ebook img

Conceptual model of the Gülbahçe geothermal system, Western Anatolia, Turkey PDF

19 Pages·2017·10.36 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Conceptual model of the Gülbahçe geothermal system, Western Anatolia, Turkey

Geothermics68(2017)67–85 ContentslistsavailableatScienceDirect Geothermics journal homepage: www.elsevier.com/locate/geothermics FullLengthArticle Conceptual model of the Gülbahc¸e geothermal system, Western Anatolia, Turkey: Based on structural and hydrogeochemical data TaygunUzellia,AlperBabab,∗,GamzeGülMunganb,R.KadirDirika,HasanSözbilirc aHacettepeUniversity,DepartmentofGeologicalEngineering,06800,Ankara,Turkey bI˙zmirInsti tuteofTech nology,Geot he rmalEnerg yResearchan dAppl icationC enter,35430,I˙zmir,Turkey cDokuz EylülUn iv ersity,Earth quakeResea rchand Applicati onC enter,35100 ,I˙zmir, Turkey a r t i c l e i n f o a b s t r a c t Articlehistory: TheGülbahc¸eGeothermalFieldislocatedontheeasternmarginoftheKaraburunPeninsula,about45km Receiv ed20March2016 from thecity ofI˙zmir,we stern An atolia, Tur key .Thest ratigrap hy of thestudya reaisrepre sente db ya AReccceepivteedd i1n6 rMevaisrechd 2fo0r1m7 10 March 2017 Mioc ene volc ano-sedim entary s uccession , includ ing s everal sedim en tary and vo lcan ic units. These u nit s overliethebasementrocksoftheKaraburunPlatformandBornovaFlyschZonewhichconsistofsand- Availableonline22March2017 stones,shalesandcarbonateblocks.TheserockunitsarecutanddeformedbyaseriesofNW-SE-to NE-SW-trendingfaults,extendingfromSıg˘acıkBaytoGülbahc¸eBay.Structuralstudiessuggestthatwhile Keywords: mostofthegeothermalsystemsinwesternAnatoliaarecontrolledbynormalfaults,thegeothermalsys- Geothermal fluid tema tG ülb ahc¸eiscontr olledby as trike-slip dominat eds hearzone, pr eviously name dth eI˙zmir-Balık esir Gülbahc¸efaultzone INseogtoaptieve fl owe r structure oTrfahnysdferor tZhoenrem. Aallloynmg othdeifi faeudlts ezaonwea, taesrs,oacniadtitohnuss otfh aectrievseu fltaiunlgt sneeggmateivnetsfl aocwcoemrmstroudcattuer edeiespt hceircpurilmataiorny Highsalinity controlmechanismforthegeothermalsystem. Hydro geochemica lpr ope rtiesofthefi eldshowthatsurfacetemperatureoffluidrangesfrom30to34◦C. GeothermalfluidsinGülbahc¸ehavehighsalinity(EC>34mS/cm)andlowenthalpy.PiperandSchoeller diagramsindicatethatgeothermalfluidisintheNaClfacies.Chemicalgeothermometerssuggestthat thereserv oirtemp erat ureisaroun d53– 13 6◦ C.T heiso topic data(oxyg en-18,deuterium andtrit ium) suggestthatgeothermalfluidsareformedbylocalrechargeanddeepcirculationofseawater. ©2017ElsevierLtd.Allrightsreserved. 1. Introduction ofMacedonia,Bulgaria,AlbaniaandWestAnatoliaarelocatedinthe AegeanExtensionalProvince(AEP),whichisoneofthemostrapidly Geological framework has been an important focus for inter- extendinganddeformingareasonthecontinenttoday(Robertsand preting and finding suitable locations for geothermal systems Jackson,1991;Bozkurt,2001;BozkurtandMitwede,2001). without any surface manifestation. Stratigraphic sequence, cap DeformationduetotectonismcausesN–Sextensionandforms rock, reservoir rock, permeability and porosity, fluid dynamics, normal faulting with the development of many E–W oriented fault-fracturerelationstoregionaland/orlocalstressregime,and continental basins in the AEP (S¸engör et al., 1985; Yilmaz et al., heatflowinlithospherearerequisiteparameterstodevelopafavor- 2000).Thegrabensystemsandmajorfaultsaccompaniedbyyoung ablegeothermalsystem. volcanismformabundantgeothermalareasintectonically-active Fromtheglobalviewpoint,platetectonicscontrolthethermal westernAnatolia(Bozkurt,2001).Geothermalspringsinwestern conditionsinthecrustandgeothermalsystemsareshapedbylarge- AEProughlyparallelthetrendsofthegraben-boundingfaultsofthe scalemovementsofplates.Likewise,geothermalsystemsinTurkey MenderesMetamorphicCoreComplex(MMCC),youngvolcanism fallwithintheactiveAlpine-HimalayanFoldandThrustBeltwhere andgenerallyhydrothermallyalteredareas(S¸imsek,1997;Mutlu the collision of African and Eurasian plates and also the closure andGülec¸,1998;S¸imseketal.,2002;BabaandÁrmannsson,2006; oftheTethysOceanoccurstoday(Bozkurt,2001).Aspartofthe BabaandSözbilir,2012)(Fig.1(a)). Alpine-HimalayanFoldandThrustBelt,theAegeanSea,Greece,FYR Fig.1showsthegeologicalmapofwesternAnatoliawiththe maingraben-horststructureswhicharelimitedbyamajorstrike- slipshearzoneatthewesternboundaryoftheregionwherethe stud yarea isloc at ed.T hestrike -slipshear zo ne, namely theI˙zm ir- ∗ Correspondingauthor. Balıke sirT ra nsferZon e(I ˙BTZ),prev iously acted asade epcrustal E-mailaddresse s:[email protected],[email protected](A.Baba). http://dx.doi.org/10.1016/j.geothermics.2017.03.003 0375-6505/©2017ElsevierLtd.Allrightsreserved. 68 T.Uzellietal./Geothermics68(2017)67–85 Fig.1. (a)TectonicmapoftheeasternMediterraneanregionshowingmainneotectonicstructuresanddistributionofgeothermalareasofTurkey(compiledfrom;S¸imsek etal.,2002;Yig˘itbas¸etal.,2004;BabaandArmannsson,2006;BabaandSözbilir,2012)(SBT,SouthernBlackSeaThrust;NAFZ,NorthAnatolianFaultZone;NEAFZ,Northeast AnatolianFaultZone;EAFZ,EasternAnatolianFaultZone;WAGS,WesternAnatolianGrabenSystem;DSF,DeadSeaFaultZone;BZS,Bitlis-ZagrosSuture)(b)Simplified tectonicmapofwesternAnatoliawithknowngeothermalfields(afterSözbiliretal.,2011)withthezoneofstrike-slipfaulting. transformfaultzoneduringtheLateCretaceous,whileduringthe TheNE-SW-trendingI˙BTZincludesstrike-slipfaultsthatgen- Neogene stress regimes in the region changed and it was con- erally have N-S, NE-SW and NW-SE orientations. Some of the trolled by transtensional stresses (Okay and Siyako, 1993; Okay strike-slipfaultsformgeothermalsystemsintheregionbetween etal.,1 99 6;Ringetal.,1 999;Söz biliret al., 2008;Sö zbilir etal., Balıkesir a nd I˙zm ir ci ties. The so uthern p ar t of the I˙B TZ, I˙zmir 2011;ÖzkaymakandSözbilir,2008;UzelandSözbilir,2008;Uzel anditssurroundings,containsimportantgeothermalfieldssuchas etal.,2012,2013,2015;Özkaymaketal.,2011).Thetranstensional Balc¸ova,Seferihisar,Dikili,Bergama,Özbek-IlıksuandC¸es¸me,and tectonic regime also controls the deformation of pre-Neogene alsotherearemanyhotwaterspringsonKaraburunPeninsula.The basementrockunits,Miocenevolcano-sedimentaryunitsandQua- studyareaislocatedontheeasternmarginofKaraburunPeninsula ternaryunits(Fig.1(b)). T.Uzellietal./Geothermics68(2017)67–85 69 andisabout45kmfromthecityofI˙zmirinthesouth-westcoast Kocadag˘volcanicscompriselavas,pyroclasticblocksandashflow ofGülbahc¸eBay(Fig.1(b)).TheGülbahc¸eregionhastwoimpor- deposits.Theandesiticlavasarecharacterizedbyplagioclaseand tanthot-waterspringswithgeothermalorigin;Gülbahc¸eandIlıksu brown amphibole phenocrysts in a glassy matrix (Helvacı et al., springs.Ilıksugeothermalspringislocatednorth-eastofGülbahc¸e 2009).TheunitinterfingerswiththeMiocenevolcano-sedimentary Bayandapproximately6kilometersfromthenorthernborderof unitsandwaspreviouslydatedas16.6and17.3Ma(K-Arages)by ourstudyarea.Thesetwogeothermalspringsarebothtectonically Borsietal.(1972)(Fig.2).Intheeastofthestudyarea,Urlavolcanics controlledandhavedirectconnectionwithsea-waterintrusion. were emplaced with fine grained rhyolitic lavas and porphyritic Thisstudypresentstheresultsofamultidisciplinaryapproach domeswithtrachyte-likeporphyriticrhyolitedomes(Kaya,1981; aimedatunderstandingtherelationshipbetweentectonicsetting Helvacıetal.,2009).Theunitcutsandunconformablyoverliesthe andgeothermalsystemsintheregionandtoevaluatehydrogeo- limestones of the Miocene volcano-sedimentary succession. The chemicalfeaturesofgeothermalfluidinthisregion. UrlavolcanicshavebeendatedbyBorsietal.(1972)to11.7and 11.9Ma(K-Arages). HigherinthesequencetheMiocenevolcano-sedimentaryunit 2. Geologicalsetting contains thick-bedded white limestones and brown/gray mud- stone, marl, interlayers and limestones crop out extensively in 2.1. Stratigraphy south-eastern parts of Gülbahc¸e Bay (Kaya, 1981). The Miocene deposits are unconformably overlain by Quaternary deposits; The rock units exposed in the study area are divided into Pleistocene Ballıkaya conglomerate, and Holocene deposits. In two main groups for simplification in the study: basement and Gülbahc¸esub-basin,Pleistoceneconglomerateshavewidespread coverrocks.ThebasementismadeupofTriassic-Jurassicrocksof distributionandthickentowardsBallıkayaHill,whereitexceeds KaraburunPlatformCarbonatesandUpperCretaceoustoPaleocene 40–45m. The unit has clast-supported texture and alternating rocksofBornovaFlyschZone(BFZ).Theunconformably-overlying gravel grains of several different rock types interbedded with cover rocks are Miocene volcano-sedimentary units and Quater- claystone-mudstone-sandstone layers. The facies of the unit is narydeposits.Basementrocksoutcroponthesouth-easternsideof interpreted as channel-fill conglomerate. The unconformably- thestudyareaandareboundedbytheGülbahc¸eFaultZone(GFZ). overlyingHoloceneunitsaregenerallyalluvialfan/plaindeposits, Regionally, cover rocks were deposited in Urla Basin, and were colluvialdepositsnearsteepslopesoffaultscarpsandfan/deltato accompanied by Miocene volcanic units which are the products shallowmarinedepositsalongtheshorelineofGülbahc¸eBay. oftwo-phasevolcanicactivity(Fig.2and3). 2.1.1. Basementrocks:Pre-Mioceneunits Theoldestbasementrockunitsinthestudyareaarecarbon- 2.2. Tectonicframeworkoftheregion atesof theKar aburunPla tform whi ch isal socall edth eKa raburun Beltintheliterature(Erdog˘an,1990;Kozur,1997;Robertsonand Therearecloserelationshipsbetweentectonicframeworkand Pick ett ,200 0).TheKa raburunPl atform isone ofthem ostimpor tant hydrogeo che mical propertiesin localgeo thermal systemssuc has tectonic beltsw est oftheMM CCandth e BFZ .R ock softh eKarabu- Gülbahc¸e.Moresp ecifically,w he reth egeotherma lsystem isco n- runPlatf orma recl ose lyr elatedt oev olut iono ftheT et hya nOcean trolledb y secon darypermea bility, the studyofthe fractur e, joint (Erd og˘an,199 0). andfau ltn etworkisi mportanttou nder stand un kno wnflowp ath- In the study area, Karaburun Platform is represented by two way sinh ydrother m alsystems .T hereforethe geotherm alsy stem forma tion s: Noh utala n and Güve rcinlik Fo rm ations. The latt er is wasi nve stigatedwith structura ldataforb ett erunderstan dingof madeupof Carnian-Rh aetia nooliticlim estoneswith Me galodo n, theg eometryoft hesy stem. and g ree n, yellow to red silts tone, s andstone a nd pi solitic con- T heGülbah c¸e ge othermalfieldislocatedonthewesternmar- glom eratew ithiro na ndb auxite.Als oinsomea reas theform ation gin of Urla basi n , which is a depo si tional e nvi ronm ent bet ween haslightg rayla mina ted dolomite and w hited olomi ticl imestones Kar abu run Platfor m and th e BFZ. Landfo rms in Urla B asin are (Lec hner et al ., 1967; Br inkmann , 196 6; Bri nkmann e t al., 1972; mainlycon trolledby Gül bahc¸ eand Seferihisar Fa ultZo nes(S FZ), C¸akmako g˘lu an d Bilgi n, 2006). Th ese sha llow marin e l ime stones at the western an d eastern m argin s of the b asin, respec tively. h aveawides prea dsurfa ceand subsur facedist ribution inthearea Am ong them,D emir cili-Yag˘c ılar(DYFZ )a ndK us¸c¸ula r-Urla(KUFZ) and a r e gradationa l with the N ohutalan Formation (F ig . 2). The fault zo nes ex tend between Gü lbahc¸e Bay and Sıg˘acık B ay, and Noh utal anFormation isa unifo rmunitwi thlimeston es,do lom itic are p ossibly under the contr ol of str ik e-sli p fau lting of the I˙BTZ limestones andlimest on e withClad ocor opsis sp.fossils(B rinkmann (Fig .3).Due tothe com binatio no fthesefau ltzones, fo urdiffer- etal.,1972) .The formation isLi assic-Malmin age ,gray incolor,500 ent s ma ll su b-b asin s have been for med in Url a Basin ; the se are th ick m and wa s deposite d in shallow m ari ne r eef e nv ironm ent I˙c¸m eler, T urasan, Kus ¸c¸ular and G ülbahc¸e su b-ba sins (F ig. 3). The (C¸akm ak og˘lu and Bilgin,200 6). G ülbahc¸ esub-bas inis l ocat edon thesou th -westcoast ofGü lba hc¸e TheBFZis atec tonicb eltlyingbetweentheMMCCandKarabu- Bay and i s tectonica ll y borde red by approxima tely N -S -trendin g run Pla tfor m . The BFZ , wh ich i s also kn ow n as th e “ Bornova faul tsth at areconsiste ntwithits tra nstensionalori gin.TheN-S- com plex” (Erd og˘an , 199 0), has a defo rmed U ppe r Cr etaceous- trendi ngsu b-b asinisabou t2km w ideand6kmlo ngand con tains Paleocene aged mat rix. The ma tri x contains differe nt blocks of up to 70 0–800m t hi ck Mio c ene volc ano- se dim enta ry u nits and various lit holog ies; Mes ozoi c limest ones, rad iolarites, ultraba sic Ple isto cenecon glo mera tes(Pamu kc¸uetal.,2014). rocks,a ndalteredb asicvolcan icrocks.The BFZisunco nformably TheTura san,Kus¸c¸ulara ndI˙c¸mel er su b-b asinsarealsotectoni- overla inby theMi ocene andQua ternar ycov eru ni ts. callyco ntrolled and b orde redby NW- SE-andN-S -tre ndin gfaults. ThesethreeadjacentbasinscontainrecentalluviumandMiocene 2.1.2. Coverrocks:Mioceneandquaternaryunits volcan o-sed imentary unitsn earthe surface .I˙c¸melera ndG ülbahc¸e Th e Mioc ene v olcano-s edim entary un it is composed of con- sub-basinsaresepara tedb yana rro wridgem adeup of basemen t glomer ates, sand stone and mudstone alte rna tions, follo we d by limestones .Th eridgecou ld p ossibly havef ormed by u pliftingof yellow/whit ethinbedd edan dweather edfresh-wate rlimeston es. basementro cks simila rtoth eformat iono ftheTur asa n,Kus¸c¸u lar Duringdepos ition ,twovo lcani cunitswer eemplaced inthestudy andI˙c¸mele rsub -basins, wh ich aresepara ted by upliftedl imes t one areain theearlyM ioce ne.Inth ewes ternp artofthe st udy area; outcro psof Mioceneun its(Fig .4). 70 T.Uzellietal./Geothermics68(2017)67–85 Fig.2. Stratigraphiccolumnarsectionoftheunitsinthestudyareawithlithologydefinitionsandhydrogeologicalproperties(compiledfromErdog˘anetal.,1990;Filizand Tarcan,1990;C¸akmakog˘luandBilgin,2006;Helvacıetal.,2009andthisstudy). 2.3. Structuralgeology mentsenterGülbahc¸esub-basinnearSög˘ütköyRiverandformthe boundariesofthebasin.Althoughsegmentshavestrike-slipchar- ThedominantstructuraltrendintheGülbahc¸eareaisN-Sand acterinthesouth,theyshowoblique-sliptonormalslipcharacter manyfaultsaremappedaspartsoffaultzonesandindividualseg- wheretheyenterGülbahc¸esub-basininthenorth.TheSög˘ütköy ments in this study. Kinematic studies were carried out at nine fault(Station8),whichtakesitsnamefromSög˘ütköystream,has differentstations.Datawasalsocollectedfromjoints(Station6) approximately N-S strike and steeply dips towards the W, sepa- nearthegeothermalspring(Fig.4).Allofthefaultsandjointsare ratesbasementunitsfromQuaternarydepositsandalsocontrols groupedunderthreeheadingsbasedontheirstrikes;N-S,NE-SW themorphologyofstreamsaroundtheGGF(Fig.4). andNW-SEtrendingfaults. TheotherimportantstructureistheN-Sorientednormalfault segment (Station 1) with 5–6km length. The fault plane can be observed in the Gülbahc¸e sub-basin around the eastern bound- 2.3.1. N-S-trendingfaults aryoftheKocadag˘volcanics.NearBallıkayaHill,itjumpstowest, TheGFZstartsatthesouthwithtwoparallelsegmentsthatcan where talus breccias cover the fault plane and then continues be followed along mountain ranges for nearly 10km. Fault seg- T.Uzellietal./Geothermics68(2017)67–85 71 Fig.3. GeologicalmapofGülbahc¸eandUrlaareawithmaintectonicstructures(SFZ:SeferihisarFaultZone,KUFZ:Kus¸c¸ular-UrlaFaultZone,DYFZ:Demircili-Yag˘cılarFault Zon e,G FZ:Gülbah c¸eFa ul tZone,I˙S B :I˙c¸m eler Sub- basin ,TSB: Turasan Sub-basin, GSB: Gülbahc¸eS ub-ba sin,K SB:Kus ¸c¸ul a rSub-bas in,com piled from; C¸akmakog˘luandB ilgin, 2006;Helvacıetal.,2009;Uzeletal.,2012,2013andthisstudy). 72 T.Uzellietal./Geothermics68(2017)67–85 Fig.4. Detailedgeologicalmapandlower-hemisphereequal-areaprojectionoffaultplanesandjointsetsfrom10differentstations(compiledfrom;FilizandTarcan,1990; C¸akmakog˘luandBilgin,2006;andthiswork). to the north before disappearing below the sea in Gülbahc¸e Bay NohutalanandGüvercinlikformations.Thegeneraltrendofthese (Figs.4and5).Thisstep-overstructureformedapossiblerelay- smallscalefaultsandjoint-setsappeartobeN-Sdirectedbutin rampgeometrywhichisveryimportantforgeothermalfluidsrising local areas detached limestone blocks have distinct jointing and throughgeothermalsystems. deformationpattern. According to magnetotelluric surveys (Pamukc¸u et al., 2014), morphologicalinterpretationsandsatellitephotos,thereisastrong 2.3.2. NE-SW-trendingfaults possibilityoftheexistenceofanotherfaultbetweenBallıkayaand The NE-SW-trending faults are mainly strike-slip faults, with C¸ ıtırlıalan Hills. It is also parallel to known fault segments and means trikeofN30◦Eobs erved ind ifferent partsofthe study area. mappedasaprobablefaultinthisstudy.Inaddition,asseenfrom NorthernsegmentsoftheGFZandtheDYFZmaybeconsideredas Stations 3, 4 and 5; we detected many small E-W striking nor- mal/obli qu es lipn orm alf aultsbetw eenGü lbahc¸ eand I˙c¸melerf aults part of this fault classification. In addition, we mapped two parallel active strike-slip faults (Station 7) extending between C¸ıtırlıalan andaroundBallıkayaHill.Thesefaultsreflecttheextensionalfault- Hill and GGF, as shown in Fig. 4. The observed lengths of these ingrelatedtothetranstensionalstrike-slipregimeintheGülbahc¸e faultsareapproximately1.8kmandtheycutPleistoceneBallıkaya sub-basin. The faults of this set are well exposed around the study conglo me rateandrecent all uviu m( Fig.6 ).F aultshaveN 10−25◦E area.Forexample;thereisanothermajorN-Sstrikingfaultseg- ment loca tedbetwe enI˙c¸m e lerandM alkac¸a dag˘ ıHills.Th atfa ultis strikes and high dip angles with nearly horizontal slicken sided faultplanes.SubsidiaryantitheticRiedelshearfracturesobserved acontinuationoftheDYFZ,cuttinganddisplacingbasementrocks aroundthemainfaultareshownonlowerhemisphereequalarea withright-lateralstrike-slipcharacter(Fig.4).Also,therearesev- projectionwithmainfaultplanedatafromStation7.TheNE-SW eralantitheticandsyntheticfaultsthatcutmainlylimestonesof strike-slipfaultispossiblyresponsibleforsea-waterintrusioninto T.Uzellietal./Geothermics68(2017)67–85 73 Fig.5. Fieldphotostakenfromnormalfaultsegment(Station1)onthecontactofKocadag˘volcanicswithrecenttalus/alluviumdeposits. Gülbahc¸esub-basin,andalsoaffectsthemorphologyandstrength ary between Urla volcanics with Miocene and Quaternary units, ofbarrierunitsaroundtheGGF,wheretheSög˘ütköystreamdis- anotherNW-SE-trendingleft-lateralstrike-slipfaultwasdetected chargesintoGülbahc¸eBay. byanalyzingdrainagepatternanomaliesandsatelliteimages. 2.3.3. NW-SE-trendingfaults 3. Hydrogeologyandhydrogeochemistryofgeothermal TheNW-SE-trendingfaultsegmentsarebasin-boundingstruc- fluid tures o f Turasan and I˙c¸ meler sub-basin s. T he I˙c¸meler faul t, also called the Ilıca fault in previous works (C¸etiner et al., 2000; 3.1. Hydrogeologicalpropertiesofstudyarea C¸akmakog˘luandBilgin,2006),isoneofthefaultsthatboundsthe w esternmar gino fI˙c¸me lerbasi n, cutt ing an ddispl acin gGüverc in- Knowledgeofthestratigraphy,permeabilityandfracturepat- liklimes tones.I˙c ¸mel erfaul thasa norma lfau ltcharacte r;footwall tern of the st ud y ar ea are funda mental facto rs t o model the blockisontheSWsideoffaultplane,thusthenorthernblockslid geothermal system. The hydrogeological properties of the study downrelativetofootwalldevelopinglowrelieftopography.Also area were reviewed based on the above described stratigraphic thefaultplaneinmassivelimestonescouldactasahydrogeolog- unitswiththeirhydrogeologicalrole.Thestudyindicatesthatfaults icalbarrier,withsea-waterintrusionintothegeothermalsystem andfractureshavecreatedpredominantlyN-S,NE-SWandNW-SE possiblylimitedunderthisconditionandthepresentshorelineis orientedaperturesandpathwaysforwatercirculation.Thewater shaped b y I˙c¸me ler fau lt. Se a-water in trus ion can be seen local ly frompre cipitation, surf acerun-off ,str eam-d rainagewat era ndsea in the north-eastern part of Gülbahc¸e sub-basin where the NW- waterinfiltratethroughthisintenselyfracturedsystemandfeed SE stri kingfaultsegm ents in tersectw i thNE-SW strikin gI˙c¸m eler thehy drotherm alsystem . Fau lt.Easte rnbo undaryof theI˙c¸me lersu b-basin isunderc ontrol A lthough not having primary porosity, limestones of the of another NW-SE-trending right lateral strike-slip fault (Station NohutalanandGüvercinlikformationshavekarstfeatures,fissures, 10)withminordipslipcomponent.Inthesamearea,theMiocene faults,jointsetsandopenfracturesthatarethemainfactorscon- lim eston eoutcr ops bet weenI˙c¸mele ra nd Turas ansu b-b asinsare trollin g seco nda ry p ermea bility. Th e fra ctur ing and j ointing lead deformed by four parallel faults with normal fault character as asecondarypermeabilitywithspacinggenerallybetween10and detectedfromblockmovementsoflimestone-marl-tufflayers. 45cm and some variable openings so surface water could easily TheTurasansub-basinisboundedbyNW-SE-trendingnormal infiltratethroughtheseunits(Fig.7(b)).Whenconsideringthesize faultswhichcausedsignificantchangesintopography.However, ofthelimestoneoutcroppingintheregion,discontinuitiescould faultplanescannotbeseendirectlyinthefieldbecauseofcover controltherechargeofhydrothermalfluidsandlimestonescould units,alluviumandsettlements.Forthatreason,air-photos,satel- becomeareservoirforthegeothermalsystem.Actually,thereare liteim ages,dra inag epatternsan d3 -Ddi gitalele vationmod elsof manyka r sticspring ss uch asI˙c¸melers pringw ith200lt /secfl ow theareawereusedfordetectionoffaults.Likewise,atthebound- ratethatcanbeseenaroundthegeothermalfield(Fig.8). 74 T.Uzellietal./Geothermics68(2017)67–85 Fig.6. Fieldphotosofstrike-slipfaultsfromStation7onBallıkayaconglomeratedeposits. Fig.7. FieldphotostakenfromGülbahc¸eGeothermalFielda)FaultplaneofSög˘ütköyfault(Station8)(b)Jointsonlimestoneswithwateremerging(Station6)c)Ancient ruinsofRomanbathnearbyGülbahc¸ehot-spring. T.Uzellietal./Geothermics68(2017)67–85 75 Fig.8. HydrogeologicalmapofGülbahc¸eandsurroundingareawithsamplelocations. However, another basement unit, the Bornova flysch that is underground deformation zones may allow water circulation. composedofsandstones,siltstones,shales,granodiorites,serpen- Accordingtoregionalperspectivesandabsenceofsufficientsub- tinites,anddiabase,hasneitherpermeabilitynorporosity.Despite surfacedata,thisunitisconsideredahydrogeologically-confining, nothavinganyprimaryporosityandpermeability,fracturesand non-aquiferousunit. 76 T.Uzellietal./Geothermics68(2017)67–85 The Miocene volcano-sedimentary succession comprises vol- (inductively coupled plasma mass spectrometer) at ACME Labs canic and lacustrine units. The unit has variable permeability (Canada).Anon-acidifiedsamplewasusedforanionanalyses.Chlo- featur es d ue to litho logy a ltern ation s suc h as cla ystone, sand- rineandH C O − werede termine dvo lume tri callya ndSO 2− bya 3 4 stone,lim esto ne ,tuffand marl.TheMio cene str atacontain many grav imet ricmethodin theI˙zmirIn stituteofTechn olog y(IIT).Als o, layers,lensesofmarlandvolcanictuffswithlowhydrauliccon- SiO wasdeterminedspectrophotometricallyintheIIT.Samplesfor 2 ductivi tyand the yact aslo calconfi ning units betw eenuppe rand determin ationofdeu terium(2H),oxygen-18( 18 O)a nd tritium(3 H) lowerpartsofthesuccession.Theunitcouldnotallowtheriseof analyseswereexaminedatHacettepeUniversity. geothermalfluidsthroughcoverunitsbyseparatingthemfromcool groundwater and sea-water in the geothermal system. Previous 3.2.2. Physicalpropertiesofwaterresources studiesanddrillingsshowthatMiocenelimestoneshavethickness In the study area, geothermal fluids have surface discharge of 250–300 m in this region. However, apart from basement, the temp eratu res in the r ange of 32.5 –33.5◦ C, and cold w aters have Miocene limestones have limited extent near the GGF and gen- temperature val ues betwe en 10.3 and 2 3.6◦ C (Ta ble 1). The erallycropoutandcoverwideareasaroundtheeasterncoastof Gülbahc¸esub-basin,whichhostsageothermalfield,hasthehigh- Gülbahc¸eBay.Inthisstudy,Miocenestrataareconsideredalocally estsurfacetemperatures(P5andP6)withIlıksuhot-spring(P34) aqueous,water-bearing,semi-permeableunit. onthenorthernarea.Theareaisalsocharacterizedbyshallowsea- The volcanic units existing in the study area have similar water and cooler meteoric water intrusion at the intersection of hydrogeological properties because of their lithological properties theSö g˘ütk öyand I˙c¸melerFa ultsan dotherm in orpa rallelfractur es andstructuralframeworks.Primaryporosityandpermeabilityof andfaults.Electricalconductivity(EC)valuesofgeothermalfluid Kocadag˘ volcanics are low because of matrix lithification of agglom- aren early3 7,200((cid:2)S /cm)andcol dwa terhas val uesranging from erates, volcanic breccias and andesite lithology but secondary 145 to381 0((cid:2)S/c m)(Tabl e1). permeability is an important factor for water circulation. These volcanicshavewell-developedconnectedfracturenetworks,faults andverticalcoolingjointsets.Therearemanylow-flowingsprings 3.2.3. Chemicalpropertiesofwaterresources anddrillingupto100–120mwithflowratesaround1–3lt/sec.The The semi-logarithmic Schoeller diagram (Fig. 9) shows that Kocadag˘ volcanics are considered a moderately productive, frac- geothermalfluidsamples(P5,P6andP34)haveasimilarcompo- tured, fis sured aqu ifer in this stud y . Lavas and tuff layers o f the sition and i t can be seen from th e pl ots th at th ei r Sodiu m (Na+) young ervolcan icunit, Ur lavo lcanics ,areim per viou sandc on sid- andC hlori de (Cl− )c oncen tratio nsa rerel ative lyhig herthan other eredashydrogeologicallyconfinedunits.Coolingjointscanbea chemical constituents (Table 2). The composition of geothermal good fa ctorforsecondper meability within theUrl avolca nics ,bu t fluid sam ples is simila r to se awa ter, but with incr eas ed Na+ and close dfractu res andthi ckclayeyfaul tbrecci asca usel owsecond ary K+co ncentrat ion andso me depletion inM g2+a ndSO 2−. TheNa+ 4 permeabilityinlocalareas.Duetosurfaceconditions,volcanicrocks isthemajorcationinthehot-springsofthestudyareawithconcen- areintenselydeformedandalteredsotheybecamemoreconve- trationrangesfrom10,750to12,777mg/l.Also,itcanbeobserved nien tforwat ercirculati on.A saresu lt ofdis continui ties,t heUrla thatma gnesiu m(M g2+)an dc alcium (Ca2+ )hav e high co ncentra- volcan icu nitis considereda m od eratel yp roductive,fractu red ,fis- tions . The chlori de (Cl− ) con centrati on in the ge othe rmal fluids suredaquifersimilartoKocadag˘volcanics. ranges from 19,632 to 23,418mg/l and other two major anions, Re cent all uvium dep osits are exposed around Gülbahc¸e and sulfate (SO 2 −)and bic arbonat e(HC O − ),hav emu chlow ercon- 4 3 I˙c¸melerba sins,the shoreline ofG ülbahc¸e Bayand intopog r aph- centrat ions tha n Cl− . In the geo thermal fl uid, Cl− co ncentr ation ic ally lo w strea m a reas. The un it comp ri ses alluv ial and fluvial ismuchmo reth an19 ,00 0m g/landbrom ine( Br−)concentration sedimentsconsistingofgravel,sandandclaylayers.Alluviumhas rangesfrom2.55to79mg/l,whichishigherthanthatofothercold a thickness of nearly 30m in Gülbahc¸e sub-basin and is thicker waterinthestudyarea. a roundtheI˙ c¸m elersub -ba si n.T hereare m anydugan ddr ille dwells The h igh- flowin gcoldwaterspringformedinfracturedkarstic located on a lluvial deposits a nd th ese wells are ver y impo rtant limesto nesatI˙c¸mele rSpr ing(P 8)has highcon ce ntrations ofNa+ dueto bein gawat ersupply for theUr lareg ion. Recen tdeposits and Cl−, w hich also e merges alon g th e NW -SE-trending I˙ c¸m eler seem h ydrog eo logica lly poro us and gran ular un its. Add itionally, faul t.Thi sindica test hatthehi gherN a+a ndCl−concentratio nval- despi te having good pe rmeabi lity and poro sity, n ear sea-level ueso fthe I˙c¸melerS prin gco uldbe related tosea-waterintru sion areas,sa linitya ndsea -waterintrusi onis animport antis sueforall ink ars ticlim eston esalon gtheI˙ c¸m elerFau lt. Likewise,o thercold water-supplywellslocatedinrecentdeposits. watersourceslocatedinalluviumdepositsneartheGülbahc¸eBay have h igher c oncentra tio ns of Cl− and als o Ca2 + an d Na+. T h ese 3.2. Hydrogeochemicalpropertiesofthestudyarea wells have been affected by sea-water intrusion. Bicarbonate is known as the typical main cation in most cold water samples. 3.2.1. Materialandmethods Conside rin g ob servati on of higher bic arbon ate v alues w ith Ca2+ For the investigation and comparison of hydrogeochemical in cold water samples, it can be clarified that the reservoir for characteristics,threegeothermalsprings(P5,P6andP34)andthirty these samples are similar and water comes from the limestones coldwatersamples(withP-numbers)weremonitoredfrom2009 anddolomitesoftheNohutalanandGüvercinlikformations. to 2014 in the study area (Fig. 8). The concentrations of major InthePiperdiagram,thetotalcationandanionconcentrations ions, some heavy metals and isotopes were determined in the are plotted as percentages of meq/l and it’s very useful to find watersamples.Duringfieldsurveys,somephysicalparametersof detailed information about the concentration of the waters and thege othermal fluid,in clud ingtemp eratu re(◦C),p H,andelect ri- hydroge ochemicalfac iescla ssifi cation.IntheP ipe rdi agrama dja- cal conductivity (EC,(cid:2) S/cm),w eremeasured in-s ituw ith aWTW centandgroupedp lotssh owthatthese wa ter sampl eshaven early Multi340i/SETS.ThepH-meterwascalibratedwithpH4,pH7,and similarcompositions.FollowingthePiper’sdiagram(Fig.10),the pH10buffersolutionsbeforecommencingfieldwork.Inorderto waterplotsareinsidethenon-carbonateandhigh-alkalinitywater determinethevariationinmineralcontentofthewatersamples, area.Allsampleplots(exceptforhotwater)indicatethatthewaters theywerecollectedinunused50,500,and1000mLhard-plastic ofthestudyareahavemixedwatertypewithnoion(cation-anion) bottles.Topreventtheformationofheavymetalcomplexeswith exceedingapercentageof50.Piperdiagramalsoshowsthathot- oxygen,sampleswereacidifiedwithHNO topH2.Acidifiedsam- waterspringsinthestudyarea(P5,P6,P34)canbeclassifiedas 3 pleswereanalyzedformajorandtraceelementswithanICP-MS sodium-chlorideenrichedwaters.

Description:
overlie the basement rocks of the Karaburun Platform and Bornova Flysch Zone which consist of sand- stones, shales and carbonate blocks. These rock units are cut and deformed by a series of NW-SE- to. NE-SW-trending faults, extending from Sı˘gacık Bay to Gülbahçe Bay. Structural studies sugges
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.