Geothermics68(2017)67–85 ContentslistsavailableatScienceDirect Geothermics journal homepage: www.elsevier.com/locate/geothermics FullLengthArticle Conceptual model of the Gülbahc¸e geothermal system, Western Anatolia, Turkey: Based on structural and hydrogeochemical data TaygunUzellia,AlperBabab,∗,GamzeGülMunganb,R.KadirDirika,HasanSözbilirc aHacettepeUniversity,DepartmentofGeologicalEngineering,06800,Ankara,Turkey bI˙zmirInsti tuteofTech nology,Geot he rmalEnerg yResearchan dAppl icationC enter,35430,I˙zmir,Turkey cDokuz EylülUn iv ersity,Earth quakeResea rchand Applicati onC enter,35100 ,I˙zmir, Turkey a r t i c l e i n f o a b s t r a c t Articlehistory: TheGülbahc¸eGeothermalFieldislocatedontheeasternmarginoftheKaraburunPeninsula,about45km Receiv ed20March2016 from thecity ofI˙zmir,we stern An atolia, Tur key .Thest ratigrap hy of thestudya reaisrepre sente db ya AReccceepivteedd i1n6 rMevaisrechd 2fo0r1m7 10 March 2017 Mioc ene volc ano-sedim entary s uccession , includ ing s everal sedim en tary and vo lcan ic units. These u nit s overliethebasementrocksoftheKaraburunPlatformandBornovaFlyschZonewhichconsistofsand- Availableonline22March2017 stones,shalesandcarbonateblocks.TheserockunitsarecutanddeformedbyaseriesofNW-SE-to NE-SW-trendingfaults,extendingfromSıg˘acıkBaytoGülbahc¸eBay.Structuralstudiessuggestthatwhile Keywords: mostofthegeothermalsystemsinwesternAnatoliaarecontrolledbynormalfaults,thegeothermalsys- Geothermal fluid tema tG ülb ahc¸eiscontr olledby as trike-slip dominat eds hearzone, pr eviously name dth eI˙zmir-Balık esir Gülbahc¸efaultzone INseogtoaptieve fl owe r structure oTrfahnysdferor tZhoenrem. Aallloynmg othdeifi faeudlts ezaonwea, taesrs,oacniadtitohnuss otfh aectrievseu fltaiunlgt sneeggmateivnetsfl aocwcoemrmstroudcattuer edeiespt hceircpurilmataiorny Highsalinity controlmechanismforthegeothermalsystem. Hydro geochemica lpr ope rtiesofthefi eldshowthatsurfacetemperatureoffluidrangesfrom30to34◦C. GeothermalfluidsinGülbahc¸ehavehighsalinity(EC>34mS/cm)andlowenthalpy.PiperandSchoeller diagramsindicatethatgeothermalfluidisintheNaClfacies.Chemicalgeothermometerssuggestthat thereserv oirtemp erat ureisaroun d53– 13 6◦ C.T heiso topic data(oxyg en-18,deuterium andtrit ium) suggestthatgeothermalfluidsareformedbylocalrechargeanddeepcirculationofseawater. ©2017ElsevierLtd.Allrightsreserved. 1. Introduction ofMacedonia,Bulgaria,AlbaniaandWestAnatoliaarelocatedinthe AegeanExtensionalProvince(AEP),whichisoneofthemostrapidly Geological framework has been an important focus for inter- extendinganddeformingareasonthecontinenttoday(Robertsand preting and finding suitable locations for geothermal systems Jackson,1991;Bozkurt,2001;BozkurtandMitwede,2001). without any surface manifestation. Stratigraphic sequence, cap DeformationduetotectonismcausesN–Sextensionandforms rock, reservoir rock, permeability and porosity, fluid dynamics, normal faulting with the development of many E–W oriented fault-fracturerelationstoregionaland/orlocalstressregime,and continental basins in the AEP (S¸engör et al., 1985; Yilmaz et al., heatflowinlithospherearerequisiteparameterstodevelopafavor- 2000).Thegrabensystemsandmajorfaultsaccompaniedbyyoung ablegeothermalsystem. volcanismformabundantgeothermalareasintectonically-active Fromtheglobalviewpoint,platetectonicscontrolthethermal westernAnatolia(Bozkurt,2001).Geothermalspringsinwestern conditionsinthecrustandgeothermalsystemsareshapedbylarge- AEProughlyparallelthetrendsofthegraben-boundingfaultsofthe scalemovementsofplates.Likewise,geothermalsystemsinTurkey MenderesMetamorphicCoreComplex(MMCC),youngvolcanism fallwithintheactiveAlpine-HimalayanFoldandThrustBeltwhere andgenerallyhydrothermallyalteredareas(S¸imsek,1997;Mutlu the collision of African and Eurasian plates and also the closure andGülec¸,1998;S¸imseketal.,2002;BabaandÁrmannsson,2006; oftheTethysOceanoccurstoday(Bozkurt,2001).Aspartofthe BabaandSözbilir,2012)(Fig.1(a)). Alpine-HimalayanFoldandThrustBelt,theAegeanSea,Greece,FYR Fig.1showsthegeologicalmapofwesternAnatoliawiththe maingraben-horststructureswhicharelimitedbyamajorstrike- slipshearzoneatthewesternboundaryoftheregionwherethe stud yarea isloc at ed.T hestrike -slipshear zo ne, namely theI˙zm ir- ∗ Correspondingauthor. Balıke sirT ra nsferZon e(I ˙BTZ),prev iously acted asade epcrustal E-mailaddresse s:[email protected],[email protected](A.Baba). http://dx.doi.org/10.1016/j.geothermics.2017.03.003 0375-6505/©2017ElsevierLtd.Allrightsreserved. 68 T.Uzellietal./Geothermics68(2017)67–85 Fig.1. (a)TectonicmapoftheeasternMediterraneanregionshowingmainneotectonicstructuresanddistributionofgeothermalareasofTurkey(compiledfrom;S¸imsek etal.,2002;Yig˘itbas¸etal.,2004;BabaandArmannsson,2006;BabaandSözbilir,2012)(SBT,SouthernBlackSeaThrust;NAFZ,NorthAnatolianFaultZone;NEAFZ,Northeast AnatolianFaultZone;EAFZ,EasternAnatolianFaultZone;WAGS,WesternAnatolianGrabenSystem;DSF,DeadSeaFaultZone;BZS,Bitlis-ZagrosSuture)(b)Simplified tectonicmapofwesternAnatoliawithknowngeothermalfields(afterSözbiliretal.,2011)withthezoneofstrike-slipfaulting. transformfaultzoneduringtheLateCretaceous,whileduringthe TheNE-SW-trendingI˙BTZincludesstrike-slipfaultsthatgen- Neogene stress regimes in the region changed and it was con- erally have N-S, NE-SW and NW-SE orientations. Some of the trolled by transtensional stresses (Okay and Siyako, 1993; Okay strike-slipfaultsformgeothermalsystemsintheregionbetween etal.,1 99 6;Ringetal.,1 999;Söz biliret al., 2008;Sö zbilir etal., Balıkesir a nd I˙zm ir ci ties. The so uthern p ar t of the I˙B TZ, I˙zmir 2011;ÖzkaymakandSözbilir,2008;UzelandSözbilir,2008;Uzel anditssurroundings,containsimportantgeothermalfieldssuchas etal.,2012,2013,2015;Özkaymaketal.,2011).Thetranstensional Balc¸ova,Seferihisar,Dikili,Bergama,Özbek-IlıksuandC¸es¸me,and tectonic regime also controls the deformation of pre-Neogene alsotherearemanyhotwaterspringsonKaraburunPeninsula.The basementrockunits,Miocenevolcano-sedimentaryunitsandQua- studyareaislocatedontheeasternmarginofKaraburunPeninsula ternaryunits(Fig.1(b)). T.Uzellietal./Geothermics68(2017)67–85 69 andisabout45kmfromthecityofI˙zmirinthesouth-westcoast Kocadag˘volcanicscompriselavas,pyroclasticblocksandashflow ofGülbahc¸eBay(Fig.1(b)).TheGülbahc¸eregionhastwoimpor- deposits.Theandesiticlavasarecharacterizedbyplagioclaseand tanthot-waterspringswithgeothermalorigin;Gülbahc¸eandIlıksu brown amphibole phenocrysts in a glassy matrix (Helvacı et al., springs.Ilıksugeothermalspringislocatednorth-eastofGülbahc¸e 2009).TheunitinterfingerswiththeMiocenevolcano-sedimentary Bayandapproximately6kilometersfromthenorthernborderof unitsandwaspreviouslydatedas16.6and17.3Ma(K-Arages)by ourstudyarea.Thesetwogeothermalspringsarebothtectonically Borsietal.(1972)(Fig.2).Intheeastofthestudyarea,Urlavolcanics controlledandhavedirectconnectionwithsea-waterintrusion. were emplaced with fine grained rhyolitic lavas and porphyritic Thisstudypresentstheresultsofamultidisciplinaryapproach domeswithtrachyte-likeporphyriticrhyolitedomes(Kaya,1981; aimedatunderstandingtherelationshipbetweentectonicsetting Helvacıetal.,2009).Theunitcutsandunconformablyoverliesthe andgeothermalsystemsintheregionandtoevaluatehydrogeo- limestones of the Miocene volcano-sedimentary succession. The chemicalfeaturesofgeothermalfluidinthisregion. UrlavolcanicshavebeendatedbyBorsietal.(1972)to11.7and 11.9Ma(K-Arages). HigherinthesequencetheMiocenevolcano-sedimentaryunit 2. Geologicalsetting contains thick-bedded white limestones and brown/gray mud- stone, marl, interlayers and limestones crop out extensively in 2.1. Stratigraphy south-eastern parts of Gülbahc¸e Bay (Kaya, 1981). The Miocene deposits are unconformably overlain by Quaternary deposits; The rock units exposed in the study area are divided into Pleistocene Ballıkaya conglomerate, and Holocene deposits. In two main groups for simplification in the study: basement and Gülbahc¸esub-basin,Pleistoceneconglomerateshavewidespread coverrocks.ThebasementismadeupofTriassic-Jurassicrocksof distributionandthickentowardsBallıkayaHill,whereitexceeds KaraburunPlatformCarbonatesandUpperCretaceoustoPaleocene 40–45m. The unit has clast-supported texture and alternating rocksofBornovaFlyschZone(BFZ).Theunconformably-overlying gravel grains of several different rock types interbedded with cover rocks are Miocene volcano-sedimentary units and Quater- claystone-mudstone-sandstone layers. The facies of the unit is narydeposits.Basementrocksoutcroponthesouth-easternsideof interpreted as channel-fill conglomerate. The unconformably- thestudyareaandareboundedbytheGülbahc¸eFaultZone(GFZ). overlyingHoloceneunitsaregenerallyalluvialfan/plaindeposits, Regionally, cover rocks were deposited in Urla Basin, and were colluvialdepositsnearsteepslopesoffaultscarpsandfan/deltato accompanied by Miocene volcanic units which are the products shallowmarinedepositsalongtheshorelineofGülbahc¸eBay. oftwo-phasevolcanicactivity(Fig.2and3). 2.1.1. Basementrocks:Pre-Mioceneunits Theoldestbasementrockunitsinthestudyareaarecarbon- 2.2. Tectonicframeworkoftheregion atesof theKar aburunPla tform whi ch isal socall edth eKa raburun Beltintheliterature(Erdog˘an,1990;Kozur,1997;Robertsonand Therearecloserelationshipsbetweentectonicframeworkand Pick ett ,200 0).TheKa raburunPl atform isone ofthem ostimpor tant hydrogeo che mical propertiesin localgeo thermal systemssuc has tectonic beltsw est oftheMM CCandth e BFZ .R ock softh eKarabu- Gülbahc¸e.Moresp ecifically,w he reth egeotherma lsystem isco n- runPlatf orma recl ose lyr elatedt oev olut iono ftheT et hya nOcean trolledb y secon darypermea bility, the studyofthe fractur e, joint (Erd og˘an,199 0). andfau ltn etworkisi mportanttou nder stand un kno wnflowp ath- In the study area, Karaburun Platform is represented by two way sinh ydrother m alsystems .T hereforethe geotherm alsy stem forma tion s: Noh utala n and Güve rcinlik Fo rm ations. The latt er is wasi nve stigatedwith structura ldataforb ett erunderstan dingof madeupof Carnian-Rh aetia nooliticlim estoneswith Me galodo n, theg eometryoft hesy stem. and g ree n, yellow to red silts tone, s andstone a nd pi solitic con- T heGülbah c¸e ge othermalfieldislocatedonthewesternmar- glom eratew ithiro na ndb auxite.Als oinsomea reas theform ation gin of Urla basi n , which is a depo si tional e nvi ronm ent bet ween haslightg rayla mina ted dolomite and w hited olomi ticl imestones Kar abu run Platfor m and th e BFZ. Landfo rms in Urla B asin are (Lec hner et al ., 1967; Br inkmann , 196 6; Bri nkmann e t al., 1972; mainlycon trolledby Gül bahc¸ eand Seferihisar Fa ultZo nes(S FZ), C¸akmako g˘lu an d Bilgi n, 2006). Th ese sha llow marin e l ime stones at the western an d eastern m argin s of the b asin, respec tively. h aveawides prea dsurfa ceand subsur facedist ribution inthearea Am ong them,D emir cili-Yag˘c ılar(DYFZ )a ndK us¸c¸ula r-Urla(KUFZ) and a r e gradationa l with the N ohutalan Formation (F ig . 2). The fault zo nes ex tend between Gü lbahc¸e Bay and Sıg˘acık B ay, and Noh utal anFormation isa unifo rmunitwi thlimeston es,do lom itic are p ossibly under the contr ol of str ik e-sli p fau lting of the I˙BTZ limestones andlimest on e withClad ocor opsis sp.fossils(B rinkmann (Fig .3).Due tothe com binatio no fthesefau ltzones, fo urdiffer- etal.,1972) .The formation isLi assic-Malmin age ,gray incolor,500 ent s ma ll su b-b asin s have been for med in Url a Basin ; the se are th ick m and wa s deposite d in shallow m ari ne r eef e nv ironm ent I˙c¸m eler, T urasan, Kus ¸c¸ular and G ülbahc¸e su b-ba sins (F ig. 3). The (C¸akm ak og˘lu and Bilgin,200 6). G ülbahc¸ esub-bas inis l ocat edon thesou th -westcoast ofGü lba hc¸e TheBFZis atec tonicb eltlyingbetweentheMMCCandKarabu- Bay and i s tectonica ll y borde red by approxima tely N -S -trendin g run Pla tfor m . The BFZ , wh ich i s also kn ow n as th e “ Bornova faul tsth at areconsiste ntwithits tra nstensionalori gin.TheN-S- com plex” (Erd og˘an , 199 0), has a defo rmed U ppe r Cr etaceous- trendi ngsu b-b asinisabou t2km w ideand6kmlo ngand con tains Paleocene aged mat rix. The ma tri x contains differe nt blocks of up to 70 0–800m t hi ck Mio c ene volc ano- se dim enta ry u nits and various lit holog ies; Mes ozoi c limest ones, rad iolarites, ultraba sic Ple isto cenecon glo mera tes(Pamu kc¸uetal.,2014). rocks,a ndalteredb asicvolcan icrocks.The BFZisunco nformably TheTura san,Kus¸c¸ulara ndI˙c¸mel er su b-b asinsarealsotectoni- overla inby theMi ocene andQua ternar ycov eru ni ts. callyco ntrolled and b orde redby NW- SE-andN-S -tre ndin gfaults. ThesethreeadjacentbasinscontainrecentalluviumandMiocene 2.1.2. Coverrocks:Mioceneandquaternaryunits volcan o-sed imentary unitsn earthe surface .I˙c¸melera ndG ülbahc¸e Th e Mioc ene v olcano-s edim entary un it is composed of con- sub-basinsaresepara tedb yana rro wridgem adeup of basemen t glomer ates, sand stone and mudstone alte rna tions, follo we d by limestones .Th eridgecou ld p ossibly havef ormed by u pliftingof yellow/whit ethinbedd edan dweather edfresh-wate rlimeston es. basementro cks simila rtoth eformat iono ftheTur asa n,Kus¸c¸u lar Duringdepos ition ,twovo lcani cunitswer eemplaced inthestudy andI˙c¸mele rsub -basins, wh ich aresepara ted by upliftedl imes t one areain theearlyM ioce ne.Inth ewes ternp artofthe st udy area; outcro psof Mioceneun its(Fig .4). 70 T.Uzellietal./Geothermics68(2017)67–85 Fig.2. Stratigraphiccolumnarsectionoftheunitsinthestudyareawithlithologydefinitionsandhydrogeologicalproperties(compiledfromErdog˘anetal.,1990;Filizand Tarcan,1990;C¸akmakog˘luandBilgin,2006;Helvacıetal.,2009andthisstudy). 2.3. Structuralgeology mentsenterGülbahc¸esub-basinnearSög˘ütköyRiverandformthe boundariesofthebasin.Althoughsegmentshavestrike-slipchar- ThedominantstructuraltrendintheGülbahc¸eareaisN-Sand acterinthesouth,theyshowoblique-sliptonormalslipcharacter manyfaultsaremappedaspartsoffaultzonesandindividualseg- wheretheyenterGülbahc¸esub-basininthenorth.TheSög˘ütköy ments in this study. Kinematic studies were carried out at nine fault(Station8),whichtakesitsnamefromSög˘ütköystream,has differentstations.Datawasalsocollectedfromjoints(Station6) approximately N-S strike and steeply dips towards the W, sepa- nearthegeothermalspring(Fig.4).Allofthefaultsandjointsare ratesbasementunitsfromQuaternarydepositsandalsocontrols groupedunderthreeheadingsbasedontheirstrikes;N-S,NE-SW themorphologyofstreamsaroundtheGGF(Fig.4). andNW-SEtrendingfaults. TheotherimportantstructureistheN-Sorientednormalfault segment (Station 1) with 5–6km length. The fault plane can be observed in the Gülbahc¸e sub-basin around the eastern bound- 2.3.1. N-S-trendingfaults aryoftheKocadag˘volcanics.NearBallıkayaHill,itjumpstowest, TheGFZstartsatthesouthwithtwoparallelsegmentsthatcan where talus breccias cover the fault plane and then continues be followed along mountain ranges for nearly 10km. Fault seg- T.Uzellietal./Geothermics68(2017)67–85 71 Fig.3. GeologicalmapofGülbahc¸eandUrlaareawithmaintectonicstructures(SFZ:SeferihisarFaultZone,KUFZ:Kus¸c¸ular-UrlaFaultZone,DYFZ:Demircili-Yag˘cılarFault Zon e,G FZ:Gülbah c¸eFa ul tZone,I˙S B :I˙c¸m eler Sub- basin ,TSB: Turasan Sub-basin, GSB: Gülbahc¸eS ub-ba sin,K SB:Kus ¸c¸ul a rSub-bas in,com piled from; C¸akmakog˘luandB ilgin, 2006;Helvacıetal.,2009;Uzeletal.,2012,2013andthisstudy). 72 T.Uzellietal./Geothermics68(2017)67–85 Fig.4. Detailedgeologicalmapandlower-hemisphereequal-areaprojectionoffaultplanesandjointsetsfrom10differentstations(compiledfrom;FilizandTarcan,1990; C¸akmakog˘luandBilgin,2006;andthiswork). to the north before disappearing below the sea in Gülbahc¸e Bay NohutalanandGüvercinlikformations.Thegeneraltrendofthese (Figs.4and5).Thisstep-overstructureformedapossiblerelay- smallscalefaultsandjoint-setsappeartobeN-Sdirectedbutin rampgeometrywhichisveryimportantforgeothermalfluidsrising local areas detached limestone blocks have distinct jointing and throughgeothermalsystems. deformationpattern. According to magnetotelluric surveys (Pamukc¸u et al., 2014), morphologicalinterpretationsandsatellitephotos,thereisastrong 2.3.2. NE-SW-trendingfaults possibilityoftheexistenceofanotherfaultbetweenBallıkayaand The NE-SW-trending faults are mainly strike-slip faults, with C¸ ıtırlıalan Hills. It is also parallel to known fault segments and means trikeofN30◦Eobs erved ind ifferent partsofthe study area. mappedasaprobablefaultinthisstudy.Inaddition,asseenfrom NorthernsegmentsoftheGFZandtheDYFZmaybeconsideredas Stations 3, 4 and 5; we detected many small E-W striking nor- mal/obli qu es lipn orm alf aultsbetw eenGü lbahc¸ eand I˙c¸melerf aults part of this fault classification. In addition, we mapped two parallel active strike-slip faults (Station 7) extending between C¸ıtırlıalan andaroundBallıkayaHill.Thesefaultsreflecttheextensionalfault- Hill and GGF, as shown in Fig. 4. The observed lengths of these ingrelatedtothetranstensionalstrike-slipregimeintheGülbahc¸e faultsareapproximately1.8kmandtheycutPleistoceneBallıkaya sub-basin. The faults of this set are well exposed around the study conglo me rateandrecent all uviu m( Fig.6 ).F aultshaveN 10−25◦E area.Forexample;thereisanothermajorN-Sstrikingfaultseg- ment loca tedbetwe enI˙c¸m e lerandM alkac¸a dag˘ ıHills.Th atfa ultis strikes and high dip angles with nearly horizontal slicken sided faultplanes.SubsidiaryantitheticRiedelshearfracturesobserved acontinuationoftheDYFZ,cuttinganddisplacingbasementrocks aroundthemainfaultareshownonlowerhemisphereequalarea withright-lateralstrike-slipcharacter(Fig.4).Also,therearesev- projectionwithmainfaultplanedatafromStation7.TheNE-SW eralantitheticandsyntheticfaultsthatcutmainlylimestonesof strike-slipfaultispossiblyresponsibleforsea-waterintrusioninto T.Uzellietal./Geothermics68(2017)67–85 73 Fig.5. Fieldphotostakenfromnormalfaultsegment(Station1)onthecontactofKocadag˘volcanicswithrecenttalus/alluviumdeposits. Gülbahc¸esub-basin,andalsoaffectsthemorphologyandstrength ary between Urla volcanics with Miocene and Quaternary units, ofbarrierunitsaroundtheGGF,wheretheSög˘ütköystreamdis- anotherNW-SE-trendingleft-lateralstrike-slipfaultwasdetected chargesintoGülbahc¸eBay. byanalyzingdrainagepatternanomaliesandsatelliteimages. 2.3.3. NW-SE-trendingfaults 3. Hydrogeologyandhydrogeochemistryofgeothermal TheNW-SE-trendingfaultsegmentsarebasin-boundingstruc- fluid tures o f Turasan and I˙c¸ meler sub-basin s. T he I˙c¸meler faul t, also called the Ilıca fault in previous works (C¸etiner et al., 2000; 3.1. Hydrogeologicalpropertiesofstudyarea C¸akmakog˘luandBilgin,2006),isoneofthefaultsthatboundsthe w esternmar gino fI˙c¸me lerbasi n, cutt ing an ddispl acin gGüverc in- Knowledgeofthestratigraphy,permeabilityandfracturepat- liklimes tones.I˙c ¸mel erfaul thasa norma lfau ltcharacte r;footwall tern of the st ud y ar ea are funda mental facto rs t o model the blockisontheSWsideoffaultplane,thusthenorthernblockslid geothermal system. The hydrogeological properties of the study downrelativetofootwalldevelopinglowrelieftopography.Also area were reviewed based on the above described stratigraphic thefaultplaneinmassivelimestonescouldactasahydrogeolog- unitswiththeirhydrogeologicalrole.Thestudyindicatesthatfaults icalbarrier,withsea-waterintrusionintothegeothermalsystem andfractureshavecreatedpredominantlyN-S,NE-SWandNW-SE possiblylimitedunderthisconditionandthepresentshorelineis orientedaperturesandpathwaysforwatercirculation.Thewater shaped b y I˙c¸me ler fau lt. Se a-water in trus ion can be seen local ly frompre cipitation, surf acerun-off ,str eam-d rainagewat era ndsea in the north-eastern part of Gülbahc¸e sub-basin where the NW- waterinfiltratethroughthisintenselyfracturedsystemandfeed SE stri kingfaultsegm ents in tersectw i thNE-SW strikin gI˙c¸m eler thehy drotherm alsystem . Fau lt.Easte rnbo undaryof theI˙c¸me lersu b-basin isunderc ontrol A lthough not having primary porosity, limestones of the of another NW-SE-trending right lateral strike-slip fault (Station NohutalanandGüvercinlikformationshavekarstfeatures,fissures, 10)withminordipslipcomponent.Inthesamearea,theMiocene faults,jointsetsandopenfracturesthatarethemainfactorscon- lim eston eoutcr ops bet weenI˙c¸mele ra nd Turas ansu b-b asinsare trollin g seco nda ry p ermea bility. Th e fra ctur ing and j ointing lead deformed by four parallel faults with normal fault character as asecondarypermeabilitywithspacinggenerallybetween10and detectedfromblockmovementsoflimestone-marl-tufflayers. 45cm and some variable openings so surface water could easily TheTurasansub-basinisboundedbyNW-SE-trendingnormal infiltratethroughtheseunits(Fig.7(b)).Whenconsideringthesize faultswhichcausedsignificantchangesintopography.However, ofthelimestoneoutcroppingintheregion,discontinuitiescould faultplanescannotbeseendirectlyinthefieldbecauseofcover controltherechargeofhydrothermalfluidsandlimestonescould units,alluviumandsettlements.Forthatreason,air-photos,satel- becomeareservoirforthegeothermalsystem.Actually,thereare liteim ages,dra inag epatternsan d3 -Ddi gitalele vationmod elsof manyka r sticspring ss uch asI˙c¸melers pringw ith200lt /secfl ow theareawereusedfordetectionoffaults.Likewise,atthebound- ratethatcanbeseenaroundthegeothermalfield(Fig.8). 74 T.Uzellietal./Geothermics68(2017)67–85 Fig.6. Fieldphotosofstrike-slipfaultsfromStation7onBallıkayaconglomeratedeposits. Fig.7. FieldphotostakenfromGülbahc¸eGeothermalFielda)FaultplaneofSög˘ütköyfault(Station8)(b)Jointsonlimestoneswithwateremerging(Station6)c)Ancient ruinsofRomanbathnearbyGülbahc¸ehot-spring. T.Uzellietal./Geothermics68(2017)67–85 75 Fig.8. HydrogeologicalmapofGülbahc¸eandsurroundingareawithsamplelocations. However, another basement unit, the Bornova flysch that is underground deformation zones may allow water circulation. composedofsandstones,siltstones,shales,granodiorites,serpen- Accordingtoregionalperspectivesandabsenceofsufficientsub- tinites,anddiabase,hasneitherpermeabilitynorporosity.Despite surfacedata,thisunitisconsideredahydrogeologically-confining, nothavinganyprimaryporosityandpermeability,fracturesand non-aquiferousunit. 76 T.Uzellietal./Geothermics68(2017)67–85 The Miocene volcano-sedimentary succession comprises vol- (inductively coupled plasma mass spectrometer) at ACME Labs canic and lacustrine units. The unit has variable permeability (Canada).Anon-acidifiedsamplewasusedforanionanalyses.Chlo- featur es d ue to litho logy a ltern ation s suc h as cla ystone, sand- rineandH C O − werede termine dvo lume tri callya ndSO 2− bya 3 4 stone,lim esto ne ,tuffand marl.TheMio cene str atacontain many grav imet ricmethodin theI˙zmirIn stituteofTechn olog y(IIT).Als o, layers,lensesofmarlandvolcanictuffswithlowhydrauliccon- SiO wasdeterminedspectrophotometricallyintheIIT.Samplesfor 2 ductivi tyand the yact aslo calconfi ning units betw eenuppe rand determin ationofdeu terium(2H),oxygen-18( 18 O)a nd tritium(3 H) lowerpartsofthesuccession.Theunitcouldnotallowtheriseof analyseswereexaminedatHacettepeUniversity. geothermalfluidsthroughcoverunitsbyseparatingthemfromcool groundwater and sea-water in the geothermal system. Previous 3.2.2. Physicalpropertiesofwaterresources studiesanddrillingsshowthatMiocenelimestoneshavethickness In the study area, geothermal fluids have surface discharge of 250–300 m in this region. However, apart from basement, the temp eratu res in the r ange of 32.5 –33.5◦ C, and cold w aters have Miocene limestones have limited extent near the GGF and gen- temperature val ues betwe en 10.3 and 2 3.6◦ C (Ta ble 1). The erallycropoutandcoverwideareasaroundtheeasterncoastof Gülbahc¸esub-basin,whichhostsageothermalfield,hasthehigh- Gülbahc¸eBay.Inthisstudy,Miocenestrataareconsideredalocally estsurfacetemperatures(P5andP6)withIlıksuhot-spring(P34) aqueous,water-bearing,semi-permeableunit. onthenorthernarea.Theareaisalsocharacterizedbyshallowsea- The volcanic units existing in the study area have similar water and cooler meteoric water intrusion at the intersection of hydrogeological properties because of their lithological properties theSö g˘ütk öyand I˙c¸melerFa ultsan dotherm in orpa rallelfractur es andstructuralframeworks.Primaryporosityandpermeabilityof andfaults.Electricalconductivity(EC)valuesofgeothermalfluid Kocadag˘ volcanics are low because of matrix lithification of agglom- aren early3 7,200((cid:2)S /cm)andcol dwa terhas val uesranging from erates, volcanic breccias and andesite lithology but secondary 145 to381 0((cid:2)S/c m)(Tabl e1). permeability is an important factor for water circulation. These volcanicshavewell-developedconnectedfracturenetworks,faults andverticalcoolingjointsets.Therearemanylow-flowingsprings 3.2.3. Chemicalpropertiesofwaterresources anddrillingupto100–120mwithflowratesaround1–3lt/sec.The The semi-logarithmic Schoeller diagram (Fig. 9) shows that Kocadag˘ volcanics are considered a moderately productive, frac- geothermalfluidsamples(P5,P6andP34)haveasimilarcompo- tured, fis sured aqu ifer in this stud y . Lavas and tuff layers o f the sition and i t can be seen from th e pl ots th at th ei r Sodiu m (Na+) young ervolcan icunit, Ur lavo lcanics ,areim per viou sandc on sid- andC hlori de (Cl− )c oncen tratio nsa rerel ative lyhig herthan other eredashydrogeologicallyconfinedunits.Coolingjointscanbea chemical constituents (Table 2). The composition of geothermal good fa ctorforsecondper meability within theUrl avolca nics ,bu t fluid sam ples is simila r to se awa ter, but with incr eas ed Na+ and close dfractu res andthi ckclayeyfaul tbrecci asca usel owsecond ary K+co ncentrat ion andso me depletion inM g2+a ndSO 2−. TheNa+ 4 permeabilityinlocalareas.Duetosurfaceconditions,volcanicrocks isthemajorcationinthehot-springsofthestudyareawithconcen- areintenselydeformedandalteredsotheybecamemoreconve- trationrangesfrom10,750to12,777mg/l.Also,itcanbeobserved nien tforwat ercirculati on.A saresu lt ofdis continui ties,t heUrla thatma gnesiu m(M g2+)an dc alcium (Ca2+ )hav e high co ncentra- volcan icu nitis considereda m od eratel yp roductive,fractu red ,fis- tions . The chlori de (Cl− ) con centrati on in the ge othe rmal fluids suredaquifersimilartoKocadag˘volcanics. ranges from 19,632 to 23,418mg/l and other two major anions, Re cent all uvium dep osits are exposed around Gülbahc¸e and sulfate (SO 2 −)and bic arbonat e(HC O − ),hav emu chlow ercon- 4 3 I˙c¸melerba sins,the shoreline ofG ülbahc¸e Bayand intopog r aph- centrat ions tha n Cl− . In the geo thermal fl uid, Cl− co ncentr ation ic ally lo w strea m a reas. The un it comp ri ses alluv ial and fluvial ismuchmo reth an19 ,00 0m g/landbrom ine( Br−)concentration sedimentsconsistingofgravel,sandandclaylayers.Alluviumhas rangesfrom2.55to79mg/l,whichishigherthanthatofothercold a thickness of nearly 30m in Gülbahc¸e sub-basin and is thicker waterinthestudyarea. a roundtheI˙ c¸m elersub -ba si n.T hereare m anydugan ddr ille dwells The h igh- flowin gcoldwaterspringformedinfracturedkarstic located on a lluvial deposits a nd th ese wells are ver y impo rtant limesto nesatI˙c¸mele rSpr ing(P 8)has highcon ce ntrations ofNa+ dueto bein gawat ersupply for theUr lareg ion. Recen tdeposits and Cl−, w hich also e merges alon g th e NW -SE-trending I˙ c¸m eler seem h ydrog eo logica lly poro us and gran ular un its. Add itionally, faul t.Thi sindica test hatthehi gherN a+a ndCl−concentratio nval- despi te having good pe rmeabi lity and poro sity, n ear sea-level ueso fthe I˙c¸melerS prin gco uldbe related tosea-waterintru sion areas,sa linitya ndsea -waterintrusi onis animport antis sueforall ink ars ticlim eston esalon gtheI˙ c¸m elerFau lt. Likewise,o thercold water-supplywellslocatedinrecentdeposits. watersourceslocatedinalluviumdepositsneartheGülbahc¸eBay have h igher c oncentra tio ns of Cl− and als o Ca2 + an d Na+. T h ese 3.2. Hydrogeochemicalpropertiesofthestudyarea wells have been affected by sea-water intrusion. Bicarbonate is known as the typical main cation in most cold water samples. 3.2.1. Materialandmethods Conside rin g ob servati on of higher bic arbon ate v alues w ith Ca2+ For the investigation and comparison of hydrogeochemical in cold water samples, it can be clarified that the reservoir for characteristics,threegeothermalsprings(P5,P6andP34)andthirty these samples are similar and water comes from the limestones coldwatersamples(withP-numbers)weremonitoredfrom2009 anddolomitesoftheNohutalanandGüvercinlikformations. to 2014 in the study area (Fig. 8). The concentrations of major InthePiperdiagram,thetotalcationandanionconcentrations ions, some heavy metals and isotopes were determined in the are plotted as percentages of meq/l and it’s very useful to find watersamples.Duringfieldsurveys,somephysicalparametersof detailed information about the concentration of the waters and thege othermal fluid,in clud ingtemp eratu re(◦C),p H,andelect ri- hydroge ochemicalfac iescla ssifi cation.IntheP ipe rdi agrama dja- cal conductivity (EC,(cid:2) S/cm),w eremeasured in-s ituw ith aWTW centandgroupedp lotssh owthatthese wa ter sampl eshaven early Multi340i/SETS.ThepH-meterwascalibratedwithpH4,pH7,and similarcompositions.FollowingthePiper’sdiagram(Fig.10),the pH10buffersolutionsbeforecommencingfieldwork.Inorderto waterplotsareinsidethenon-carbonateandhigh-alkalinitywater determinethevariationinmineralcontentofthewatersamples, area.Allsampleplots(exceptforhotwater)indicatethatthewaters theywerecollectedinunused50,500,and1000mLhard-plastic ofthestudyareahavemixedwatertypewithnoion(cation-anion) bottles.Topreventtheformationofheavymetalcomplexeswith exceedingapercentageof50.Piperdiagramalsoshowsthathot- oxygen,sampleswereacidifiedwithHNO topH2.Acidifiedsam- waterspringsinthestudyarea(P5,P6,P34)canbeclassifiedas 3 pleswereanalyzedformajorandtraceelementswithanICP-MS sodium-chlorideenrichedwaters.
Description: