ebook img

Concepts of Physics Solution Manual Volume 2 PDF

228 Pages·2020·4.576 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Concepts of Physics Solution Manual Volume 2

CHAPTER – 23 HEAT AND TEMPERATURE EXERCISES 1. Ice point = 20° (L ) L = 32° 0 1 Steam point = 80° (L ) 100 L L 3220 T = 1 0 100 = 100 = 20°C L L 8020 100 0 2. P = 1.500 × 104Pa tr P = 2.050 × 104Pa We know, For constant volume gas Thermometer P 2.050104 T = 273.16K = 273.16 = 373.31 P 1.500104 tr 3. Pressure Measured at M.P = 2.2 × Pressure at Triple Point P 2.2P T = 273.16 = tr 273.16 = 600.952 K 601 K P P tr tr 4. P = 40 × 103Pa, P = ? tr P T = 100°C = 373 K, T = 273.16K P tr TP 37349103 P = tr = = 54620 Pa = 5.42 × 103pa ≈ 55 K Pa 273.16 273.16 5. P = 70 K Pa, P = ? 1 2 T = 273 K, T = 373K 1 2 P 70103 70273.16103 T = 1 273.16 273 = 273.16 P tr P P 273 tr tr P P 273 37370103 T = 2 273.16 373 = 2 P = = 95.6 K Pa 2 P 70273.16103 2 273 tr 6. P = P = 80 cm of Hg ice point 0° P = P 90 cm of Hg steam point 100° P = 100 cm 0 PP 80100 t = 0 100 = 100 = 200°C P P 90100 100 0 V 7. T= T T = 273, VV 0 0 V = 1800 CC, V= 200 CC 1800 T= 273 = 307.125 307 1600 8. R = 86; R = 80; R = 90 t 0° 100° R R 8680 t = t 0 100 = 100 = 60°C R R 9080 100 0 9. R at ice point (R ) = 20 0 R at steam point (R ) = 27.5 100 R at Zinc point (R )= 50 420 R = R (1+ + 2)  0 R = R + R +R 2 100 0 0 0 R R  100 0 = + 2 R 0 23.1 23.Heat and Temperature 27.520  = × 100 + × 10000 20 7.5  = 100 + 10000  20 50R R = R (1+ + 2)  0 = + 2 420 0 R 0 5020 3  = 420 × + 176400 ×   420 + 176400  20 2 7.5 3  = 100 + 10000    420 + 176400  20 2 10. L = ?, L = 10 m, = 1 × 10–5/°C, t= 35 1 0 L = L (1 + t) = 10(1 +10–5× 35) = 10 + 35 × 10–4= 10.0035m 1 0 11. t = 20°C, t = 10°C, L = 1cm = 0.01 m, L =? 1 2 1 2  = 1.1 × 10–5/°C steel L = L (1 +  T) = 0.01(1 + 101 × 10–5× 10) = 0.01 + 0.01 × 1.1 × 10–4 2 1 steel = 104× 10–6+ 1.1 ×10–6= 10–6(10000 + 1.1) = 10001.1 =1.00011× 10–2m = 1.00011 cm 12. L = 12 cm, = 11 × 10–5/°C 0 tw = 18°C ts = 48°C Lw = L (1 + tw) = 12 (1 + 11 × 10–5× 18) = 12.002376 m 0 Ls = L (1 + ts) = 12 (1 + 11 × 10–5× 48) = 12.006336 m 0 L12.006336 –12.002376 = 0.00396 m 0.4cm 13. d = 2 cm = 2 × 10–2 1 t = 0°C, t = 100°C 1 2  = 2.3 × 10–5/°C al d = d (1 + t) = 2 × 10–2(1 + 2.3 × 10–5102) 2 1 = 0.02 + 0.000046 = 0.020046 m = 2.0046 cm 14. L = L at 20°C  = 2.3 × 10–5/°C st Al Al So, Lo (1 – × 20) = Lo (1 – × 20)  = 1.1 × 10–5/°C st st Al AI st Lo (1 20) 12.310520 0.99954 (a)  st = Al = = = 0.999 Lo (1 20) 11.110520 0.99978 Al st Lo (1 40) 12.310520 0.99954 (b)  40st = AI = = = 0.999 Lo (1 40) 11.110520 0.99978 40Al st Lo 12.310510 0.999771.00092 = Al  = = 1.0002496 ≈1.00025 Lo 273 1.00044 st Lo (1 100) 0.999771.00092 100Al = Al = = 1.00096 Lo (1 100) 1.00011 100St st 15. (a) Length at 16°C = L L = ? T =16°C, T = 46°C 1 2 = 1.1 × 10–5/°C L = L= L × 1.1 × 10–5 × 30 L  L  % of error =  100% =  100% = 1.1 × 10–5× 30 × 100% = 0.033%  L   2  (b) T = 6°C 2 L  L  % of error =  100% =  100% = –1.1 × 10–5× 10 × 100 = –0.011%  L   L  23.2 23.Heat and Temperature 16. T = 20°C, L = 0.055mm = 0.55 × 10–3m 1 t = ?  = 11 × 10–6/°C 2 st We know, L = L T 0 In our case, 0.055 × 10–3= 1 × 1.1 I 10–6× (T +T ) 1 2 0.055 = 11 × 10–3× 20 ± 11 × 10–3× T 2 T = 20 + 5 = 25°C or 20 –5 = 15°C 2 The expt. Can be performed from 15 to 25°C 17. ƒ =0.098 g/m3, ƒ = 1 g/m3 0°C 4°C ƒ 1 1 ƒ = 4C 0.998 = 1 + 4= 0°C 1T 14 0.998 1 4 + = 1 = 0.0005 ≈ 5 × 10–4 0.998 As density decreases = –5 × 10-4 18. Iron rod Aluminium rod L L Fe Al  = 12 × 10–8 /°C  = 23 × 10–8 /°C Fe Al Since the difference in length is independent of temp. Hence the different always remains constant. L = L (1 +  × T) …(1) Fe Fe Fe L = L (1 +  × T) …(2) Al Al Al L –L = L –L + L ×  × T –L ×  × T Fe Al Fe Al Fe Fe Al Al L  23 Fe = Al = = 23 : 12 L  12 Al Fe 19. g = 9.8 m/s2, g = 9.788 m/s2 1 2 l l l (1T) T = 2 1 T = 2 2 = 2 1 1 2 g g g 1 2  = 12 × 10–6/°C Steel T = 20°C T = ? 1 2 T = T 1 2 l l (1T) l l (1T)  2 1 = 2 1  1 = 1 g g g g 1 2 1 2 1 112106T 9.788  =  = 1+ 12 × 10–6× T 9.8 9.788 9.8 9.788 0.00122  1 = 12 × 10–6T T = 9.8 12106 T –20 = –101.6 T = –101.6 + 20 = –81.6 ≈ –82°C  2 2 20. Given d = 2.005 cm, d = 2.000 cm St Al S= 11 × 10–6/°C Al= 23 × 10–6/°C Steel ds = 2.005 (1+  T) (where T is change in temp.) s ds = 2.005 + 2.005 × 11 × 10–6T Aluminium d = 2(1+  T) = 2 + 2 × 23 × 10–6T Al Al The two will slip i.e the steel ball with fall when both the diameters become equal. So, 2.005 + 2.005 × 11 × 10–6T = 2 + 2 × 23 × 10–6T (46 –22.055)10-6× T = 0.005 0.005106 T = = 208.81 23.945 23.3 23.Heat and Temperature Now T = T –T = T –10°C [T = 10°C given] 2 1 2 1 T = T + T = 208.81 + 10 = 281.81 2 1 21. The final length of aluminium should be equal to final length of glass. Let the initial length o faluminium = l l(1 – T) = 20(1 – ) Al 0 l(1 –24 × 10–6× 40) = 20 (1 –9 × 10–6× 40) l(1 –0.00096) = 20 (1 –0.00036) 200.99964 l = = 20.012 cm 0.99904 Let initial breadth of aluminium = b b(1 – T) = 30(1 – ) Al 0 30(1910640) 300.99964 b = = = 30.018 cm (12410640) 0.99904 22. V = 1000 CC, T = 20°C g 1 V = ?  = 1.8 × 10–4/°C Hg Hg  = 9 × 10–6/°C g T remains constant Volume of remaining space = V –V g Hg Now V = V (1 +  T) …(1) g g g V = V (1 +  T) …(2) Hg Hg Hg Subtracting (2) from (1) V –V = V –V + V  T –V  T g Hg g Hg g g Hg Hg  Vg = Hg  1000 = 1.8104 V  V 9106 Hg g Hg 9103 V = = 500 CC. HG 1.8104 23. Volume of water = 500cm3 Area of cross section of can = 125m2 Final Volume of water = 500(1 + ) = 500[1 + 3.2 × 10–4× (80 –10)] = 511.2 cm3 The aluminium vessel expands in its length only so area expansion of base cab be neglected. Increase in volume of water = 11.2 cm3 Considering a cylinder of volume = 11.2 cm3 11.2 Height of water increased = = 0.089 cm 125 24. V = 10 × 10× 10 = 1000 CC 0 T = 10°C, V –V = 1.6 cm3 HG g  = 6.5 × 10–6/°C,  =?,  = 3 × 6.5 × 10–6/°C g Hg g V = v (1 +  T) …(1) Hg HG Hg V = v (1 +  T) …(2) g g g V –V = V –V + V  T –V  T Hg g Hg g Hg Hg g g 1.6 = 1000 ×  × 10 –1000 × 6.5 × 3 × 10–6× 10 Hg 1.66.33102  = = 1.789 × 10–41.8 × 10–4/°C Hg 10000 25. ƒ = 880 Kg/m3, ƒ = 900 Kg/m3  b T = 0°C,  = 1.2 × 10–3/°C, 1   = 1.5 × 10–3/°C b The sphere begins t sink when, (mg) = displaced water sphere 23.4 23.Heat and Temperature Vƒ g = Vƒ g  b ƒ ƒ    b  1  1   b 880 900  = 11.2103 11.5103 880 + 880 × 1.5 × 10–3() = 900 + 900 × 1.2 × 10–3() (880 × 1.5 × 10–3– 900 × 1.2 × 10–3) () = 20 (1320 –1080) × 10–3() = 20 = 83.3°C ≈ 83°C 26. L = 100°C A longitudinal strain develops if and only if, there is an opposition to the expansion.  Since there is no opposition in this case, hence the longitudinal stain here = Zero. 1 m 27.  = 20°C,  = 50°C 1 2  = 1.2 × 10–5/°C steel Longitudinal stain = ? L L Stain = = =  L L = 1.2 × 10–5× (50 –20) = 3.6 ×10–4 28. A = 0.5mm2 = 0.5 × 10–6m2 T = 20°C, T = 0°C 1 2  = 1.2 × 10–5/°C, Y = 2 × 2 × 1011N/m2 s Decrease in length due to compression = L …(1) Stress F L FL Y = =  L = …(2) Strain A L AY Tension is developed due to (1) & (2) Equating them, FL L= F = AY AY = 1.2 × 10-5× (20 –0) × 0.5 × 10–52 × 1011 = 24 N 29.  = 20°C,  = 100°C 1 2 A = 2mm2= 2 × 10–6m2  = 12 × 10–6/°C, Y = 2 × 1011N/m2 steel steel Force exerted on the clamps = ? F   A YL YLA = Y F = L = = YA Strain L L = 2 × 1011× 2 × 10–6× 12 × 10–6× 80 = 384 N 30. Let the final length of the system at system of temp. 0°C = ℓ  Initial length of the system = ℓ 0 When temp. changes by . Steel Strain of the system =  0 Aluminium 1   Steel total stress of system But the total strain of the system = total young's modulusof of system Now, total stress = Stress due to two steel rod + Stress due to Aluminium =   +  ds +  at = 2%  + 2 Aℓ  s s s al s Now young’modulus of system =  +  +  = 2 +  s s al s al 23.5 23.Heat and Temperature 2     Strain of system = s s s al 2  s al   2       0 = s s s al  2  0 s al 1  2    ℓ= ℓ0  al al s s   al 2s  31. The ball tries to expand its volume. But it is kept in the same volume. So it is kept at a constant volume. So the stress arises P V = B P = B = B × V V    v  = B × 3= 1.6 × 1011× 10–6× 3 × 12 × 10–6× (120 –20) = 57.6 × 1975.8 × 108pa.  32. Given  = Moment of Inertia at 0°C 0 =Coefficient of linear expansion To prove, =  = (1 + 2) 0 Let the temp. change to from 0°C T =  Let ‘R’ be the radius of Gyration, Now, R= R (1 + ),  = MR2 where M is the mass. 0 Now, = MR2= MR2(1 + )2 = MR2(1 + 2) [By binomial expansion or neglecting 22 which given a very small value.] So, =  (1 + 2) (proved) 0 33. Let the initial m.. at 0°C be  0  T = 2 K =  (1 + 2) (from above question) 0  (12)  (125)  (110) At 5°C, T = 2 0 = 2 0 = 2 0 1 K K K  (1245)  (190) At 45°C, T = 2 0 = 2 0 2 K K T 190 1902.4105 1.00216 2 = = T 110 1102.4105 1.00024 1 T  % change =  2 1100 = 0.0959% = 9.6 × 10 –2%   T1  34. T = 20°C, T = 50°C, T = 30°C 1 2 = 1.2 × 105/°C remains constant V V (I) = (II) = R R Now, R= R(1 + ) = R + R × 1.2 × 10–5× 30 = 1.00036R From (I) and (II) V V V  = R R 1.00036R V= 1.00036 V (1.00036VV) % change = × 100 = 0.00036 × 100 = 3.6 × 10–2 V  23.6 CHAPTER 24 KINETIC THEORY OF GASES 1. Volume of 1 mole of gas RT 0.082273 PV = nRT V = = = 22.38 ≈ 22.4 L = 22.4 × 10–3= 2.24 × 10–2m3 P 1 PV 11103 103 1 2. n = = = = RT 0.082273 22.4 22400 1 No of molecules = 6.023 × 1023× = 2.688 × 1019 22400 3. V = 1 cm3, T = 0°C, P = 10–5mm of Hg PV ƒghV 1.369801061 n = = = = 5.874 × 10–13 RT RT 8.31273 No. of moluclues = No× n = 6.023 × 1023× 5.874 × 10–13= 3.538 × 1011 PV 11103 103 4. n = = = RT 0.082273 22.4   10332 mass = g = 1.428 × 10–3g = 1.428 mg 22.4 5. Since mass is same n = n = n 1 2 nR300 nR600 P = , P = 1 2 V0 2V0 2V0 V0 P1 = nR300 2V0 = 1 = 1 : 1 600 K 300 K P V nR600 1 2 0 6. V = 250 cc = 250 × 10–3 P = 10–3mm = 10–3× 10–3m = 10–6× 13600 × 10 pascal = 136 × 10–3pascal T = 27°C = 300 K PV 136103250 136250 n = = 103 = 106 RT 8.3300 8.3300 136250 No. of molecules = 10661023 = 81 × 1017≈ 0.8 × 1015 8.3300 7. P = 8.0 × 105P , P = 1 × 106P , T = 300 K, T = ? 1 a 2 a 1 2 Since, V = V = V 1 2 PV P V 8105V 1106V 1106300 1 1 = 2 2  = T = = 375° K T T 300 T 2 8105 1 2 2 8. m = 2 g, V = 0.02 m3=0.02 × 106cc = 0.02 × 103L, T = 300 K, P = ? M = 2 g, m 2 PV = nRT PV = RT P × 20 = 0.082300 M 2 0.082300 P = = 1.23 atm = 1.23 × 105pa ≈ 1.23 × 105pa 20 nRT m RT ƒRT 9. P = =  = V M V M ƒ 1.25 × 10–3g/cm3 R 8.31 × 107ert/deg/mole T 273 K ƒRT 1.251038.31107273 M = = = 0.002796 × 104≈ 28 g/mol P 13.698076 24.1 Kinetic Theory of Gases 10. T at Simla = 15°C = 15 + 273 = 288 K P at Simla = 72 cm = 72 × 10–2× 13600 ×9.8 T at Kalka = 35°C = 35 + 273 = 308 K P at Kalka = 76 cm = 76 × 10–2× 13600 × 9.8 PV = nRT m m PM PV = RT PM = RT ƒ = M V RT ƒSimla P M RT = Simla  Kalka ƒKalka RT P M Simla Kalka 72102136009.8308 72308 = = = 1.013 28876102136009.8 76288 ƒKalka 1 = = 0.987 ƒSimla 1.013 11. n = n = n 1 2 nRT nRT P1= , P2= V V 3V V V 3V P nRT 3V 1 =  = 3 : 1 PT PT P2T P1 - P V nRT 2 12. r.m.s velocity of hydrogen molecules = ? T = 300 K, R = 8.3, M = 2 g = 2 × 10–3Kg 3RT 38.3300 C = C = = 1932. 6 m/s ≈1930 m/s M 2103 Let the temp. at which the C = 2 × 1932.6 is T 38.3T 38.3T 2 × 1932.6 = (2 × 1932.6)2= 2103 2103 (21932.6)22103  = T 38.3 T= 1199.98 ≈ 1200 K. 3P 1.77104 13. V = P = 105Pa = 1 atm, ƒ = rms ƒ 103 3105103 = = 1301.8 ≈ 1302 m/s. 1.77104 14. Agv. K.E. = 3/2 KT 3/2 KT = 0.04 × 1.6 × 10–19 (3/2) × 1.38 × 10–23× T = 0.04 × 1.6 × 10–19 20.041.61019 T = = 0.0309178 × 104= 309.178 ≈ 310 K 31.381023 8RT 88.3300 15. V = = avg M 3.140.032 Distance 64000002 T = = = 445.25 m/s Speed 445.25 28747.83 = km = 7.985 ≈ 8 hrs. 3600 16. M = 4 × 10–3Kg 8RT 88.3273 V = = = 1201.35 avg M 3.144103 Momentum = M × V = 6.64 × 10–27× 1201.35 = 7.97 × 10–24≈ 8 × 10–24Kg-m/s. avg 24.2 Kinetic Theory of Gases 8RT 88.3300 17. V = = avg M 3.140.032 8RT 8RT T 1 Now, 1 = 2 1 = 2 4 T 2 2 8RT 18. Mean speed of the molecule = M Escape velocity = 2gr 8RT 8RT = 2gr  = 2gr M M 2grM 29.864000003.142103 T = = = 11863.9 ≈ 11800 m/s. 8R 88.3 8RT 19. V = avg M VavgH2 = 8RT  28 = 28 = 14 = 3.74 V N 2 8RT 2 avg 2 20. The left side of the container has a gas, let having molecular wt. M 1 Right part has Mol. wt = M 2 Temperature of both left and right chambers are equal as the separating wall is diathermic 3RT 8RT 3RT 8RT M 3 M 3 =  =  1 =  1 = = 1.1775 ≈ 1.18 M M M M M 8 M 8 1 2 1 2 2 2 8RT 88.3273 21. V = = = 1698.96 mean M 3.142103 Total Dist = 1698.96 m 1698.96 No. of Collisions = = 1.23 × 1010 1.38107 22. P = 1 atm = 105Pascal T = 300 K, M = 2 g = 2 × 10–3Kg 8RT 88.3300 (a) V = = = 1781.004 ≈ 1780 m/s avg M 3.142103 (b) When the molecules strike at an angle 45°, 1 Force exerted = mV Cos 45° –(–mV Cos 45°) = 2 mV Cos 45° = 2 m V = 2mV 2 Force Pressure No. of molecules striking per unit area= = 2mvArea 2mV 105 3 = = 1031 = 1.19 × 10–3× 1031= 1.19 × 1028≈ 1.2 × 1028 221031780 21780 61023 PV P V 23. 1 1 = 2 2 T T 1 2 P 200 KPa = 2 × 105pa P = ? 1 2 T = 20°C = 293 K T = 40°C = 313 K 1 2 102V V = V + 2% V = 1 2 1 1 100 2105V P 102V 2107313  1 = 2 1 P = = 209462 Pa = 209.462 KPa 2 293 100313 102293 24.3 Kinetic Theory of Gases 24. V = 1 × 10–3m3, P = 1.5 × 105Pa, T = 400 K 1 1 1 P V = n R T 1 1 1 1 1 PV 1.51051103 1.5 n = 1 1 = n = R T 8.3400 8.34 1 1 1.5 1.5 m = M = 32 = 1.4457 ≈ 1.446 1 8.34 8.34 P = 1 × 105Pa, V = 1 × 10–3m3, T = 300 K 2 2 2 P V = n R T 2 2 2 2 2 P V 105103 1 n = 2 2 = = = 0.040 2 R T 8.3300 38.3 2 2 m = 0.04 × 32 = 1.285 2 m = m –m =1.446 –1.285 = 0.1608 g ≈ 0.16 g 1 2 25. P = 105 + ƒgh = 105+ 1000 × 10 × 3.3 = 1.33 × 105pa 1 4 P = 105, T = T = T, V = (2 × 10–3)3 2 1 2 1 3 4 V = r3, r = ? 2 3 PV P V 1 1 = 2 2 T T 1 2 4 4 1.33105 (2103)3 105 r2 3 3  = T T 1 2 1.33 × 8 × 105× 10–9= 105× r3 r = 310.64103 = 2.19 × 10–3≈ 2.2 mm 26. P = 2 atm = 2 × 105pa 1 V = 0.002 m3, T = 300 K 1 1 P V = n RT 1 1 1 1 PV 21050.002 4 n = 1 1= = = 0.1606 RT 8.3300 8.33 1 P = 1 atm = 105pa 2 V = 0.0005 m3, T = 300 K 2 2 P V = n RT 2 2 2 2 P V 1050.0005 5 1 n = 2 2 = =  = 0.02 2 RT 8.3300 38.3 10 2 n = moles leaked out = 0.16 –0.02 = 0.14 27. m = 0.040 g, T = 100°C, M = 4 g He 3 3 m U = nRt=  RT T= ? 2 2 M 3 m 3 m Given  RT12 =  RT 2 M 2 M 1.5 × 0.01 × 8.3 × 373 + 12 = 1.5 × 0.01 × 8.3 × T 58.4385 T= = 469.3855 K = 196.3°C ≈ 196°C 0.1245 28. PV2= constant P V 2= P V 2 1 1 2 2 nRT nRT  1V2 = 2 V 2 V 1 V 2 1 2 T T V = T V = TV = T × 2V T = 1 1 2 2 1 2 2 24.4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.