Concept Generation in Language Evolution MarthaLewis,JonathanLawry DepartmentofEngineeringMathematics,UniversityofBristol,BS81TR,UK [email protected],[email protected] Abstract upofqualitydimensionsandequippedwithadistancemetric, 6 1 forexampletheRGBcolourspace. Thisthesisinvestigatesthegenerationofnewcon- 0 Label semantics proposes that agents use a set of labels cepts from combinations of existing concepts as a 2 LA = {L ,...,L } to describe a conceptual space Ω with 1 n language evolves. We give a method for combin- distancemetricd(x,y). LabelsL areassociatedwithproto- n i ing concepts, and will be investigating the utility a typesPi ⊆ Ωanduncertainthresholdsεi,drawnfromprob- of composite concepts in language evolution and 5 J thencetheutilityofconceptgeneration. athbailtitayndeisletrmibeunttioxns∈δεiΩ. TishesuthffirecsiehnotlldyεcilocsaepttuorePsithteonboetiloan- 2 belledLi. TheappropriatenessofalabelLi todescribexis 1 Introduction quantifiedbyµLi(x),givenby ] I Humans are skilled at making sense of novel combinations A (cid:90) ∞ of concepts, so to create artifical languages for implemen- µ (x)=P(d(x,P )≤ε )= δ (ε )dε . tation in AI systems, we must model this ability. Stan- Li i i εi i i s d(x,Pi) c dard approaches to combining concepts, e.g. fuzzy set [ theory, have been shown to be inadequate [Osherson and LabelscanthenbedescribedasLi =<Pi,d(x,y),δεi>. Smith, 1981]. Composite labels frequently have ‘emergent 1 v attributes’ [Hampton, 1987] which cannot be explicated by 3 ANewModelofConceptComposition 2 decomposing the label into its constituent parts. We argue Experiments in [Hampton, 1987] propose that human con- 3 thatinthiscaseanewconceptisgenerated.Thisprojectaims 7 to determine conditions for such concept generation, using cept combination can (roughly) be modelled as a weighted 6 multi-agentmodelsoflanguageevolution. sum of attributes such as ‘has feathers’, ‘talks’ (for the con- 0 cept‘Bird’). Theseattributesdifferfromqualitydimensions . 1.1 ThesisOutline in conceptual spaces: they tend to be binary, complex, and 1 multidimensional. Wethereforevieweachattributeasalabel 0 The project divides into three parts. Firstly, we have devel- inaconceptualspaceΩ andcombinetheselabelsinabinary 6 oped a model of concept combination within the label se- i v:1 mmaondteilcsisfirnasmpeirweodrbkyasangdivreenfleinct[sLraewsuryltsanind[THaanmg,p2to0n0,91].98T7h]e, sspuacchela{b0e,l1s}α˜n=ill(cid:86)usnit=ra1te±dLiinmfiagpusreto1a, wbihnearreyaveccotonrju(cid:126)xnαcttiaokninogf value 1 for positive labels L and 0 for negated labels ¬L . i inwhichmembershipinacompositeconceptcanberendered i i X Wetreatmembershipinα˜inthebinaryspacewithinthelabel astheweightedsumofmembershipsinindividualconcepts. semanticsframework. Soα˜ isdescribedinthebinaryspace r Secondly, wemustshowthatcompositionalitycanevolve a byα˜ =<(cid:126)x ,d((cid:126)x,(cid:126)x(cid:48)),δ>asbefore. within a population of interacting agents. Preliminary work α inthisareaexaminestheabilityofapopulationofagentsto convergetoasharedsetofdimensionweights. {0,1}n Thirdly, we will investigate the generation of new unitary concepts from existing composite concepts, building further uponthemulti-agentmodel. 2 Background Ω1 Ω2 Ωn Thisworkisbasedonthelabelsemanticsframework[Lawry, 2004;LawryandTang,2009],togetherwithprototypetheory Figure1: Combininglabelsinabinaryspace [Rosch, 1975], where membership in a concept is based on proximitytoaprototype,andconceptualspaces[Ga¨rdenfors, Wedefineadistancemetricinthebinaryspace{0,1}nas: 2004]. Thelatterviewsconceptsasregionsofaspacemade Definition1 WeightedHammingDistance 1 1 SD SD For (cid:126)λ ∈ (R+)n, ∀(cid:126)x,(cid:126)x(cid:48) ∈ {0,1}n, where (·) is the scalar 0.8 λ 0.8 λ product, H ((cid:126)x,(cid:126)x(cid:48))=(cid:126)λ·|(cid:126)x−(cid:126)x(cid:48)| 0.6 0.6 (cid:126)λ Theorem2 Let α = (cid:86)n ±L and λ = (cid:80)n λ . Let 0.4 0.4 i=1 i T i=1 i ε∼U(0,λ ),d=H . Then: 0.2 0.2 T (cid:126)λ µα˜(Y(cid:126))=(cid:88)n λλi µ±Li(Yi) 0 0.6 w0.8 1 0 0.6 w0.8 1 T i=1 (a) x ∼ U[0,1], x ∼ (b) x ∼ U[0.25,0.75], 1 2 1 Compound concepts θ˜,ϕ˜ may be combined in a higher U[0,0.5]. λ converges to x2 ∼ U[0,0.5]. λ con- levelbinaryspace. Thenθ˜•ϕ˜canbeexpressedinthecontin- 0.5forallvaluesofw vergestovaryingvalues. uousspaceasaweightedsumofθ˜andϕ˜. Figure 2: Mean SD and λ at time t = 2000 for different Theorem3 Letθ˜•ϕ˜=<{(1,1)},H ,δ>.Thenµ (Y(cid:126))= valuesofw. Eachpointaverages25simulationsrunwith10 w(cid:126) θ˜•ϕ˜ agents. (cid:80)ni=1(w1λϕTwλTθλiθ+Twλ2ϕλTθTλϕi)µ±Li(Y(cid:126)). We have therefore shown that combining labels in a When w = 1 we can predict the value to which λ will weightedbinaryspaceleadsnaturallytothecreationofcom- converge. Consider the quantity A − λt which determines positeandcompoundconceptsasweightedsumsofindivid- whethertheupdateispositiveornegativeateachstep. ual labels, reflecting results in [Hampton, 1987]. We have Definition4 A positive region R+ ⊂ Ω is a set of points furthercharacterisednotionsofnecessaryandimpossibleat- R+ ={(cid:126)x∈Ω:A−λ ≥0} t tributesusingideasfrompossibilitytheory. Theorem5 Let p+ denote the probability of a point(cid:126)x ∈ Ω fallinginapositiveregionandletw = 1acrossthepopula- 4 ConvergenceofDimensionWeightsAcross tion. Thentheexpectedvalueofλconvergestop+. aPopulation 5 FurtherWork We investigate how a population of agents in a multi-agent simulationplayingaseriesoflanguagegamesmightconverge Wearecurrentlyworkingonanalyticalresultstopredictthe to a shared set of dimension weights. Agents with equal la- value of λ to which agents converge. Under certain circum- belsL =L =<1,d,U[0,1]>∈Ω =Ω =[0,1](disEu- stances, such as the case where w = 1, or with an altered 1 2 1 2 clidean distance), and randomly initiated weights λ ∈ [0,1] updatingmodel,analyticresultsarepossible. Wewillextend engage in a series of dialogues about elements in the con- thisworktolookattheutilityofusingconjunctiveassertions ceptual space, adjusting their weights after each dialogue is withinthesesimulations. completed. Ateachtimestep,speakeragentsmakeassertions Work in the third year will focus on examining how new α = ±L ∧±L aboutelements(cid:126)x ∈ Ω ×Ω whichmax- concepts might be generated from the combination of exist- i 1 2 1 2 imiseµ ((cid:126)x)=λµ (x )+(1−λ)µ (x ). ingones. Wewillbuildonthelanguageevolutionmodelcur- αi L1 1 L2 2 Thelisteneragentassessesα againstitsownlabelset. If rentlyindevelopment. i µ (x) ≤ w,thereliabilityofthespeakeragent,thelistener αi agentupdatesitslabelset. References Theupdateconsistsinincrementingthedimensionweight [Ga¨rdenfors,2004] P. Ga¨rdenfors. Conceptual spaces: The λtowardsavalueA,sothatλ = λ +h(A−λ )where t+1 t t geometryofthought. TheMITPress,2004. h=10−3and [Hampton,1987] J.A. Hampton. Inheritance of attributes A= w−µL2(x2) in natural concept conjunctions. Memory & Cognition, µ (x )−µ (x ) 15(1):55–71,1987. ±L1 1 ±L2 2 [LawryandTang,2009] J. Lawry and Y. Tang. Uncertainty Thisisthequantitythatsatisfiesµ (x)=w. IfA<0(or αi modelling for vague concepts: A prototype theory ap- A>1)wesetA=0(orA=1). proach. ArtificialIntelligence,173(18):1539–1558,2009. Theconvergenceacrossthepopulationismeasuredbythe standarddeviation(SD)oftheλacrossthepopulation. [Lawry,2004] J. Lawry. A framework for linguistic mod- Figure2showstheresultsoftwosetsofsimulationsacross elling. ArtificialIntelligence,155(1-2):1–39,2004. varyingvaluesofw.Thetwosetsofsimulationshavedistinct [OshersonandSmith,1981] D.N.OshersonandE.E.Smith. distributionsofelementsencounteredwithinthespace.When On the adequacy of prototype theory as a theory of con- wis0.5orbelow,theagentsdonotconvergetoshareddimen- cepts. Cognition,9(1):35–58,1981. sionweights(notshown).Whenw >0.5,agentsdoconverge [Rosch,1975] E. Rosch. Cognitive representations of se- to shared dimension weights: SD is low. The weights con- mantic categories. Journal of experimental psychology: vergedtodependbothonthereliability,w,ofeachagent,and General,104(3):192,1975. thedistributionofelementsintheconceptualspace.