ebook img

CONDUCTANCES IN THE TWO-IMPURITY ANDERSON MODEL By WILLIAM BRIAN LANE A ... PDF

143 Pages·2008·1.22 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview CONDUCTANCES IN THE TWO-IMPURITY ANDERSON MODEL By WILLIAM BRIAN LANE A ...

CONDUCTANCES IN THE TWO-IMPURITY ANDERSON MODEL By WILLIAM BRIAN LANE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2008 1 (cid:176)c 2008 William Brian Lane 2 For Amy: my wife, friend, editor, and treasure. 3 ACKNOWLEDGMENTS There are many people to thank, perhaps more than my memory and words can do justice: • The members of my supervisory committee for their insight and understanding: Kevin Ingersent, Christopher Stanton, Arthur Hebard, Robert Coldwell, and James Keesling. • John Klauder, Kevin Ingersent, James Fry, James Dufty, Arthur Hebard, Dimitri Maslov, Konstantin Matchev, and Pradeep Kumar for their classroom instruction at the University of Florida. • Paul Simony, Steve Browder, William Mendoza, Bashir Sayar, Robert Hollister, Pam Crawford, Sanjay Rai, Marcelle Bessman, and Marilyn Repsher for their classroom instruction and professional collaboration at Jacksonville University. • Mark Meisel and Steve Hill for their dedication, wisdom, and care. • Darlene Latimer, Nathan Williams, Kristin Nichola, Donna Balkcom, and Yvonne Dixon for their faithful service to the Department of Physics. • Many of the calculations that went into this dissertation were performed on the UF HPC Cluster; many thanks go to Charles Taylor and the HPC Staff. • Matt Glossop, Mengxing Cheng, Luis Dias da Silva, Nancy Sandler, and Sergio Ulloa for their collaboration and insight. On a more personal note, I would like to issue these thanks, as well: • My mother, for her love, support, belief in me, and words of kindness and discipline. • My brother, for his love and friendship. • Richard Parker, Steve Gregg, James Walden, Tobey Sorrels, Richard Horner, Rick Borque, Dan MacDonald, Keith Jackson, Dan Brinkmann, Scott Moffatt, Gardner Gordon, Ed Barnard, Ken Kurdziel, Dana Focks, and Ralph Coleman for their spiritual care and wisdom. • My church families at Eastside and Creekside. 4 Lastly, I would like to thank my lovely wife, Amy, who has seen me through this adventure. 5 TABLE OF CONTENTS page ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.1 The Kondo Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.1.1 Resistivity Minimum and the Success of the Kondo Model . . . . . 12 1.1.2 The Anderson Model . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.1.3 Further Attempts at Perturbative Techniques . . . . . . . . . . . . . 19 1.2 The Numerical Renormalization Group . . . . . . . . . . . . . . . . . . . . 22 1.2.1 The Renormalization Group Concept . . . . . . . . . . . . . . . . . 22 1.2.2 Application to the Kondo Problem . . . . . . . . . . . . . . . . . . . 23 1.2.3 Iterative Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.2.4 Fixed Points and Results . . . . . . . . . . . . . . . . . . . . . . . . 29 1.3 Surface and Quantum Dot Realizations of the One-Impurity Kondo Effect 31 1.3.1 Scanning Tunneling Microscopy Studies . . . . . . . . . . . . . . . . 31 1.3.2 Quantum Dot Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.4 Systems of Multiple Impurities . . . . . . . . . . . . . . . . . . . . . . . . . 40 1.4.1 Theoretical Studies of Two-Impurity Models . . . . . . . . . . . . . 40 1.4.2 Multiple-Impurity STM Studies . . . . . . . . . . . . . . . . . . . . 44 1.4.3 Double Quantum Dot Studies . . . . . . . . . . . . . . . . . . . . . 46 1.5 Study Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2 BACKGROUND MATERIAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.1 Application of the NRG to the Anderson Model . . . . . . . . . . . . . . . 57 2.1.1 Discretization and Eigensolution . . . . . . . . . . . . . . . . . . . . 57 2.1.2 Calculation of Thermodynamic Properties . . . . . . . . . . . . . . 59 2.1.3 Calculation of Spectral Functions . . . . . . . . . . . . . . . . . . . 61 2.1.4 Fixed Points and Results . . . . . . . . . . . . . . . . . . . . . . . . 62 2.2 Extension to Two-Impurity Systems . . . . . . . . . . . . . . . . . . . . . . 66 2.2.1 Transformation to One-Dimensional Form . . . . . . . . . . . . . . . 67 2.2.2 Discretization and Eigensolution . . . . . . . . . . . . . . . . . . . . 70 2.2.3 Special Cases: Identical Impurities and R = 0 . . . . . . . . . . . . 73 2.2.4 Calculation of Thermodynamic and Spectral Properties . . . . . . . 74 6 3 PARALLELIZATION OF THE NRG PROCEDURE . . . . . . . . . . . . . . . 76 3.1 Parallelization of the NRG Eigensolution . . . . . . . . . . . . . . . . . . . 76 3.2 Parallelization of the Matrix Element Calculation . . . . . . . . . . . . . . 78 4 STM STUDIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.1 Review of Single-Impurity Behavior . . . . . . . . . . . . . . . . . . . . . . 82 4.1.1 Single-Impurity STM Setup . . . . . . . . . . . . . . . . . . . . . . 82 4.1.2 Results for Single-Impurity STM . . . . . . . . . . . . . . . . . . . . 84 4.2 Two-Impurity STM Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2.1 Two-Impurity Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2.2 Thermodynamic and Spectral Results . . . . . . . . . . . . . . . . . 91 4.2.3 Two-Impurity STM Conductance . . . . . . . . . . . . . . . . . . . 94 4.2.4 Varying Impurity Parameters . . . . . . . . . . . . . . . . . . . . . . 97 5 ASYMMETRIC DOUBLE QUANTUM-DOT DEVICES . . . . . . . . . . . . . 103 5.1 Double Quantum Dot Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.1.1 Model and Simplifications . . . . . . . . . . . . . . . . . . . . . . . 104 5.1.2 Special Case: U = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 106 2 5.2 Side-Coupled DQD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.2.1 Special Case: U = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 107 2 5.2.2 Extended Case: U > 0 . . . . . . . . . . . . . . . . . . . . . . . . . 108 2 5.3 Parallel DQD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.3.1 Special Case: U = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 112 2 5.3.2 Extended Case: U > 0 - Phase Diagram and Susceptibility . . . . . 116 2 5.3.3 Extended Case: U > 0 - Spectral Function and Conductance . . . . 124 2 6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.1 Scanning Tunneling Microscopy Studies . . . . . . . . . . . . . . . . . . . . 133 6.2 Double Quantum Dot Studies . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.3 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 BIOGRAPHICAL SKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 7 LIST OF FIGURES Figure page 1-1 Resistivity minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1-2 Logarithmic discretization of the energy space . . . . . . . . . . . . . . . . . . . 24 1-3 Impurity coupled to a chain of electron states . . . . . . . . . . . . . . . . . . . 25 1-4 Wall-clock time for the NRG procedure . . . . . . . . . . . . . . . . . . . . . . . 28 1-5 Evolution of energy spectra during NRG process . . . . . . . . . . . . . . . . . . 30 1-6 Differential conductance for a single Co atom . . . . . . . . . . . . . . . . . . . 33 1-7 Differential conductance for a single Ce atom . . . . . . . . . . . . . . . . . . . 34 1-8 Differential conductance for a single Co atom with varying tip position . . . . . 36 1-9 Differential conductance for a single Ce atom with varying tip position . . . . . 37 1-10 Conductance of a quantum dot for various dot occupancies . . . . . . . . . . . . 39 1-11 Differential conductance for Co atoms . . . . . . . . . . . . . . . . . . . . . . . 45 1-12 Differential conductance for a pair of Ni atoms . . . . . . . . . . . . . . . . . . . 46 1-13 Differential conductance for various Ce configurations . . . . . . . . . . . . . . . 47 1-14 Setup for coupled double quantum dot experiment . . . . . . . . . . . . . . . . . 48 1-15 Coulomb blockade valleys for a DQD . . . . . . . . . . . . . . . . . . . . . . . . 49 1-16 Differential conductance vs. interdot coupling . . . . . . . . . . . . . . . . . . . 50 1-17 Side-coupled DQD displaying two-stage Kondo screening behavior . . . . . . . . 51 1-18 Conductance vs. gate voltage for a side-coupled DQD . . . . . . . . . . . . . . . 52 2-1 Single-impurity Tχ (T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 imp 2-2 Single-impurity A (ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 d 3-1 Wall-clock time vs. N for iterative eigensolution with N = 3000. . . . . . . 79 P keep 3-2 Wall-clock time vs. N for calculation of operator matrix elements . . . . . . . 81 P 4-1 Single-Impurity STM Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4-2 Single-Impurity STM Conductance . . . . . . . . . . . . . . . . . . . . . . . . . 84 4-3 Single-Impurity STM Conductance, t = 0 . . . . . . . . . . . . . . . . . . . . . 85 c 8 4-4 One-Impurity STM Conductance - positive voltages . . . . . . . . . . . . . . . . 86 4-5 One-Impurity STM Conductance - negative voltages . . . . . . . . . . . . . . . 87 4-6 Fit of G(V) with t /t = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 d c 4-7 Fit of G(V) with t /t = 0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 d c 4-8 Two-impurity STM setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4-9 Strength of RKKY interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4-10 Two-impurity magnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . 92 4-11 Two-impurity spectral function . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4-12 Two-impurity conductance, t /t = 0.1, positive voltages . . . . . . . . . . . . . 96 d c 4-13 Two-impurity conductance, t /t = 0.1, negative voltages . . . . . . . . . . . . . 97 d c 4-14 Two-impurity conductance, t /t = 0.4, positive voltages . . . . . . . . . . . . . 98 d c 4-15 Two-impurity conductance, t /t = 0.4, negative voltages . . . . . . . . . . . . . 99 d c 4-16 Fitted two-impurity conductance, positive voltages . . . . . . . . . . . . . . . . 100 4-17 Fitted STM two-impurity conductance, negative voltages . . . . . . . . . . . . . 101 4-18 Differential conductance for various two-impurity systems . . . . . . . . . . . . . 102 5-1 Double quantum dot schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5-2 Dot 1 spectral function for side-coupled DQD with U = 0 . . . . . . . . . . . . 108 2 5-3 Zero-T conductance for side-coupled DQD with U = 0 . . . . . . . . . . . . . . 109 2 5-4 Zero-T A (ω) for side-coupled DQD with U > 0 . . . . . . . . . . . . . . . . . 110 11 2 5-5 Zero-T conductance for side-coupled DQD with U > 0 . . . . . . . . . . . . . . 111 2 5-6 Zero-T conductance for side-coupled DQD with (cid:178) > 0 . . . . . . . . . . . . . . 112 2 5-7 Parallel-dot phase diagram for U = 0 . . . . . . . . . . . . . . . . . . . . . . . . 113 2 5-8 Observation of upper QPT in Tχ vs. T for U = 0 . . . . . . . . . . . . . . . 114 imp 2 5-9 Linear relationship between T and δ(cid:178)+ . . . . . . . . . . . . . . . . . . . . . . 115 K 1 5-10 Zero-T A (ω) vs. ω > 0 for Kondo-phase parallel DQD, U = 0 . . . . . . . . . 116 11 2 5-11 Zero-T A (ω) vs. ω < 0 for Kondo-phase parallel DQD, U = 0 . . . . . . . . . 117 11 2 5-12 Zero-T A (ω) vs. ω > 0 for local-moment-phase parallel DQD, U = 0 . . . . . 118 11 2 9 5-13 Zero-T A (ω) vs. ω < 0 for local-moment-phase parallel DQD, U = 0 . . . . . 119 11 2 5-14 Approximate phase diagram for parallel DQD, U > 0 . . . . . . . . . . . . . . . 120 2 5-15 Critical point (cid:178)+ vs. U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 1c 2 5-16 Scaled (cid:178)+ vs. U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 1c 2 5-17 Traces of Tχ vs. T, U = 10−3 . . . . . . . . . . . . . . . . . . . . . . . . . . 123 imp 2 5-18 Zero-T limit of χ vs. δ(cid:178)+, U > 0 . . . . . . . . . . . . . . . . . . . . . . . . . 124 imp 1 2 5-19 Kondo temperature vs. δ(cid:178)+ for parallel DQD with U > 0 . . . . . . . . . . . . 125 1 2 5-20 Kondo temperature T vs. (cid:178) for parallel DQD without local-moment phase . . 126 K 1 5-21 Zero-T A (ω) vs. ω > 0 for Kondo-phase parallel DQD, U = 10−3 . . . . . . . 127 11 2 5-22 Zero-T conductance G/G vs. (cid:178) for parallel DQD . . . . . . . . . . . . . . . . . 128 0 1 5-23 Zero-T conductance G/G vs. δ(cid:178)+ for parallel DQD . . . . . . . . . . . . . . . . 129 0 1 5-24 Zero-T conductance G/G vs. (cid:178) for parallel DQD with no local-moment phase . 130 0 1 5-25 Zero-T conductance G/G vs. (cid:178) for parallel DQD with (cid:178) = −U /2 . . . . . . . 131 0 2 1 1 5-26 Zero-T conductance G/G vs. (cid:178) for parallel DQD . . . . . . . . . . . . . . . . . 132 0 2 10

Description:
Crawford, Sanjay Rai, Marcelle Bessman, and Marilyn Repsher for their classroom instruction and 1.3.1 Scanning Tunneling Microscopy Studies .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.