ebook img

Condensed matter physics I PDF

471 Pages·2002·1.445 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Condensed matter physics I

Condensed Matter Physics I Peter S. Riseborough October 21, 2002 Contents 1 Introduction 9 1.1 The Born-Oppenheimer Approximation . . . . . . . . . . . . . . 9 2 Crystallography 13 3 Structures 13 3.1 Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Crystalline Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 The Direct Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.1 Primitive Unit Cells . . . . . . . . . . . . . . . . . . . . . 19 3.3.2 The Wigner-Seitz Unit Cell . . . . . . . . . . . . . . . . . 19 3.4 Symmetry of Crystals . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.1 Symmetry Groups . . . . . . . . . . . . . . . . . . . . . . 21 3.4.2 Group Multiplication Tables . . . . . . . . . . . . . . . . 22 3.4.3 Point Group Operations . . . . . . . . . . . . . . . . . . . 23 3.4.4 Limitations Imposed by Translational Symmetry . . . . . 24 3.4.5 Point Group Nomenclature . . . . . . . . . . . . . . . . . 24 3.5 Bravais Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.5.1 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.5.2 Cubic Bravais Lattices. . . . . . . . . . . . . . . . . . . . 28 3.5.3 Tetragonal Bravais Lattices. . . . . . . . . . . . . . . . . . 30 3.5.4 Orthorhombic Bravais Lattices. . . . . . . . . . . . . . . . 31 3.5.5 Monoclinic Bravais Lattice. . . . . . . . . . . . . . . . . . 32 3.5.6 Triclinic Bravais Lattice. . . . . . . . . . . . . . . . . . . . 32 3.5.7 Trigonal Bravais Lattice.. . . . . . . . . . . . . . . . . . . 33 3.5.8 Hexagonal Bravais Lattice. . . . . . . . . . . . . . . . . . 33 3.5.9 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.6 Point Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.7 Space Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.8 Crystal Structures with Bases. . . . . . . . . . . . . . . . . . . . 39 3.8.1 Diamond Structure . . . . . . . . . . . . . . . . . . . . . . 39 3.8.2 Exercise 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.8.3 Graphite Structure . . . . . . . . . . . . . . . . . . . . . . 40 1 3.8.4 Exercise 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.8.5 Hexagonal Close-Packed Structure . . . . . . . . . . . . . 41 3.8.6 Exercise 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.8.7 Exercise 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.8.8 Other Close Packed Structures . . . . . . . . . . . . . . . 43 3.8.9 Sodium Chloride Structure . . . . . . . . . . . . . . . . . 45 3.8.10 Cesium Chloride Structure . . . . . . . . . . . . . . . . . 45 3.8.11 Fluorite Structure . . . . . . . . . . . . . . . . . . . . . . 47 3.8.12 The Copper Three Gold Structure . . . . . . . . . . . . . 47 3.8.13 Rutile Structure . . . . . . . . . . . . . . . . . . . . . . . 48 3.8.14 Zinc Blende Structure . . . . . . . . . . . . . . . . . . . . 48 3.8.15 Zincite Structure . . . . . . . . . . . . . . . . . . . . . . . 49 3.8.16 The Perovskite Structure . . . . . . . . . . . . . . . . . . 50 3.8.17 Exercise 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.9 Lattice Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.9.1 Exercise 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.9.2 Exercise 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.10 Quasi-Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4 Structure Determination 56 4.1 X Ray Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.1.1 The Bragg conditions . . . . . . . . . . . . . . . . . . . . 56 4.1.2 The Laue conditions . . . . . . . . . . . . . . . . . . . . . 57 4.1.3 Equivalence of the Bragg and Laue conditions . . . . . . . 59 4.1.4 The Ewald Construction . . . . . . . . . . . . . . . . . . . 60 4.1.5 X-ray Techniques . . . . . . . . . . . . . . . . . . . . . . . 61 4.1.6 Exercise 10 . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.1.7 The Structure and Form Factors . . . . . . . . . . . . . . 62 4.1.8 Exercise 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.9 Exercise 12 . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.10 Exercise 13 . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.1.11 Exercise 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.1.12 Exercise 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.1.13 Exercise 16 . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.1.14 Exercise 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Neutron Diffraction. . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3 Theory of the Differential Scattering Cross-section . . . . . . . . 75 4.3.1 Time Dependent Perturbation Theory . . . . . . . . . . . 76 4.3.2 The Fermi-Golden Rule . . . . . . . . . . . . . . . . . . . 78 4.3.3 The Elastic Scattering Cross-Section . . . . . . . . . . . . 79 4.3.4 The Condition for Coherent Scattering . . . . . . . . . . . 82 4.3.5 Exercise 18 . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.6 Exercise 19 . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3.7 Exercise 20 . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4 Elastic Scattering from Quasi-Crystals . . . . . . . . . . . . . . . 85 4.5 Elastic Scattering from a Fluid . . . . . . . . . . . . . . . . . . . 87 2 5 The Reciprocal Lattice 89 5.0.1 Exercise 21 . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.1 The Reciprocal Lattice as a Dual Lattice. . . . . . . . . . . . . . 90 5.1.1 Exercise 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.2 Examples of Reciprocal Lattices. . . . . . . . . . . . . . . . . . . 93 5.2.1 The Simple Cubic Reciprocal Lattice . . . . . . . . . . . . 93 5.2.2 The Body Centered Cubic Reciprocal Lattice . . . . . . . 94 5.2.3 The Face Centered Cubic Reciprocal Lattice . . . . . . . 94 5.2.4 The Hexagonal Reciprocal Lattice . . . . . . . . . . . . . 95 5.2.5 Exercise 23 . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3 The Brillouin Zones . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3.1 The Simple Cubic Brillouin Zone . . . . . . . . . . . . . . 96 5.3.2 The Body Centered Cubic Brillouin Zone . . . . . . . . . 97 5.3.3 The Face Centered Cubic Brillouin Zone . . . . . . . . . . 97 5.3.4 The Hexagonal Brillouin Zone. . . . . . . . . . . . . . . . 97 6 Electrons 99 7 Electronic States 99 7.1 Many Electron Wave Functions . . . . . . . . . . . . . . . . . . . 100 7.1.1 Exercise 24 . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.2 Bloch’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.4 Plane Wave Expansion of Bloch Functions . . . . . . . . . . . . . 112 7.5 The Bloch Wave Vector . . . . . . . . . . . . . . . . . . . . . . . 114 7.6 The Density of States . . . . . . . . . . . . . . . . . . . . . . . . 116 7.6.1 Exercise 25 . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.7 The Fermi-Surface . . . . . . . . . . . . . . . . . . . . . . . . . . 119 8 Approximate Models 121 8.1 The Nearly Free Electron Model . . . . . . . . . . . . . . . . . . 121 8.1.1 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . 121 8.1.2 Non-Degenerate Perturbation Theory . . . . . . . . . . . 122 8.1.3 Degenerate Perturbation Theory . . . . . . . . . . . . . . 125 8.1.4 Empty Lattice Approximation Band Structure . . . . . . 128 8.1.5 Exercise 26 . . . . . . . . . . . . . . . . . . . . . . . . . . 133 8.1.6 Degeneracies of the Bloch States . . . . . . . . . . . . . . 133 8.1.7 Exercise 27 . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8.1.8 Brillouin Zone Boundaries . . . . . . . . . . . . . . . . . . 142 8.1.9 The Geometric Structure Factor . . . . . . . . . . . . . . 144 8.1.10 Exercise 28 . . . . . . . . . . . . . . . . . . . . . . . . . . 146 8.1.11 Exercise 29 . . . . . . . . . . . . . . . . . . . . . . . . . . 148 8.1.12 Exercise 30 . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8.1.13 Exercise 31 . . . . . . . . . . . . . . . . . . . . . . . . . . 150 8.1.14 Exercise 32 . . . . . . . . . . . . . . . . . . . . . . . . . . 150 8.2 The Pseudo-Potential Method . . . . . . . . . . . . . . . . . . . . 151 3 8.2.1 The Scattering Approach . . . . . . . . . . . . . . . . . . 155 8.2.2 The Ziman-Lloyd Pseudo-potential . . . . . . . . . . . . . 156 8.2.3 Exercise 33 . . . . . . . . . . . . . . . . . . . . . . . . . . 157 8.3 The Tight-Binding Model . . . . . . . . . . . . . . . . . . . . . . 158 8.3.1 Tight-Binding s Band Metal. . . . . . . . . . . . . . . . . 163 8.3.2 Exercise 34 . . . . . . . . . . . . . . . . . . . . . . . . . . 166 8.3.3 Exercise 35 . . . . . . . . . . . . . . . . . . . . . . . . . . 166 8.3.4 Exercise 36 . . . . . . . . . . . . . . . . . . . . . . . . . . 167 8.3.5 Exercise 37 . . . . . . . . . . . . . . . . . . . . . . . . . . 168 8.3.6 Exercise 38 . . . . . . . . . . . . . . . . . . . . . . . . . . 168 8.3.7 Exercise 39 . . . . . . . . . . . . . . . . . . . . . . . . . . 169 8.3.8 Wannier Functions . . . . . . . . . . . . . . . . . . . . . . 169 8.3.9 Exercise 40 . . . . . . . . . . . . . . . . . . . . . . . . . . 171 9 Electron-Electron Interactions 172 9.1 The Landau Fermi Liquid . . . . . . . . . . . . . . . . . . . . . . 172 9.1.1 The Scattering Rate . . . . . . . . . . . . . . . . . . . . . 173 9.1.2 The Quasi-Particle Energy . . . . . . . . . . . . . . . . . 173 9.1.3 Exercise 41 . . . . . . . . . . . . . . . . . . . . . . . . . . 176 9.2 The Hartree-Fock Approximation . . . . . . . . . . . . . . . . . . 176 9.2.1 The Free Electron Gas. . . . . . . . . . . . . . . . . . . . 180 9.2.2 Exercise 42 . . . . . . . . . . . . . . . . . . . . . . . . . . 188 9.3 The Density Functional Method. . . . . . . . . . . . . . . . . . . 188 9.3.1 Hohenberg-Kohn Theorem. . . . . . . . . . . . . . . . . . 189 9.3.2 The Variational Principle . . . . . . . . . . . . . . . . . . 190 9.3.3 The Electrostatic Terms . . . . . . . . . . . . . . . . . . . 192 9.3.4 The Kohn-Sham Equations . . . . . . . . . . . . . . . . . 193 9.3.5 The Local Density Approximation . . . . . . . . . . . . . 195 9.4 Static Screening. . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 9.4.1 The Thomas-Fermi Approximation . . . . . . . . . . . . . 199 9.4.2 Linear Response Theory . . . . . . . . . . . . . . . . . . . 201 9.4.3 Density Functional Response Function . . . . . . . . . . . 204 9.4.4 Exercise 43 . . . . . . . . . . . . . . . . . . . . . . . . . . 205 9.4.5 Exercise 44 . . . . . . . . . . . . . . . . . . . . . . . . . . 206 10 Stability of Structures 207 10.1 Momentum Space Representation . . . . . . . . . . . . . . . . . . 207 10.2 Real Space Representation . . . . . . . . . . . . . . . . . . . . . . 211 11 Metals 215 11.1 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 11.1.1 The Sommerfeld Expansion . . . . . . . . . . . . . . . . . 216 11.1.2 The Specific Heat Capacity . . . . . . . . . . . . . . . . . 218 11.1.3 Exercise 45 . . . . . . . . . . . . . . . . . . . . . . . . . . 221 11.1.4 Exercise 46 . . . . . . . . . . . . . . . . . . . . . . . . . . 221 11.1.5 Pauli Paramagnetism . . . . . . . . . . . . . . . . . . . . 221 4 11.1.6 Exercise 47 . . . . . . . . . . . . . . . . . . . . . . . . . . 224 11.1.7 Exercise 48 . . . . . . . . . . . . . . . . . . . . . . . . . . 224 11.1.8 Landau Diamagnetism . . . . . . . . . . . . . . . . . . . . 224 11.1.9 Quantum Considerations . . . . . . . . . . . . . . . . . . 226 11.1.10The Diamagnetic Susceptibility . . . . . . . . . . . . . . . 227 11.2 Transport Properties . . . . . . . . . . . . . . . . . . . . . . . . . 229 11.2.1 Electrical Conductivity . . . . . . . . . . . . . . . . . . . 229 11.2.2 Scattering by Static Defects . . . . . . . . . . . . . . . . . 229 11.2.3 Exercise 49 . . . . . . . . . . . . . . . . . . . . . . . . . . 236 11.2.4 The Hall Effect and Magneto-resistance. . . . . . . . . . . 237 11.2.5 Multi-band Models . . . . . . . . . . . . . . . . . . . . . . 245 11.2.6 The Quantum Hall Effect . . . . . . . . . . . . . . . . . . 247 11.2.7 Exercise 50 . . . . . . . . . . . . . . . . . . . . . . . . . . 254 11.2.8 The Fractional Quantum Hall Effect . . . . . . . . . . . . 254 11.2.9 Quasi-Particle Excitations . . . . . . . . . . . . . . . . . . 256 11.2.10Skyrmions . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 11.2.11Composite Fermions . . . . . . . . . . . . . . . . . . . . . 267 11.3 Electromagnetic Properties of Metals . . . . . . . . . . . . . . . . 269 11.3.1 The Longitudinal Response . . . . . . . . . . . . . . . . . 271 11.3.2 Electron Scattering Experiments . . . . . . . . . . . . . . 277 11.3.3 Transverse Response . . . . . . . . . . . . . . . . . . . . . 280 11.3.4 Optical Experiments . . . . . . . . . . . . . . . . . . . . . 283 11.3.5 Kramers-Kronig Relation . . . . . . . . . . . . . . . . . . 284 11.3.6 Inter-Band Transitions . . . . . . . . . . . . . . . . . . . . 286 11.3.7 Exercise 51 . . . . . . . . . . . . . . . . . . . . . . . . . . 287 11.3.8 Exercise 52 . . . . . . . . . . . . . . . . . . . . . . . . . . 287 11.4 Measuring the Fermi-Surface . . . . . . . . . . . . . . . . . . . . 288 11.4.1 Semi-Classical Orbits . . . . . . . . . . . . . . . . . . . . 288 11.4.2 de Haas van Alphen Oscillations . . . . . . . . . . . . . . 292 11.4.3 Exercise 53 . . . . . . . . . . . . . . . . . . . . . . . . . . 294 11.4.4 The Lifshitz-Kosevich Formulae . . . . . . . . . . . . . . . 295 11.4.5 Other Fermi-Surface Probes . . . . . . . . . . . . . . . . . 300 11.4.6 Cyclotron Resonances . . . . . . . . . . . . . . . . . . . . 301 12 Insulators 306 12.1 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 309 12.1.1 Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 12.1.2 Intrinsic Semiconductors . . . . . . . . . . . . . . . . . . . 312 12.1.3 Extrinsic Semiconductors . . . . . . . . . . . . . . . . . . 314 12.1.4 Exercise 54 . . . . . . . . . . . . . . . . . . . . . . . . . . 317 12.2 Transport Properties . . . . . . . . . . . . . . . . . . . . . . . . . 318 12.3 Optical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 318 13 Phonons 319 5 14 Harmonic Phonons 319 14.1 Lattice with a Basis . . . . . . . . . . . . . . . . . . . . . . . . . 325 14.2 A Sum Rule for the Dispersion Relations. . . . . . . . . . . . . . 325 14.2.1 Exercise 55 . . . . . . . . . . . . . . . . . . . . . . . . . . 327 14.3 The Nature of the Phonon Modes . . . . . . . . . . . . . . . . . . 327 14.3.1 Exercise 56 . . . . . . . . . . . . . . . . . . . . . . . . . . 329 14.3.2 Exercise 57 . . . . . . . . . . . . . . . . . . . . . . . . . . 329 14.3.3 Exercise 58 . . . . . . . . . . . . . . . . . . . . . . . . . . 329 14.3.4 Exercise 59 . . . . . . . . . . . . . . . . . . . . . . . . . . 330 14.3.5 Exercise 60 . . . . . . . . . . . . . . . . . . . . . . . . . . 330 14.3.6 Exercise 61 . . . . . . . . . . . . . . . . . . . . . . . . . . 331 14.3.7 Exercise 62 . . . . . . . . . . . . . . . . . . . . . . . . . . 332 14.4 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 14.4.1 The Specific Heat . . . . . . . . . . . . . . . . . . . . . . 335 14.4.2 The Einstein Model of a Solid . . . . . . . . . . . . . . . . 336 14.4.3 The Debye Model of a Solid . . . . . . . . . . . . . . . . . 336 14.4.4 Exercise 63 . . . . . . . . . . . . . . . . . . . . . . . . . . 338 14.4.5 Exercise 64 . . . . . . . . . . . . . . . . . . . . . . . . . . 338 14.4.6 Exercise 65 . . . . . . . . . . . . . . . . . . . . . . . . . . 339 14.4.7 Exercise 66 . . . . . . . . . . . . . . . . . . . . . . . . . . 339 14.4.8 Lindemann Theory of Melting. . . . . . . . . . . . . . . . 339 14.4.9 Thermal Expansion . . . . . . . . . . . . . . . . . . . . . 342 14.4.10Thermal Expansion of Metals . . . . . . . . . . . . . . . . 343 14.5 Anharmonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 14.5.1 Exercise 67 . . . . . . . . . . . . . . . . . . . . . . . . . . 344 15 Phonon Measurements 346 15.1 Inelastic Neutron Scattering . . . . . . . . . . . . . . . . . . . . . 346 15.1.1 The Scattering Cross-Section . . . . . . . . . . . . . . . . 347 15.2 The Debye-Waller Factor . . . . . . . . . . . . . . . . . . . . . . 352 15.3 Single Phonon Scattering . . . . . . . . . . . . . . . . . . . . . . 354 15.4 Multi-Phonon Scattering . . . . . . . . . . . . . . . . . . . . . . . 355 15.4.1 Exercise 68 . . . . . . . . . . . . . . . . . . . . . . . . . . 356 15.4.2 Exercise 69 . . . . . . . . . . . . . . . . . . . . . . . . . . 356 15.4.3 Exercise 70 . . . . . . . . . . . . . . . . . . . . . . . . . . 356 15.5 Raman and Brillouin Scattering of Light . . . . . . . . . . . . . . 356 16 Phonons in Metals 359 16.1 Screened Ionic Plasmons . . . . . . . . . . . . . . . . . . . . . . . 360 16.1.1 Kohn Anomalies . . . . . . . . . . . . . . . . . . . . . . . 361 16.2 Dielectric Constant of a Metal. . . . . . . . . . . . . . . . . . . . 361 16.3 The Retarded Electron-Electron Interaction . . . . . . . . . . . . 364 16.4 Phonon Renormalization of Quasi-Particles . . . . . . . . . . . . 365 16.5 Electron-Phonon Interactions . . . . . . . . . . . . . . . . . . . . 367 16.6 Electrical Resistivity due to Phonon Scattering . . . . . . . . . . 368 16.6.1 Umklapp Scattering . . . . . . . . . . . . . . . . . . . . . 373 6 16.6.2 Phonon Drag . . . . . . . . . . . . . . . . . . . . . . . . . 374 17 Phonons in Semiconductors 375 17.1 Resistivity due to Phonon Scattering . . . . . . . . . . . . . . . . 375 17.2 Polarons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 17.3 Indirect Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . 376 18 Impurities and Disorder 378 18.1 Scattering By Impurities . . . . . . . . . . . . . . . . . . . . . . . 381 18.2 Virtual Bound States . . . . . . . . . . . . . . . . . . . . . . . . . 383 18.3 Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 18.4 Coherent Potential Approximation . . . . . . . . . . . . . . . . . 387 18.5 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 18.5.1 Anderson Model of Localization. . . . . . . . . . . . . . . 389 18.5.2 Scaling Theories of Localization. . . . . . . . . . . . . . . 390 19 Magnetic Impurities 393 19.1 Localized Magnetic Impurities in Metals . . . . . . . . . . . . . . 393 19.2 Mean Field Approximation . . . . . . . . . . . . . . . . . . . . . 393 19.2.1 The Atomic Limit . . . . . . . . . . . . . . . . . . . . . . 396 19.3 The Schrieffer-Wolf Transformation . . . . . . . . . . . . . . . . . 396 19.3.1 The Kondo Hamiltonian . . . . . . . . . . . . . . . . . . . 399 19.4 The Resistance Minimum . . . . . . . . . . . . . . . . . . . . . . 400 20 Collective Phenomenon 405 21 Itinerant Magnetism 405 21.1 Stoner Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405 21.1.1 Exercise 71 . . . . . . . . . . . . . . . . . . . . . . . . . . 407 21.1.2 Exercise 72 . . . . . . . . . . . . . . . . . . . . . . . . . . 407 21.2 Linear Response Theory . . . . . . . . . . . . . . . . . . . . . . . 407 21.3 Magnetic Instabilities . . . . . . . . . . . . . . . . . . . . . . . . 409 21.4 Spin Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 21.5 The Heisenberg Model . . . . . . . . . . . . . . . . . . . . . . . . 414 22 Localized Magnetism 415 22.1 Holstein - Primakoff Transformation . . . . . . . . . . . . . . . . 416 22.2 Spin Rotational Invariance. . . . . . . . . . . . . . . . . . . . . . 419 22.2.1 Exercise 73 . . . . . . . . . . . . . . . . . . . . . . . . . . 422 22.3 Anti-ferromagnetic Spinwaves . . . . . . . . . . . . . . . . . . . . 423 22.3.1 Exercise 74 . . . . . . . . . . . . . . . . . . . . . . . . . . 425 23 Spin Glasses 425 23.1 Mean Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 427 23.2 The Sherrington-Kirkpatrick Solution. . . . . . . . . . . . . . . . 428 7 24 Magnetic Neutron Scattering 432 24.1 The Inelastic Scattering Cross-Section . . . . . . . . . . . . . . . 432 24.1.1 The Dipole-Dipole Interaction. . . . . . . . . . . . . . . . 432 24.1.2 The Inelastic Scattering Cross-Section . . . . . . . . . . . 432 24.2 Time Dependent Spin Correlation Functions . . . . . . . . . . . . 436 24.3 The Fluctuation Dissipation Theorem . . . . . . . . . . . . . . . 438 24.4 Magnetic Scattering . . . . . . . . . . . . . . . . . . . . . . . . . 440 24.4.1 Neutron Diffraction . . . . . . . . . . . . . . . . . . . . . 440 24.4.2 Exercise 75 . . . . . . . . . . . . . . . . . . . . . . . . . . 441 24.4.3 Exercise 76 . . . . . . . . . . . . . . . . . . . . . . . . . . 442 24.4.4 Spin Wave Scattering . . . . . . . . . . . . . . . . . . . . 442 24.4.5 Exercise 77 . . . . . . . . . . . . . . . . . . . . . . . . . . 443 24.4.6 Critical Scattering . . . . . . . . . . . . . . . . . . . . . . 443 25 Superconductivity 445 25.1 Experimental Manifestation . . . . . . . . . . . . . . . . . . . . . 445 25.1.1 The London Equations. . . . . . . . . . . . . . . . . . . . 446 25.1.2 Thermodynamics of the Superconducting State . . . . . . 448 25.2 The Cooper Problem . . . . . . . . . . . . . . . . . . . . . . . . . 450 25.3 Pairing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454 25.3.1 The Pairing Interaction . . . . . . . . . . . . . . . . . . . 454 25.3.2 The B.C.S. Variational State . . . . . . . . . . . . . . . . 456 25.3.3 The Gap Equation . . . . . . . . . . . . . . . . . . . . . . 458 25.3.4 The Ground State Energy . . . . . . . . . . . . . . . . . . 459 25.4 Quasi-Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461 25.4.1 Exercise 78 . . . . . . . . . . . . . . . . . . . . . . . . . . 464 25.5 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 464 25.6 Perfect Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . 466 25.7 The Meissner Effect . . . . . . . . . . . . . . . . . . . . . . . . . 468 25.8 Domain Wall Energy . . . . . . . . . . . . . . . . . . . . . . . . . 469 8 1 Introduction CondensedMatterPhysicsisthestudyofmaterialsinSolidandLiquidPhases. Itencompassesthestudyoforderedcrystallinephasesofsolids,aswellasdisor- dered phases such as the amorphous and glassy phases of solids. Furthermore, it also includes materials with short-ranged order such as conventional liquids, andliquidcrystalswhichshowunconventionalorderintermediatebetweenthose of a crystalline solid and a liquid. Condensed matter has the quite remarkable property that, due to the large number of particles involved, the behavior of the materials may be qualitatively distinct from those of the individual con- stituents. The behavior of the incredibly large number of particles is governed by (quantum) statistics which, through the chaotically complicated motion of theparticles,producesnewtypesoforder. Theseemergentphenomenaarebest exemplified in phenomenon such as magnetism or superconductivity where the collective behavior results in transitions to new phases. In surveying the properties of materials it is convenient to separate the properties according to two (usually) disparate time scales. One time scale is a slow time scale which governs the structural dynamics, and a faster time scale that governs the electronic motion. The large difference between the time scales is due to the large ratio of the nuclear masses to the electronic mass, M /m ∼ 103. The long-ranged electromagnetic force binds these two con- n e stituents of different mass into electrically neutral material. The slow moving nuclear masses can be considered to be quasi-static, and are responsible for defining the structure of matter. In this approximation, the fast moving elec- trons equilibrate in the quasi-static potential produced by the nuclei. 1.1 The Born-Oppenheimer Approximation Thedifferenceintherelevanttimescalesforelectronicandnuclearmotionallows onetomaketheBorn-OppenheimerApproximation. Inthisapproximation,the electronicstatesaretreatedasifthenucleiwereatrestatfixedpositions. How- ever, when treating the slow motions of the nuclei, the electrons are considered asadaptinginstantaneouslytothepotentialofthechargednuclei,therebymin- imizing the electronic energies. Thus, the nuclei charges are dressed by a cloud of electrons forming ionic or atomic-like aggregates. A qualitative estimate of the relative energies of nuclear versus electronic motion can be obtained by considering metallic hydrogen. The electronic en- ergies are calculated using only the Bohr model of the hydrogen atom. The equation of motion for an electron of mass m has the form e Z e2 m v2 − = − e (1) a2 a whereZ isthenuclearchargeandaistheradiusoftheatomicorbital. Thestan- 9 dardsemi-classicalquantizationconditionduetoBohrandSommerfeldrestricts the angular momentum to integral values of ¯h m v a = n ¯h (2) e These equations can be combined to find the quantized total electronic energy of the hydrogen atom Z e2 m v2 E = − + e e a 2 Z e2 = − 2 a m Z2 e4 = − e (3) 2 n2 ¯h2 which is a standard result from atomic physics. Note that the kinetic energy term and the electrostatic potential term have similar magnitudes. Nowconsiderthemotionofthenuclei. TheforcesconsistofCoulombforces betweenthenucleiandelectrons,andthequantummechanicalPauliforces. The electrostaticrepulsionsandattractionshavesimilarmagnitudes,sincetheinter- nuclear separations are of the same order as the Bohr radius. In equilibrium, the sum of the forces vanish identically. Furthermore, if an atom is displaced from the equilibrium position by a small distance equal to r, the restoring force is approximately given by the dipole force Z e2 − α r (4) a3 where α is a dimensionless constant. Hence, the equation of motion for the displacement of a nuclei of mass M is n Z e2 d2 r − α r = M (5) a3 n dt2 which shows that the nuclei undergo harmonic oscillations with frequency Z e2 ω2 = α (6) M a3 n The semi-classical quantization condition I dr M v = n ¯h (7) n yields the energy for nuclear motion as E = n ¯h ω N = n me Z2 e4 α12 (cid:18) me (cid:19)12 (8) ¯h2 Mn 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.