ebook img

Configurational Forces as Basic Concepts of Continuum Physics PDF

245 Pages·2000·0.838 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Configurational Forces as Basic Concepts of Continuum Physics

Configurational Forces as Basic Concepts of Continuum Physics Morton E. Gurtin Springer FormygrandchildrenKatie,Grant,andLiza Contents 1. Introduction 1 a. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 b. Variationaldefinitionofconfigurationalforces . . . . . . . . . 2 c. Interfacialenergy.Afurtherargumentforaconfigurational forcebalance . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 d. Configurationalforcesasbasicobjects . . . . . . . . . . . . . 7 e. Thenatureofconfigurationalforces . . . . . . . . . . . . . . . 9 f. Configurational stress and residual stress. Internalconfigurationalforces . . . . . . . . . . . . . . . . . . 10 g. Configurationalforcesandindeterminacy . . . . . . . . . . . . 11 h. Scopeofthebook . . . . . . . . . . . . . . . . . . . . . . . . 12 i. Onoperationaldefinitionsandmathematics. . . . . . . . . . . 12 j. Generalnotation.Tensoranalysis . . . . . . . . . . . . . . . . 13 j1. Ondirectnotation . . . . . . . . . . . . . . . . . . . . 13 j2. Vectorsandtensors.Fields . . . . . . . . . . . . . . . 13 j3. Third-ordertensors(3-tensors).TheoperationT :(cid:1). . 15 j4. Functionsoftensors . . . . . . . . . . . . . . . . . . . 16 A. Configurationalforceswithinaclassicalcontext 19 2. Kinematics 21 a. Referencebody.Materialpoints.Motions. . . . . . . . . . . . 21 b. Materialandspatialvectors.ThesetsE andE . . . . . 22 space matter c. Materialandspatialobservers . . . . . . . . . . . . . . . . . . 23 d. Consistencyrequirement.Objectivefields . . . . . . . . . . . 23 viii Contents 3. Standardforces.Working 25 a. Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 b. Working.Standardforceandmomentbalancesasconsequences ofinvarianceunderchangesinspatialobserver . . . . . . . . . 26 4. Migrating control volumes. Stationary and time-dependent changesinreferenceconfiguration 29 a. MigratingcontrolvolumesP (cid:1)P(t).Velocityfieldsfor∂P(t) ¯ and∂P(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 b. Changeinreferenceconfiguration . . . . . . . . . . . . . . . . 31 b1. Stationarychangeinreferenceconfiguration . . . . . . 31 b2. Time-dependentchangeinreferenceconfiguration . . . 32 5. Configurationalforces 34 a. Configurationalforces . . . . . . . . . . . . . . . . . . . . . . 34 b. Workingrevisited . . . . . . . . . . . . . . . . . . . . . . . . 35 c. Configurationalforcebalanceasaconsequenceofinvariance underchangesinmaterialobserver . . . . . . . . . . . . . . . 36 d. Invariance under changes in velocity field for ∂P(t). Configurationalstressrelation . . . . . . . . . . . . . . . . . . 37 e. Invariance under time-dependent changes in reference. Externalandinternalforcerelations . . . . . . . . . . . . . . . 38 f. Standard and configurational forms of the working. Powerbalance . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6. Thermodynamics. Relation between bulk tension and energy. Eshelbyidentity 41 a. Mechanicalversionofthesecondlaw . . . . . . . . . . . . . . 41 b. Eshelbyrelationasaconsequenceofthesecondlaw . . . . . . 42 c. Thermomechanicaltheory . . . . . . . . . . . . . . . . . . . . 44 d. Fluids.Currentconfigurationasreference. . . . . . . . . . . . 45 7. Inertiaandkineticenergy.Alternativeversionsofthesecondlaw 46 a. Inertiaandkineticenergy . . . . . . . . . . . . . . . . . . . . 46 b. Alternativeformsofthesecondlaw . . . . . . . . . . . . . . . 47 c. Pseudomomentum . . . . . . . . . . . . . . . . . . . . . . . . 47 d. Lyapunovrelations. . . . . . . . . . . . . . . . . . . . . . . . 48 8. Changeinreferenceconfiguration 50 a. Transformationlawsforfreeenergyandstandardforce . . . . 50 b. Transformationlawsforconfigurationalforce . . . . . . . . . 51 9. Elasticandthermoelasticmaterials 53 a. Mechanicaltheory . . . . . . . . . . . . . . . . . . . . . . . . 54 a1. Basicequations . . . . . . . . . . . . . . . . . . . . . 54 Contents ix a2. Constitutivetheory . . . . . . . . . . . . . . . . . . . 54 b. Thermomechanicaltheory . . . . . . . . . . . . . . . . . . . . 56 b1. Basicequations . . . . . . . . . . . . . . . . . . . . . 56 b2. Constitutivetheory . . . . . . . . . . . . . . . . . . . 57 B. The use of configurational forces to characterize coherentphaseinterfaces 61 10.Interfacekinematics 63 11.Interfaceforces.Secondlaw 66 a. Interfaceforces . . . . . . . . . . . . . . . . . . . . . . . . . 66 b. Working . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 c. Standardandconfigurationalforcebalancesattheinterface . . 68 d. InvarianceunderchangesinvelocityfieldforS (t).Normal configurationalbalance . . . . . . . . . . . . . . . . . . . . . 69 e. Powerbalance.Internalworking . . . . . . . . . . . . . . . . 70 f. Secondlaw.Internaldissipationinequalityfortheinterface . . 71 g. Localizationsusingapillboxargument . . . . . . . . . . . . . 72 12.Inertia.Basicequationsfortheinterface 74 a. Relativekineticenergy . . . . . . . . . . . . . . . . . . . . . 74 b. DeterminationofbS andeS . . . . . . . . . . . . . . . . . . 75 c. Standardandconfigurationalbalanceswithinertia . . . . . . . 77 d. Constitutiveequationfortheinterface. . . . . . . . . . . . . . 78 e. Summaryofbasicequations . . . . . . . . . . . . . . . . . . . 79 f. Globalenergyinequality.Lyapunovrelations . . . . . . . . . . 80 C. An equivalent formulation of the theory. Infinitesimaldeformations 81 13.Formulationwithinaclassicalcontext 83 a. Background. Reason for an alternative formulation intermsofdisplacements . . . . . . . . . . . . . . . . . . . . 83 b. Finitedeformations.ModifiedEshelbyrelation . . . . . . . . . 84 c. Infinitesimaldeformations . . . . . . . . . . . . . . . . . . . . 86 14.Coherentphaseinterfaces 88 a. Generaltheory . . . . . . . . . . . . . . . . . . . . . . . . . . 88 b. Infinitesimaltheorywithlinearstress-strainrelationsinbulk. . 89 x Contents D. Evolvinginterfacesneglectingbulkbehavior 91 15.Evolvingsurfaces 93 a. Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 a1. Background.Superficialstress . . . . . . . . . . . . . 93 a2. Superficialtensorfields . . . . . . . . . . . . . . . . . 94 b. Smoothlyevolvingsurfaces . . . . . . . . . . . . . . . . . . . 97 b1. TimederivativefollowingS.Normaltimederivative. . 97 b2. Velocityfieldsfortheboundarycurve∂G ofasmoothly evolvingsubsurfaceofS .Transporttheorem . . . . 99 b3. Transformationlaws . . . . . . . . . . . . . . . . . . 100 16.Configurationalforcesystem.Working 101 a. Configurationalforces.Working. . . . . . . . . . . . . . . . . 101 b. Configurationalforcebalanceasaconsequenceofinvariance underchangesinmaterialobserver . . . . . . . . . . . . . . . 102 c. Invarianceunderchangesinvelocityfields.Surfacetension. Surfaceshear. . . . . . . . . . . . . . . . . . . . . . . . . . . 103 d. Normalforcebalance.Intrinsicformfortheworking. . . . . . 104 e. Powerbalance.Internalworking . . . . . . . . . . . . . . . . 105 17.Secondlaw 108 18.Constitutiveequations 110 a. Functionsoforientation . . . . . . . . . . . . . . . . . . . . . 110 b. Constitutiveequations . . . . . . . . . . . . . . . . . . . . . . 111 c. Evolutionequationfortheinterface . . . . . . . . . . . . . . . 113 d. Lyapunovrelations. . . . . . . . . . . . . . . . . . . . . . . . 114 19.Two-dimensionaltheory 115 a. Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 b. Configurationalforces.Working.Secondlaw . . . . . . . . . . 116 c. Constitutivetheory. . . . . . . . . . . . . . . . . . . . . . . . 118 d. Evolutionequationfortheinterface . . . . . . . . . . . . . . . 119 e. Corners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 f. Angle-convexity.TheFrankdiagram . . . . . . . . . . . . . . 120 g. Convexity of the interfacial energy and evolution oftheinterface . . . . . . . . . . . . . . . . . . . . . . . . . . 124 E. Coherent phase interfaces with interfacial energy anddeformation 127 20.Theoryneglectingstandardinterfacialstress 129 a. Standardandconfigurationalforces.Working . . . . . . . . . 129 Contents xi b. Powerbalance.Internalworking . . . . . . . . . . . . . . . . 131 c. Secondlaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 c1. Secondlaw.Interfacialdissipationinequality. . . . . . 132 c2. Derivationoftheinterfacialdissipationinequality usingapillboxargument . . . . . . . . . . . . . . . . 132 d. Constitutiveequations . . . . . . . . . . . . . . . . . . . . . . 133 e. Construction of the process used in restricting theconstitutiveequations . . . . . . . . . . . . . . . . . . . . 135 f. Basicequationswithinertialexternalforces . . . . . . . . . . 135 f1. Standardandconfigurationalbalances . . . . . . . . . 135 f2. Summaryofbasicequations . . . . . . . . . . . . . . 136 g. Globalenergyinequality.Lyapunovrelations . . . . . . . . . . 137 21.General theory with standard and configurational stress withintheinterface 138 a. Kinematics.Tangentialdeformationgradient . . . . . . . . . . 138 b. Standardandconfigurationalforces.Working . . . . . . . . . 139 c. Powerbalance.Internalworking . . . . . . . . . . . . . . . . 142 d. Secondlaw.Interfacialdissipationinequality . . . . . . . . . . 144 e. Constitutiveequations . . . . . . . . . . . . . . . . . . . . . . 145 f. Basicequationswithinertialexternalforces . . . . . . . . . . 147 g. Lyapunovrelations. . . . . . . . . . . . . . . . . . . . . . . . 147 22.Two-dimensionaltheorywithstandardandconfigurationalstress withintheinterface 149 a. Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 b. Forces.Working . . . . . . . . . . . . . . . . . . . . . . . . . 150 c. Powerbalance.Internalworking.Secondlaw . . . . . . . . . . 152 d. Constitutiveequations . . . . . . . . . . . . . . . . . . . . . . 155 e. Evolutionequationsfortheinterface . . . . . . . . . . . . . . 156 F. Solidification 157 23.Solidification. The Stefan condition as a consequence of the configurationalforcebalance 159 a. Single-phasetheory . . . . . . . . . . . . . . . . . . . . . . . 159 b. Theclassicaltwo-phasetheoryrevisited.TheStefancondition asaconsequenceoftheconfigurationalbalance . . . . . . . . 160 24.Solidificationwithinterfacialenergyandentropy 163 a. Generaltheory . . . . . . . . . . . . . . . . . . . . . . . . . . 163 b. Approximate theory. The Gibbs-Thomson condition as a consequenceoftheconfigurationalbalance . . . . . . . . . . . 166 c. Free-boundary problems for the approximate theory. Growththeorems. . . . . . . . . . . . . . . . . . . . . . . . . 167

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.