel than 2%. Comparison of the modified metallicity tracks to our of≈0.1%. 6 R.J.Stancliffeetal.:CUSPII–stellartracks 2.3 2.25 2.2 2.15 (cid:12) L/L 2.1 g 10 2.05 o l 2 1.95 1.9 1.85 13000 12500 12000 11500 11000 10500 10000 9500 9000 8500 T (K) eff Fig.9.Evolutionarytracksfora3M modelshowingtheeffects ⊙ ofasmallchangeintheovershootingparameter,δ .Thesolid ov Fig.8. Evolutionarytracks for a 3M modelof Z ≈ 0.02.The lineindicatesthebasemodelwithδ = 0.15,whilethedotted ⊙ ov boxrepresentstheestimatedpost-GAIAerroronluminosityand anddashedlineshaveδ = 0.12and0.18respectively.Pluses ov effectivetemperature. markagesof30,200and300Myr. tivestability(Schro¨deretal.1997),suchthataregionisdefined 3. 3M⊙ models tobeconvectiveunstableif▽rad >▽ad−δ,where In Fig. 8 we compare evolutionary tracks for 3M models of δ ⊙ δ= ov (2) solar metallicity. BASTI’s canonical tracks do not go up to 2.5+20ζ+16ζ2 this mass, so we have instead plotted a 3M track from the ⊙ Binary Evolution Code (BEC, see Brottetal. 2011 and refer- and ζ is the ratio of radiation to gas pressure and δov is a con- encesthereinforadescriptionofthiscode).Thetracksfallinto stantthatmustbe determined.Despitethe differentformalisms two groups:the majorityofcodesshowextremelyclose agree- (aswellasthedifferentmethodstocalibratethefreeparameters mentformostof the mainsequence.The Dartmouthandstars thatsuchformalismsnecessitate),allthecodesgiveverysimilar tracksarehotterandmoreluminousthanthisgroup,thoughthe extentstothemainsequence. two tracks agree extremely well with each other. We currently Aswithour1M⊙ models,wealsoshowtheeffectsofsmall have no explanation for this difference. While the mesa track variationsin both the initial hydrogenabundance(Fig. 10) and initiallybeginsclosetothefirstgroup,itssubsequentevolution thetotalmetallicity(Fig.11).Again,thesemodelsarecomputed becomesclosetothestarsandDartmouthtracks,thoughtheul- with the stars code. For a change of 0.01 in X, the luminosity timateextentofitsmainsequenceissomewhatlonger.Thesim- atourthreeagemarkers(30,200and300Myr)variesbetween ilaritytothestarstrackisnotsurprising,givenourrecentrecal- 3 and 8% while the effective temperaturesdo not varyat these ibrationoftheovershootinginbothcodesusingthesamesetof pointsbymorethan1%.Thevariationsinhydrogenabundance eclipsing binaries(Stancliffeetal. 2015). The CESAM track is arecomparabletochangingthemassby1-2%.Similarvariations anoutlierbecauseitisnotcomputedwiththeinclusionofcon- arefoundwhenwemodifytheinitialmetallicityby10%.Unlike vective overshooting. Considering points of fixed age, the dif- the 1M⊙ models,the 3M⊙ modelsare extremelyinsensitive to ferencesbetweenthetracksfallwithintheexpectedpost-GAIA variationsin the mixing length: tracks computed with α = 1.5 errorboxestimatedwiththesameassumptionsadoptedinSect. are indistinguishable from those computedwith α = 2.025 for 2withuncertaintiesof0.1maginthebolometriccorrection(see the whole of the main sequence through the Hertzsprung Gap. e.g.Landstreetetal.2007)andof300Kineffectivetemperature This is because these stars do not have deep convective en- (seee.g.Fossatietal.2009,forabestcasescenario). velopeswhileonthemainsequence.Notethatasthestarsevolve Differences between the codes start to appear once the star tothegiantbranchonewouldexpecttoseedifferencesoncethe surfaceconvectiveregionbecomesmoreextensive. approachestheendofthemainsequence.Thisismostlikelydue to the treatment of convective overshooting, which affects the sizeoftheconvectivecoreandhencetheavailabilityofhydrogen 4. Discussion for fusion. More extensive overshooting raises the star’s lumi- nosityandthemainsequenceisextended(seeFig.9).Different Three physical inputs that we have not so far discussed and codesapplyovershootingindifferentways.Somesimplyextend whichalsocontributetotheuncertaintiesinstellar calculations thesizeoftheconvectiveregionbyafixedfractionofthelocal are:reactionrates,opacitiesandtheequationofstate.Reaction pressurescaleheight(e.g.Dartmouth,Y2).mesaadoptsanexpo- ratesareperhapsoftheleastconcernasasourceoferror.Theen- nentiallydecayingmixingcoefficientbasedonconditionsclose ergeticallyimportantreactionsfor hydrogenburning(i.e. those totheformalconvectiveboundary(seeFreytagetal.1996,fora that will affect the stellar structure) are (mostly) all well de- discussionofthisformalism).ThePadovagroupsetsthebound- termined. As an example, the CNO cycle bottleneck reaction ary of the convectivecore at the location where convectiveve- 14N(p,γ)15O asmeasuredby Imbrianietal. (2005) (therecom- locitiesgotozero,basedonthemethodofBressanetal.(1981). mended rate given in both the JINA REACLIB [Cyburtetal. Finally,starsappliesamodificationtothecriterionforconvec- 2010] and Starlib [Sallaskaetal. 2013] reaction rate libraries) 7 R.J.Stancliffeetal.:CUSPII–stellartracks Above a temperature of around 104K two sets of opac- 2.3 ities are commonly used in stellar evolution computations: 2.25 the OPAL data (Iglesias&Rogers 1996) and the OP data 2.2 (Badnelletal. 2005). At lower temperatures, the tables of Alexander&Ferguson (1994) or Fergusonetal. (2005) are 2.15 (cid:12) used. The latter are to be preferred as they are an updated and L/L 2.1 expandedversionoftheformer.Thechoiceoflowtemperature g 10 2.05 opacitytableswillaffecttheeffectivetemperaturepredictedfor lo stars on the red giant branch,or for very low-mass stars at the 2 beginningofthemainsequence.TheOPALandOPdata,which 1.95 arerelevantforthemajorityofstellarinteriorsconsideredhere, generallydifferatthelevelof5-10%(Badnelletal.2005).This 1.9 risestoaround30%inthehightemperaturewingoftheZ-bump, 1.85 because the OP data places this bump at a slightly highertem- 13000 12500 12000 11500 11000 10500 10000 9500 9000 8500 perature (Badnelletal. 2005). We have used mesa to compute T (K) eff calibrated1M tracksusingbothOPandOPALopacitydatafor ⊙ solarcompositionofGrevesse&Sauval(1998).TheOPopacity Fig.10. Evolutionary tracks for a 3M⊙ model showing the ef- isusedbydefaultinthecalculationspresentedabove.Whenthe fects of a small change in the initial hydrogenabundance.The OPALdataisused,theparametersrequiredareX =0.7095,Z 0 0 dashedanddottedlinesindicatemodelsinwhichtheinitialhy- =0.0186andα = 1.8917(cf.thevaluesinTable1).Theevolu- drogenabundanceshasbeenreducedandincreasedby0.01,re- tionarytracksarealmostindistinguishable,showingadifference spectively.Evolutionarytracksformodelsof2.94and3.06M⊙ ofno morethan 3K atthe hottestpoint,with the OPAL model areshowninred.Plusesmarkagesof30,200and300Myr. beingthecoolerofthetwo. Thefinalpieceofinputmicrophysicsthatremainstobedis- 2.3 cussedisthechoiceofequationofstate(EoS).Mostofthecodes listed employ the OPAL equation of state (Rogersetal. 1996), 2.25 whereas stars employs the Eggleton,Faulkner,&Flannery 2.2 (1973) EoS (hereinafter EFF), with additional physics added byPolsetal.(1995),andtheDartmouthcodeusesanidealgas 2.15 L/L (cid:12) 2.1 E(CohSawboityherth&eDKeimbye1-9H9u¨5c).keDla¨cpoprreenct(i1o9n9f2o)rmcoamsspeasreadbotvhee0O.8PMAL⊙ g 10 2.05 andEFFEoSsforconditionsrelevanttothesolarhydrogenand lo heliumionisation zones,findingdifferencesof the orderof 1% 2 (see also Rogersetal. 1996). These differenceswere attributed 1.95 to the lack of a Coulomb-pressureterm (Da¨ppen 1992), which was subsequently added by Polsetal. (1995). The differences 1.9 should presumably now be much smaller, however we cannot 1.85 confirmthisasweknowofnorecentcomparisonsofthevarious 13000 12500 12000 11500 11000 10500 10000 9500 9000 8500 availableEoSs.Totesttheeffectsofusingdifferentequationsof T (K) eff state,wehaveusedmesatocomputetwo3M modelsequences, ⊙ oneusingtheOPALEoS,andoneusingFreeEoS14.At30Myr, Fig.11. Evolutionary tracks for a 3M⊙ model showing the ef- the differencein effectivetemperaturebetween the two models fectsofasmallchangeintheinitialmetallicity.Thedashedand isabout80K,withtheOPALmodelbeingthehotterofthetwo. dottedlines indicatemodelsin which the initial Z has beenre- The treatment of convection is perhaps still the Achilles’ duced and increased by 10%, respectively. Evolutionarytracks Heelofstellarevolutioncalculations.Themixing-lengththeory for modelsof 2.94 and 3.06M are shown in red. Pluses mark ⊙ (Bo¨hm-Vitense1958)isstillthemostwidelyusedofallthecon- agesof30,200and300Myr. vectivetheoriescurrentlyavailable (andindeedit is used in all thecodeswehavelookedathere).Fromthecomputationalview- point, it has the advantage of being a completely local theory has an uncertainty13 of around 10% in the range of tempera- sothatoneonlyneedsto knowabouttheconditionsatthecur- turespertinenttomainsequencestars.Varyingthisratebetween rentmeshpoint.Ithasalsoworkedextremelywell(onceprop- the upper and lower limits produces no discernible change in erlycalibrated)fora verylongtime.However,MLT doeshave the evolutionary track of our 3M model computed with the ⊙ more‘free’parametersthanjustthemixinglengthasinthefor- stars code.Note thatrevisionsto energeticallyimportantreac- mulation of MLT one must make choices aboutsuch things as tionratescanhaveasignificantimpactonstellarages.Revisions the energy exchange a blob makes with its surroundings. Not of the 14N(p,γ)15O rate by Formicolaetal. (2004) led to an all formulations of MLT choose the same parameters and one increase in the predicted age of the oldest globular clusters can legitimately wonder what effect these choices may have. (Imbrianietal. 2004), in addition to altering the lifetimes and Salaris&Cassisi(2008)comparedtheeffectsofusingthestan- luminositiesofadvancedevolutionaryphasesoflow-massstars dard treatment of MLT used in most stellar evolution codes to (Pietrinfernietal. 2010). When utilising a given set of tracks, the treatment commonly used in modelling white dwarf atmo- oneshouldalwayscheckthatthe reactionratesused areup-to- date. 14 The FreeEoS fortran libraries are available from 13 SeeSallaskaetal.(2013)foradetaileddiscussionconcerningthe http://freeeos.sourceforge.net/. This equation of state is meaninganddeterminationofreactionrateuncertainties. asubstantiallymodifiedversionoftheEFFEoS. 8 R.J.Stancliffeetal.:CUSPII–stellartracks spheres.Theyshowedthatwithappropriatecalibration,thetwo puted with the stars code. 3M tracks from seven different ⊙ treatments give extremely similar results. This confirmsearlier codeshavealsobeencompared.Here,exceptionalagreementis workbyPedersenetal.(1990),whoalsofoundthatwithappro- found between four of the codes, while two codes agree with priate calibration evolutionary tracks are uniquely defined, re- each other very well despite being different from the majority gardlessoftheMLTimplementationused.Recently,Arnettetal. group. Variations in the initial Z or X of around 10% lead to (2010)proposedamodifiedMLT,inwhichthefreeparameters shifts in the stellar tracks at aroundthe 2% level. These differ- of MLT are replaced by comparison of the relevant quantities ences amountto a changein the initial mass of 1-2%. Thus, if with hydrodynamicalsimulations of convection.To the best of thecompositionofa star isnotknownto betterthan10%,a fit our knowledge, this has never been employed in a stellar evo- ofanevolutionarytracktothestar’spositionintheHRdiagram lutioncalculationthoughWood&Arnett(2011)didapplyitto cannotgivethestar’smasstobetterthan1-2%,evenifitslumi- modelspulsationinasymptoticgiantbranchstars. nosityandeffectivetemperatureareknownexactly. Itshouldbenotedthatoneofthe assumptionsofMLTthe- oryisthatthemixinglengthobtainedbycalibrationtotheSun Acknowledgements. Wethank the anonymous referee forher/his constructive criticismofthemanuscript.RJSistherecipientofaSofjaKovalevskajaAward is applicable to all convective situations, regardless of stellar fromtheAlexandervonHumboldtFoundation.LFandJCPacknowledgefund- mass, metallicity or evolutionarystate. There is some observa- ing from the Alexander von Humboldt Foundation. JCP also thanks Norbert tional evidence to suggest that this may not be the case (e.g. Langerforhissupport. McSaveneyetal. 2007, require high mixing lengths to repro- duce the coloursof their asymptotic giantbranch stars). In ad- References dition, radiation hydrodynamics simulations of convective en- velopes also suggest that the mixing length should be a func- Alexander,D.R.&Ferguson,J.W.1994,ApJ,437,879 tion of T , log g and [Fe/H] (e.g. Trampedach&Stein 2011; Arnett,D.,Meakin,C.,&Young,P.A.2010,ApJ,710,1619 eff Trampedachetal. 2014; Magicetal. 2015). For a more com- Arnett,W.D.,Meakin,C.,Viallet,M.,etal.2015,ApJ,809,30 Asplund,M.,Grevesse, N.,&Sauval, A.J.2005,inAstronomical Societyof plete discussion, we refer the interested reader to the work of thePacificConferenceSeries,Vol.336,CosmicAbundancesasRecordsof Salaris&Cassisi(2015). StellarEvolutionandNucleosynthesis,ed.T.G.Barnes,III&F.N.Bash,25 Amongthealternativetheoriesofconvectionistheso-called Asplund,M.,Grevesse,N.,Sauval,A.J.,&Scott,P.2009,AnnualReviewsof fullspectrumofturbulence(FST)modelofCanuto&Mazzitelli Astronomy&Astrophysics,47,481 Badnell,N.R.,Bautista,M.A.,Butler,K.,etal.2005,MNRAS,360,458 (1991). While MLT assumes (essentially) only one large eddy, Bahcall, J. N., Pinsonneault, M. H., & Wasserburg, G. J. 1995, Reviews of the FST model includes the contributions of turbulent eddies ModernPhysics,67,781 of all sizes. At high convective efficiencies, the FST model Basu,S.&Antia,H.M.1997,MNRAS,287,189 mayproduceconvectivefluxesthatare10timelargerthanpre- Basu,S.&Antia,H.M.2004,ApJL,606,L85 dictedbyMLT(Canuto&Mazzitelli1991).Byfixingthemix- Bertelli,G.,Girardi,L.,Marigo,P.,&Nasi,E.2008,A&A,484,815 Bjork,S.R.&Chaboyer,B.2006,ApJ,641,1102 inglengthoftheFSTmodeltobethedistancetothetopofthe Bo¨hm-Vitense,E.1958,Zeitschriftfu¨rAstrophysik,46,108 convection zone, Canuto&Mazzitelli (1991) found they were Bressan,A.,Marigo,P.,Girardi,L.,etal.2012,MNRAS,427,127 able to produce a viable solar model without recourse to free Bressan,A.G.,Chiosi,C.,&Bertelli,G.1981,A&A,102,25 parameters. More recently, Pasettoetal. (2014) have also pro- Broeg,C.,Fortier,A.,Ehrenreich,D.,etal.2013,inEuropeanPhysicalJournal WebofConferences,Vol.47,EuropeanPhysicalJournalWebofConferences, ducedaparameter-freetheoryofconvection,butithasyettobe ed.R.Saglia,3005 testedinfullstellarevolutionmodels.Mostrecently,Arnettetal. Brott,I.,deMink,S.E.,Cantiello,M.,etal.2011,A&A,530,A115 (2015) haveproduceda 1D convectivetheorybasedon3D hy- Brun,A.S.,Turck-Chie`ze,S.,&Zahn,J.P.1999,ApJ,525,1032 drodynamicalsimulationsofconvection.Theimplementationof Caffau, E., Ludwig, H.-G., Steffen, M., Freytag, B., & Bonifacio, P. 2011, suchconvectivetheoriesandtheireffectonstellarmodelsisbe- Sol.Phys.,268,255 Canuto,V.M.&Mazzitelli,I.1991,ApJ,370,295 yondthescopeofthepresentwork. Chaboyer,B.&Kim,Y.-C.1995,ApJ,454,767 One area in which there is considerable variation in stellar Christensen-Dalsgaard,J.,Dappen,W.,Ajukov,S.V.,etal.1996,Science,272, evolution codes is the choice of boundaryconditions. The sur- 1286 facetemperatureandpressureofthestarareusuallysetcloseto Christensen-Dalsgaard,J.,Proffitt,C.R.,&Thompson,M.J.1993,ApJL,403, L75 thephotosphere,eitherthroughthe useofa T-τrelation,orvia Cyburt,R.H.,Amthor,A.M.,Ferguson,R.,etal.2010,ApJS,189,240 theuseofpre-computedmodelatmospheres.Dotteretal.(2007) Da¨ppen,W.1992,Rev.MexicanaAstron.Astrofis.,23,141 showtheeffectsofthechoiceofT-τrelationona1M⊙ model, Dotter,A.,Chaboyer,B.,Jevremovic´,D.,etal.2007,AJ,134,376 together with models computed using PHOENIX model atmo- Dotter,A.,Chaboyer,B.,Jevremovic´,D.,etal.2008,ApJS,178,89 spheres.Theyfindthatwhilethelocationoftheredgiantbranch Eggleton,P.P.1971,MNRAS,151,351 Eggleton,P.P.1972,MNRAS,156,361 can be substantially affected by the choice of the relation, the Eggleton,P.P.,Faulkner,J.,&Flannery,B.P.1973,A&A,23,325 mainsequenceisnotstronglyinfluenced.Similarresultsarealso Ferguson,J.W.,Alexander,D.R.,Allard,F.,etal.2005,ApJ,623,585 foundbyVandenBergetal.(2008),whoalsoincludedMARCS Flower,P.J.1996,ApJ,469,355 modelatmospheres.Ineachcase,whenproperlycalibrated,the Formicola,A.,Imbriani,G.,Costantini,H.,etal.2004,PhysicsLettersB,591, 61 mainsequenceportionofthetracksarevirtuallyidentical,with Fossati,L.,Ryabchikova,T.,Bagnulo,S.,etal.2009,A&A,503,945 substantialdifferencesonlyappearingwhenthe giantbranchis Freytag,B.,Ludwig,H.,&Steffen,M.1996,A&A,313,497 reached. Fro¨hlich,C.&Lean,J.2004,A&ARev.,12,273 Gabriel,M.,Noels,A.,Montalba´n,J.,&Miglio,A.2014,A&A,569,A63 Grevesse, N.&Noels,A.1993,inOriginandEvolutionoftheElements,ed. 5. Conclusions N.Prantzos,E.Vangioni-Flam, &M.Casse(CambridgeUniversityPress), 15–25 We have attempted to quantitatively assess the theoretical un- Grevesse,N.,Noels,A.,&Sauval,A.J.1996,inAstronomicalSocietyofthe certaintiesincurrentstellarevolutiontracks.Wehavecompared Pacific Conference Series, Vol. 99, Cosmic Abundances, ed. S. S. Holt & 1M tracks for eight different stellar evolution codes. We find G.Sonneborn,117 ⊙ Grevesse,N.&Sauval,A.J.1998,SpaceScienceReviews,85,161 that the spread they cover in the Hertzsprung-Russell diagram Iglesias,C.A.&Rogers,F.J.1996,ApJ,464,943 correspondsroughly to models of between 0.97-1.01M⊙ com- Imbriani,G.,Costantini,H.,Formicola,A.,etal.2004,A&A,420,625 9 R.J.Stancliffeetal.:CUSPII–stellartracks Imbriani, G., Costantini, H., Formicola, A., et al. 2005, European Physical JournalA,25,455 Jones,S.,Hirschi,R.,Pignatari,M.,etal.2015,MNRAS,447,3115 Ko¨hler,K.,Langer,N.,deKoter,A.,etal.2015,A&A,573,A71 Korn,A.J.,Grundahl,F.,Richard,O.,etal.2006,Nature,442,657 Landstreet,J.D.,Bagnulo,S.,Andretta,V.,etal.2007,A&A,470,685 Lind,K.,Korn,A.J.,Barklem,P.S.,&Grundahl,F.2008,A&A,490,777 Magic,Z.,Weiss,A.,&Asplund,M.2015,A&A,573,A89 Martins,F.&Palacios,A.2013,A&A,560,A16 McSaveney, J.A.,Wood,P.R.,Scholz,M.,Lattanzio, J.C.,&Hinkle,K.H. 2007,MNRAS,378,1089 Meynet,G.,Maeder,A.,&Mowlavi,N.2004,A&A,416,1023 Mowlavi,N.,Eggenberger,P.,Meynet,G.,etal.2012,A&A,541,A41 Nelder,J.A.&Mead,R.1965,TheComputerJournal,7,308 Pasetto,S.,Chiosi,C.,Cropper,M.,&Grebel,E.K.2014,MNRAS,445,3592 Paxton,B.,Bildsten,L.,Dotter,A.,etal.2011,ApJS,192,3 Paxton,B.,Cantiello,M.,Arras,P.,etal.2013,ApJS,208,4 Paxton,B.,Marchant,P.,Schwab,J.,etal.2015,ApJS,220,15 Pedersen,B.B.,VandenBerg,D.A.,&Irwin,A.W.1990,ApJ,352,279 Pietrinferni,A.,Cassisi,S.,&Salaris,M.2010,A&A,522,A76 Pietrinferni,A.,Cassisi,S.,Salaris,M.,&Castelli,F.2004,ApJ,612,168 Pols,O.R.,Tout,C.A.,Eggleton,P.P.,&Han,Z.1995,MNRAS,274,964 Proffitt,C.R.&Vandenberg,D.A.1991,ApJS,77,473 Rhodes,Jr.,E.J.,Kosovichev,A.G.,Schou,J.,Scherrer,P.H.,&Reiter,J.1997, Sol.Phys.,175,287 Richard,O.,Michaud,G.,&Richer,J.2002,ApJ,580,1100 Richard,O.,Michaud,G.,&Richer,J.2005,ApJ,619,538 Ricker, G. R., Winn, J.N., Vanderspek, R.,et al. 2014, in Society ofPhoto- Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9143, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series(SPIE),20 Rogers,F.J.,Swenson,F.J.,&Iglesias,C.A.1996,ApJ,456,902 Ryabchikova, T.,Piskunov,N.,Pakhomov,Y.,etal.2016,MNRAS,accepted, arXiv:1511.06134 Salaris,M.&Cassisi,S.2008,A&A,487,1075 Salaris,M.&Cassisi,S.2015,A&A,577,A60 Sallaska,A.L.,Iliadis,C.,Champange,A.E.,etal.2013,ApJS,207,18 Schneider,F.R.N.,Langer,N.,deKoter,A.,etal.2014,A&A,570,A66 Schro¨der,K.-P.,Pols,O.R.,&Eggleton,P.P.1997,MNRAS,285,696 Scott,P.,Grevesse,N.,Asplund,M.,etal.2015,A&A,573,A25 Stancliffe,R.J.2006,MNRAS,370,1817 Stancliffe,R.J.&Eldridge,J.J.2009,MNRAS,396,1699 Stancliffe,R.J.,Fossati,L.,Passy,J.-C.,&Schneider,F.R.N.2015,A&A,575, A117 Trampedach,R.&Stein,R.F.2011,ApJ,731,78 Trampedach, R., Stein, R. F., Christensen-Dalsgaard, J., Nordlund, Å., & Asplund,M.2014,MNRAS,445,4366 VandenBerg,D.A.,Bergbusch,P.A.,Dotter,A.,etal.2012,ApJ,755,15 VandenBerg,D.A.,Bergbusch,P.A.,Ferguson,J.W.,&Edvardsson,B.2014, ApJ,794,72 VandenBerg,D.A.,Edvardsson,B.,Eriksson,K.,&Gustafsson,B.2008,ApJ, 675,746 Viallet,M.,Meakin,C.,Prat,V.,&Arnett,D.2015,A&A,580,A61 Villante,F.L.,Serenelli,A.M.,Delahaye,F.,&Pinsonneault,M.H.2014,ApJ, 787,13 Wheatley,P.J.,Pollacco,D.L.,Queloz,D.,etal.2013,inEuropeanPhysical Journal Web of Conferences, Vol. 47, European Physical Journal Web of Conferences,ed.R.Saglia(EDPSciences),13002 Wood,P.&Arnett,D.2011,inAstronomicalSocietyofthePacificConference Series,Vol.445,WhyGalaxiesCareaboutAGBStarsII:ShiningExamples and Common Inhabitants, ed. F. Kerschbaum, T. Lebzelter, & R. F.Wing (AstronomicalSocietyofthePacific,SanFrancisco),183 Yi,S.,Demarque,P.,Kim,Y.-C.,etal.2001,ApJS,136,417 AppendixA: mesasolarcalibration IntableA.1,wepresentthedetailsofthevarioussolarcalibra- tionscarriedoutwithmesa. 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.