ebook img

Conference on the Numerical Solution of Differential Equations: Held in Dundee/Scotland, June 23–27, 1969 PDF

278 Pages·1969·4.436 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Conference on the Numerical Solution of Differential Equations: Held in Dundee/Scotland, June 23–27, 1969

Lecture Notes ni Mathematics A collection of informal reports and seminars Edited yb .A Dold, Heidelberg and .B Eckmann, Z0rich 109 Conference no the Numerical Solution of Differential Equations Held ni Dundee/Scotland, 23-2?, June 1969 Edited by .J .IL Morris, University of Dundee, Dundee/Scotland Springer-Verlag Berlin-Heidelberg • New York 1969 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of transhtion, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under 54 § of the German Copyright where copies Law are mafdoer other than private fee use, a is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin Heidelberg .9691 Library of Congress Catalog Card Number 77-101372 Printed in Germany. Title No. 5623 Contents J. Albrecht: Generalisation of an Inclusion Theorem of L.Collatz I E.G. DtJakonov: On Certain Iterative Methods for Solving Nonlinear Difference Equations ............................ 7 B. Noble: Instability when Solving Volterra Integral Equations of the Second Kind by Multistep Methods .................. 23 M. Urabe: Numerical Solution of Boundary Value Problems in Chebyshev Series ...................................... 40 E. Vitasek: The Numerical Stability in Solution of Differential Equations ........................................... 87 O. Widlund: On the Effects of Scaling of the Peaceman-Rachford Method .............................................. 113 J.C° Butcher: The Effective Order of Runge-Kutta Methods ........ 133 G.J. Cooper: Error Bounds for Some Single Step Methods .......... 140 O. Dahl: Approximation of Nonlinesr Operators ................... 148 K. Graf Finck v. Finckenstein: On the Numerical Treatment of Hyper- bolic Differential Equations with Constant Coefficients .. 154 R. Gorenflo: Monotonic Difference Schemes for Weakly Coupled Systems of Parabolic Differential Eouations ................ 160 A.R° Gourlay: The Numerical Solution of Evolutionary Partisl Differential Equations ............................ 168 W.R. Hcdgkins: A Method for the Numerical Integration of Non-Linear Ordinary Differential Equations .................. 472 M°Lal and P.Gillard: Numerical Solution of Two Differential- Difference Equations of Analytic Theory of Numbers ........ 179 W.Liniger: Global Accuracy and A-Stability of One- and Two-Step Integration Formulae ................................. 188 T. Lyche: Optimal Order Multistep Methods with an Arbitrary Number of Nonsteppoints ............................... 194 S. McKee: Alternating Direction Methods for Parabolic Equations in Two and Three Space Dimensions ........................ 200 K.O.Mead and L.M.Delves: On the Convergence Rates of Variational Methods ................................................ 207 S.P. Norsett: An A-Stable Modification of the Adams-Bashforth Methods .......................................... 214 P. Piotrowski: Stability, Consistency and Convergence of Variable K-Step Methods ................................... 221 A. Prothero: Local-Error Estimates for Variable-Step Runge-Kutta Methods ............................................ 228 IV E.L. Rubin: Time-Dependent Techniques for the Solution of Viscous, Heat Conducting, Chemically Reacting, Radiating Discontinuous Flows ................................. 2~ J. Skappel: Attempts to Optimize the Structure of an OdE Program 243 M.N. Spijker: Round-off Error in the Numerical Solution of Second Order Differential Equations ...................... 249 H.J. Stetter: Stability Properties of the Extrapolation Method .. 255 J.H. Verner: Implicit Methods for Implicit Differential Equations 261 W. Werner: Solution of Elliptic Eigenvalue Problems by Calculating a "Separable" Solution of a Dynamic Problem ......... 267 List of Contributors Invited Papers Albrecht, J., Technische Universitit, 1000 Berlin / Germany D'Jakonov, E.G., University of Moscow, Moscow / USSR Noble, B., University of Wisconsin, Madison, ~I / USA Urabe, M., University of-Kyoto, Kyoto /Japan Vitasek, E., Ceskoslovenska Akademie Ved, Matematick~ Ustsb, Prague I / Czechoslovakia Widlund, 0., Courant Institute of Mathematical Sciences, University of New York, New York / USA Submitted Papers Butcher, J.C., Dept. of Mathematics, University of Auckland, Auckland / New Zealend Cooper, G.J., Dept. of Computer Science, University of Edinburgh, Edinburgh / Scotlsnd Dahl, O., Dept. of Mathematics, University of Oslo, B]in~rn, 0slo 3 / Norway Finck .v Finckenstein, K. Graf~ Institut fir Plasmaphysik GmbH, 8046 Garching 6 / Germany Gorenflo, R., Institut riff Plasmaphysik GmbH, 8046 Garching / 6 Germany Gourlay, A.R., Dept. of Mathematics, University of Dun4ee, Dundee ~eotland Hodgkins, W.R., The English Electric Co.Ltd., Nelson Research Laboratories. Beaconhill, Stafford Lal, M. and Gillard, P., Dept. of Mathematics, Memorial University of Newfoundland, St. John's, Newfoundland / Canada Liniger, W., IBM Watson Research Center, Yorktown Heights, N.Y. / US~ Lyche, T.~ Dept. of Methematics, University of Oslo, Blindern, Oslo / 3 Norway McKee, S., Dept. of Mathematics~ University of Dundee~Dundee / Scotland Mead, K.O. sod Delves, L.M., School of Mathematical and Physical Sciences, University of Sussex, Brighton, Sussex / England Norsett, S.P., Dept. of Mathematics, University of 0slo, Blindern, Oslo 3 / Norway Piotrowski, P., Institut fir Plasmaphysik GmbH, 80~6 Garching 6 /Germany Prothero, A., Shell Research Ltd.,Thornton Research Centre,Chester/England Rubin, E., Dent. of Aerospace Engineering and Applied Mechanics. Poly- technic Institute of Brooklyn, Farmingda±e, N.Y. / USA VI Skappel, ,.J Mathematical Analysis Unit, The Boeing Company, Commercial Airplane Division, Seattle, NA / USA Spljker, M.N., Centraal Reken-Institut, Rijksuniverslteit te Leiden, Leiden / Netherlands Stetter, H., Institut fur Numerische Mathematik, Technische Hochschule, Wien / Austria | Verner, J.H., Dept. of Computer Science, Edinburgh 8 / Scotland Werner, N., Mathematisches Institut der Technischen Hochschule, 8000 MGnchen 12 / Germany -I- Generalisation ' of an Inclusion Theorem of L.COLLATZ J. Albrecht For the eigenvalues of a selfad~olnt, definite eigenvalue problem with a differential equation m [ Mu(=) )1-( ~ ))~c)~/,)x/,p(( ;)~( ~=o L ))x().(u)=(%( ;) Nu(x) = , (-i) ~ (v m > n >~ 0 ] L O=M and with m (geometric or dynamic) boundary conditions I) at each of the two boundary points x = o, x = b )a()P(u o r _ _ o ) = )a(o~ u )~()P( - )aCuoM = )a(lOCulaCoh(X - ~u(~) ) I ) u (p)(b)=o r__o ) (p = ,O ...,m-l) ~pCblu (p) (h) . ~u(h) = X(hoCblu(-Pl(h) . ~uCh) ) m MpuCx) =+P~'.~= 1 (-1)~-(P+l) (P~(x)u(W)(x)) (W-(p+I)) for p = O, ..., m-1 n )1÷p(-v)1-( q( ))x()~(u)x( ))1+p(-~( for p = 0,.o.,n-i 5u(~) ~ = -_ i+ for p = n,...,m-i o the following inclusion theorem holds: )l )~(ph = o I for p = n + i, ..., n - i )b(ph = o ) .I ~finitions I.i. Inner pro~cts )2 and RAYLEI@H'S quotient ]~,~[ = p.(x)~(")(~) ~(")(x) ~a + ~=0 -2- m-I m-I Z g"(a)~(")(a) ~(") )a( + Z g"(b)~(")(b) ~(") )b( //=0 ~=0 b n b,¢t =/~ %(x)~(~)(x) $ (~) (x) ~ . M=O h~(b), )~( )b( ~ )b( )~( =O R (~) = ¢,~ I.i. Iteration )~ Mvl(x) : NVo(X) in a-~ X ~ b )~()P( (P)(~) o vl = ,~ o = or gp(a)Vl(P)(m) - ) MpVl(a = hp(a)Vo(P)(a) - Nvo(a ) , &=0,...,m-l) h(~)(b) (P)(b) -_ o i = V 0 ' ' )b()':( ~ N~o(b) f~or 1,1 -= 0p eoep D. )2 Asioms of inner products: .i (~,@) = (~,~) .2 (~,,) >I o ~ for = 0 for ~ = e .3 (~*,¢) = ~(~,~) .: Restriction o~ one step without loss of generality 9~ Assumutions 2.1. %(x) > o ina.<x.<b for 7; -- 0 9 eoo~ .21 ~(~) ~ o, ~(b) >. o 2.2. o < ¢~v(x) < ina~x~.b for ~, -- 0 9 eJej .31 -3- .5 Theorem Min ~(x))~x~ xaM ( ~,= %(~)) M~ ( s ,O V = ...p n a~x.<b v=0,...,n a-<x~b Adjusting to special cases the first assumption may be simplified in several ways. For example, the Inclusion Theorem of L. COLLATE for the "single-term" class holds [i]: 2.* snoitpmJuss~ ( %(:~) - o ina~x~b for v = 0, ..., n-i I ),(,~,.~ -_ o, h,,(b) ~.1,2 ( = 0 ( %(~) > 0 Ins.< x~b ( ( i~(~) ~ o, h(b) 0 2.2* 0 < • (x) < ina~x~b n 3.* ,~sore~ Min ~ (x) ~ x ~=~ )x( n s n b<.x~a b~x<.a ~. Proof 4) With th@ abbreviations Min ( ~Ln *v(x) ) Max ~= %(x) ) L = I = v=O,...~n b<~x~a v=O,...,n ( a~x~b ~(x) ~ %(x) . %(x) ina=x.<b ! ) for v=O,...,n hv(a) .= hv(a) . @v(a) , hv(b) .= hu(b)'*w(b) 2 etc. m%d with the estimations 1[¢,¢I <- [¢,¢I ~ ,T I~,¢[ 4 - we apply the Comparison Theorem (which is derived from themin~-~! properties 5) of the RAYLEIGH quotient) to the following Eigenvalue problems ~) ., llI cou~ )5 h. = R(h) : Min R(v) ; 2 : k R(U2) = Min R(v) ; . . . veV vcV vlu 1 V: Set of the admissible functions (satisfying the essential boundary conditions) ~i(x) = )~(iu~.~!lx fma.<x~b l ) I u '(a) : 0 or i p( = ,o )i-=,... I ) uI(P )(b) = 0 r_r_o ) kll (hp(b)ul(P)(b) + ~ui(b)) ( ,~ y< (~igenvalues ~ = kl, -~ , eigerd'unctiens ui,~(x ) (~ = 1,2,...) I Muii(x) = Xllf~%ll(x) Ina~x~b Ul! (P)(~) : o or )p( : Xii(~o(a)u!i (p)(a) - f~uzi(a)) (p=O,...,m-1 : ~i(Zp(b EII~) 'p( )b(J + }~z(b)) [g,(b)uii (0)(b) + ~Uil(b ) eige~otion8 ~i,~(~) = h(x)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.