9 0 Conductancethroughstronglyinteractingringsinamagneticfield 0 2 ∗ Juli´anRinc´on,A.A.AligiaandK.Hallberg n InstitutoBalseiro,CentroAto´micoBariloche,CNEAandCONICET,8400Bariloche,Argentina a J 3 ] Abstract l e WestudytheconductancethroughfiniteAharonov-Bohmringsofinteractingelectronsweaklycoupledtonon- - r interacting leads at two arbitrary sites. This model can describe an array of quantum dots with a large charging t s energycomparedtotheinterdotoverlap.Asaconsequenceofthespin-chargeseparation,whichoccursinthesehighly t. correlatedsystems,thetransmittanceisshowntopresentpronounceddipsforparticularvaluesofthemagneticflux a piercing the ring. We analyze this effect by numerical and analytical means and show that the zero-temperature m equilibriumconductanceinfactpresentsthesestrikingfeatureswhichcouldbeobservedexperimentally. - d n Keywords: charge-spinseparation,conductancethroughnanoscopicsystems o PACS:75.40.Gb,75.10.Jm,76.60.Es c [ 1 1. Introduction and a spin part for any size of the system. [10] There v have been several experiments reporting indirect in- 8 dications of charge-spin separation [11,12,13], and it 3 Oneofthechallenges of nanotechnology isthepos- could also be potentially observed in systems such as 3 sibility of fabricating new artificial structures with cuprate chains, ladder compounds, [14] and carbon 0 tailored properties. For example, the Kondo effect . was achieved in a system consisting of one quantum nanotubes.[15] 1 Several theoretical approaches tackled this phe- 0 dot connected to leads[1,2,3]; systems of a few QD’s nomenonin theringgeometry. Forexample,thereal- 9 havebeenproposedtheoreticallyasrealizationsofthe time evolution of electronic wave packets in Hubbard 0 two-channel Kondo model [4,5], the ionic Hubbard rings has shown a splitting in the dispersion of the : model, [6] and the double exchange mechanism. [7] v spin and charge densities as a consequence of the dif- Also,thecorrelation-drivenmetal-insulatortransition i X hasbeenstudiedinachainofquantumdots.[8] ferent charge and spin velocities. [16,17] Pseudospin- charge separation has also been studied in quasi-one- r Another interesting phenomenon in strongly corre- a lated systemsiswhat isknownascharge-spin separa- dimensionalquantumgasesoffermionicatoms.[18,19] Other theoretical approaches concern the transmit- tion. It is well known that strong correlations in one tance through Aharonov-Bohm rings modeled by dimensioninvalidatetheFermiliquidconventionalde- Tomonaga-LuttingerliquidorothercorrelatedHamil- scription of electrons. In particular, correlations can toniansliketheHubbardort−J models.[20,21,22,23] leadtothefractionalizationoftheelectronintocharge In these systems, noticeable dips are observed in the and spin degrees of freedom.[9] This separation is an conductanceforfractionalvaluesofthefluxwhichcan asymptotic low-energy property in an infinite chain. be attributed to destructive interference between de- However, exact Bethe ansatz results for the Hubbard generatestatesasweexplainbelow.Wehaverecently model in the limit of infinite Coulomb repulsion U discussed the extension of these results to ladders of show that the wave function factorizes into a charge twolegsasafirststeptohigherdimensions.[24] In this work, we analyze the origin of the dips in ∗ Tel:+54-2944-445170; e-mail:[email protected] thetransmittanceasafunctionofappliedfluxinfinite PreprintsubmittedtoPhysicaB 3January2009 (a) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) 3. Conductance t’ t’ (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) Φ (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) When the ground state of the isolated ring is non- (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)t,J(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) degenerate,andthecouplingt′ betweentheleadsand (b) 1(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) Φ(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)2 (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)M(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) =(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) 3(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1) orpifenrtgahtiesurwreeetcaaakrnd,etbhdeeeGexqrpeureeinlsi’bsserdifuutmnocscteioconondnufdocrotratdnhecereiiasnottlza′etinreodtetrreimmngs- (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) 0(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) tpbhaeetrwttirecaelennwssmiittihetsteaninecarengdyreωaj:d=sG−Ri,j2(tωc)o.s[k6,a2n0d] Fmoormaenntinucmid±enkt, Fig.1.Schematicrepresentationofthesystemsstudiednumer- ically.(a)L=6,(b)L=7.InbothcasesM =3. 4t2sin2k|t˜(ω)|2 T(ω,V ,φ)= , (5) g [ω−ǫ(ω)+teik]2−|t˜2(ω)|2 rings described by the t−J model. We discuss the ˛ ˛ conditions for which the intensity of the lowest-lying whereǫ(ω)=t˛′2GR(ω)andt˜(ω)=t′2GR˛ (ω)repre- 00 0M peakinthezero-temperatureequilibriumconductance sentacorrectiontotheon-siteenergyattheextremes asafunctionofthegatevoltagepresentscharacteristic oftheleadsandaneffectivehoppingbetweenthemre- dipsforcertainfluxvalues.Thesewillbeshowntobe spectively. aconsequenceofspin-chargeseparation. This equation is in fact exact for a non-interacting system,however,itlosesvalidityforanoddnumberof electrons,wherethegroundstateisKramersdegener- ate.Inthiscasethemethodmissescompletelythein- 2. ModelHamiltonian teresting physicsarising from theKondo effect. [6,25] However, the Kondo temperature is small compared ThebasicmodelisdepictedinFig.1.Wehavecon- to the other energy scales of the system and we can sidered a ring of L sites, weakly connected to non- assume safely that theKondoeffect is destroyed bya interactingleadsatsites0andM. smalltemperature.Thisapproachisjustifiedforsmall TheHamiltonianreads: enought′sincethecharacteristicenergyofthisKondo effectdecreasesexponentially. H =H +H +H . (1) ring leads links The conductance is G = (ne2/h)T(µ,V ,φ), where g n=1or2dependingifthespindegeneracy isbroken Thefirsttermdescribestheisolatedring,withon-site ornot,[6]andµistheFermilevel,whichwesetaszero energygivenbyagatevoltageV ,andhoppingsmod- g (half-filled leads). When the gate voltage V is varied ified bythephaseexp(iφ/L) duetothecirculation of g a peak in the conductance is obtained when there is thevectorpotential.Formostoftheresultsofthispa- a degeneracy in the ground state of the ring for two perweusethet−J modeltodescribethering, consecutivenumberofparticles:E (N+1)=E (N), g g H =−eV c† c −t c† c eiφ/L+H.c. whereEg(N)isthegroundstateenergyofHring with ring g iσ iσ i+1σ iσ Nelectrons.Withoutlossofgenerality,weassumethat Xiσ “ ” westart with N +1electrons in theringand applya 1 +J S ·S − . (2) negativegatevoltageinsuchawaythatapeakinthe Xi „ i i+1 4« conductanceisobtainedatacriticalvalueVgcwhenthe numberofelectronsintheringchangesfromN+1to where φ =2πΦ/Φ , /Φ = h/2e is thefluxquantum, 0 0 N electrons. S isthespinoperatoratsiteianddoubleoccupancy i isnotallowedatanysiteofthering.Thesecondterm corresponds to two tight-binding semi-infinite chains fortheleftandrightleads 4. Analyticalandnumericalresults −1 ∞ H =−t a† a −t a† a +H.c. (3) For J = 0 the model is equivalent to the Hubbard leads i−1,σ i,σ i,σ i+1,σ i=X−∞,σ i=X1,σ model with infinite on-site repulsion U, for which the wavefunctioncanbefactorizedintoaspinandacharge ThethirdterminEq.(1)describesthecouplingofthe part,evidencingcharge-spinseparation.[10,22,26]For left(right)leadwithsite0(M)ofthering eachspinstate,thesystemcanbemappedintoaspin- lessmodelwithaneffectivefluxwhichdependsonthe Hlinks=−t′ (a†−1,σc0σ+a†1,σcMσ+H.c.). (4) totalspin.ForasystemofNparticlesonecanconstruct Xσ spin-wave functions with wave vectors ks = 2πns/N, 2 wheretheintegerns characterizesthespinwavefunc- 0.003 tion. The total energy and momentum (in an appro- 0.002 priate gauge) of any state of the ring have simple ex- pressions: M = 1 0.001 M = 2 N = 4 M = 3 E=−2t N cos(k), k = 2πnl+φeff, (6) Ifp 0.0003 l l L Xl=1 0.002 K= k =[2π(n +n )+Nφ]/L, (7) l c s X 0.001 2π N = 5 φ =φ+k =φ+ n , (8) eff s N s 0 0 0.2 0.4 0.6 0.8 1 φ/π where the integers n characterize the charge part of l thewavefunctionandn = n. c l Fig.2.IntensityofthefirstpeakinthetransmittanceIfp,as Thevalues of thefluxφd fPor which dipsor reduced a function of applied magnetic flux, for a ring of 6 sites and conductancesareexpected,correspondtosomepartic- (a)N+1=5and(b)N+1=6electronsinthegroundstate, ularcrossings oftheenergylevelsofN electrons.One three different configurations M = 1, 2 and 3, t′ = 0.3t and J=0.001t. canseethisfromthegeneralformoftheGreen’sfunc- tionsGR(ω)enteringthetransmittance[Eq.(5)]when 0j a particle is destroyed. Using the Lehman’s represen- withninteger.Thesearealsothepositionswherecross- tation,therelevantpartoftheGreen’sfunctionis: ingsinthe(experimentallyaccessible)groundstatefor N particlestakeplace(n′ −n =±1). s s hg|c† |eihe|c |gi To check these predictions we have performed nu- GR0j(ω)= ωj+σ E −E0σ . (9) mericalcalculationsforthetransmittance,obtainedby Xe e g diagonalizing the ring using Davidson’s method [27]. Once the Green’s functions were obtained, they were Noting that the ring has translational symmetry and replaced in Eq. (5), to obtain the transmittance. The namingK thewavevectorofthestate|νi,oneobtains: ν systems studied are represented in Fig. 1. In contrast to previous work, [20,21,22,24] we concentrate on the GR(ω)= e−ij(Ke−Kg)|he|c0σ|gi|2. (10) first peak in the transmittance as the gate voltage is 0j Xe ω+Ee−Eg decreasedsincethisisthefeaturewhichisexperimen- tallyaccessibleatequilibriumandlowtemperatures. At certain flux values, two states of N electrons, In Fig. 2 we show numerical results for a ring with |ei and |e′i, become degenerate. Assuming that the L = 6 sites and N = 4 and 5 particles in the inter- corresponding matrix elements entering Eq. (10) are mediate state for the three non-equivalent configura- nonzero,onlythesetwostates,contributesignificantly tionscorrespondingtoM =1,2and3.Toquantifythe to the Green’s function GR(ω) at the Fermi energy relative intensity of the conductance we integrate the 0j (ω = µ = 0) when Vg (which displaces all Ee rigidly transmittancegiven byEq. (5) overawindow of gate with respect toEg) is tunedin such a way that Ee = voltageVg ofwidth0.002tcenteredaroundthedegen- Ee′ ∼ Eg. Denoting by β = exp[iM(Ke′ −Ke)] the eracy point between the ground state for N +1 and relativephasebetweenthetwointerveningdegenerate N electrons. This corresponds to the intensity of the statesweseethatifβ6=1,thetransmittance,whichis first observablepeak in thetransmittance as thegate proportional to |GR (ω)|2, (Eq. (5)), is reduced near voltage is lowered. As the curve is symmetric under 0M the crossing (note that this results is independent of changeofsign ofφweshowonlytheinterval0≤φ≤ anyspecificmodel). π.For J → 0and N = 4thedipsappear asexpected Wecanpredictthepositionsofthedipsinthetrans- (Eq. (11)) at φ /π = 0.25 and 0.75. For N = 5 the d mittance without having to resort to the calculation dipsshould occur at φ /π = 0.2, 0.6 and 1. However, d of the matrix elements entering the Greens functions near 0.6 the total spin in the ground state for 5 elec- Eq.(10).Thecrossingsofenergylevelsatlowenergies trons changes from S = 1/2 to S = 3/2, which is not take place at φ = −π(ns+n′s)/N.[23] When ns+n′s accessible by destroying an electron in the 6-electron is odd (even) the relative phase β = exp[iL(Ke′ − singletgroundstate.Therefore,thetransmittancevan- Ke)/2]=exp[i(n′s−ns)] =−1(1)andthereis(there ishes for 0.6 < φ ≤ π.Asa consequence, in theinter- is not) a dip in the integrated transmittance. There- valshown there is only one dip present. In this figure fore,thepositionsofthedipsarelocatedat onecanseetheeffectofthedifferentsource-draincon- figurations:thelowestconductanceisachievedforthe φ =π(2n+1)/N, (11) symmetriccase(M =3forL=6)whereβ =−1and d 3 0.003 0.002 N = 1 N = 2 Acknowledgments 0.001 This investigation was sponsored by PIP 5254 of 0 CONICETandPICT2006/483 oftheANPCyT. I 0.002 fp 0.001 N = 3 N = 4 0 References 0.002 0.001 N = 5 N = 6 [1] D.Goldhaber-Gordonetal.,Nature391,156(1998). 0 [2] S. M. Cronenwet, T. H. Oosterkamp, and L. P. 0 0.2 0.4 0.6 0.8 φ0/π 0.2 0.4 0.6 0.8 1 Kouwenhoven,Science281,540(1998). [3] W.G.vanderWiel,etal.,Science289,2105(2000). Fig.3.IntensityofthefirstpeakinthetransmittanceIfp,as [4] Y.OregandD.Goldhaber-Gordon,Phys.Rev.Lett.90, a function of applied magnetic flux, for a ring of 7 sites and 136602(2003). severalfillings.HereM =3,t′=0.3tandJ=0.001t. [5] R.ZˇitkoandJ.Bonˇca,Phys.Rev.B74,224411(2006). [6] A.A.Aligia,K.Hallberg,B.Normand,andA.P.Kampf, both degenerate levels interfere destructively. For the Phys.Rev.Lett.93,076801(2004). other cases the interference is less destructive and a [7] G.B.Martinsetal.,Phys.Rev.Lett.94,026804(2005). lesspronounceddipisobtained. [8] L.P.Kouwenhovenetal.,Phys.Rev.Lett.65,361(1990). Itisalso interestingtoanalyzetheconductancefor [9] T. Giamarchi, Quantum physics in one dimension differentparticlenumberstostudytheevolutionofthe (ClarendonPress,Oxford,2004). dipsas predicted in Eq.(11). This is shown in Fig. 3. [10]M.OgataandH.Shiba,Phys.Rev.B41,2326(1990). Thenumberofparticlesintheintermediatesituation, [11]J.Voit,Rep.Prog.Phys.58,977(1995). N,isshownforeachcase.Hereweseethattheminima [12]C.Kimetal.,Phys.Rev.Lett.77,4054(1996). doinfactoccurforthefluxespredictedbythatrelation very accurately. The abrupt step obtained for N = 2 [13]Q. Si, Phys. Rev. Lett. 78, 1767 (1997); PhysicaC 341, 1519(2000). corresponds,again,toaforbiddentransitiontoalarge totalspinstatefromasingletgroundstateasexplained [14]E.DagottoandT.M.Rice,Science271,618(1996). above. [15]A.DeMartino,R.Egger,K.HallbergandC.A.Balseiro, Phys.Rev.Lett.88,206402(2002) [16]E.A.Jagla,K.Hallberg,andC.A.Balseiro,Phys.Rev.B 47,5849(1993). 5. Conclusions [17]C. Kollath, U. Schollwo¨ck and W. Zwerger, Phys.Rev.Lett.95,176401(2005) [18]A.Recatietal.,Phys.Rev.Lett.90,020401(2002) Wehavepresented resultsforthezero-temperature equilibriumconductancethroughfiniteringsdescribed [19]L. Kecke, H. Grabert, and W. Hausler, Phys. Rev. Lett. 95,176802(2005) bythet−Jmodelthreadedbyamagneticflux,weakly coupledtoconductingleads.Atparticularvaluesofthe [20]E.A.JaglaandC.A.Balseiro,Phys.Rev.Lett.70,639 (1993) flux we find dips or reductions of the transmittance, which are due to negative interferences between de- [21]S. Friederich and V. Meden, Phys. Rev. B 77, 195122 (2008). generate levels. This can be understood by analyzing [22]K. Hallberg, A. A. Aligia, A. Kampf and B. Normand, theextremely interacting case for J = 0, whereexact Phys.Rev.Lett.93,067203(2004). results are available. The position of the dips reflect [23]J. Rinco´n, A. A. Aligia, K. Hallberg, Phys. Rev. B, in theparticularfeaturesofthespectruminthislimit,in press(2008). whichthechargeandspindegreesoffreedomaresep- [24]J.Rinco´n,K.HallbergandA.A.Aligia,Phys.Rev.B78, aratedat allenergies.ForfiniteJ thepositionsofthe 125115(2008) dipschangeandsomeadditionaldipscanalso appear [25]A. M. Lobos and A. A. Aligia, Phys. Rev. Lett. 100, inamannerthatisdifficulttopredictandwhichisnot 016803(2008) yetfullyunderstood. [26]W. Caspers and P. Ilske, Physica A 157, 1033 (1989); The negative interference depends on the source- A.Schadschneider,Phys.Rev.B51,10386(1995). drainconfiguration.Itismoremarkediftheleadsare [27]E.R.Davidson,J.Comput.Phys.17,87(1975);Comput. connectedatanglesnear180degrees.Theseresultsare Phys.Comm.53,49(1989) confirmedbyournumericalcalculations. 4