CyrilTintarev ConcentrationCompactness Unauthenticated Download Date | 2/16/20 9:07 AM De Gruyter Series in Nonlinear Analysis and Applications | Editor-inChief JürgenAppell,Würzburg,Germany Editors CatherineBandle,Basel,Switzerland AlainBensoussan,Richardson,Texas,USA AvnerFriedman,Columbus,Ohio,USA MikioKato,Tokyo,Japan WojciechKryszewski,Torun,Poland UmbertoMosco,Worcester,Massachusetts,USA LouisNirenberg,NewYork,USA SimeonReich,Haifa,Israel AlfonsoVignoli,Rome,Italy VicenţiuD.Rădulescu,Krakow,Poland Volume 33 Unauthenticated Download Date | 2/16/20 9:07 AM Cyril Tintarev Concentration Compactness | Functional-Analytic Theory of Concentration Phenomena Unauthenticated Download Date | 2/16/20 9:07 AM MathematicsSubjectClassification2010 Primary:46B50,35J60,46N20;Secondary:46E35,35A15 Author CyrilTintarev Technion DepartmentofMathematics 32000Haifa Israel [email protected] ISBN978-3-11-053034-6 e-ISBN(PDF)978-3-11-053243-2 e-ISBN(EPUB)978-3-11-053058-2 ISSN0941-813X LibraryofCongressControlNumber:2019952753 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2020WalterdeGruyterGmbH,Berlin/Boston Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Unauthenticated Download Date | 2/16/20 9:07 AM | ToSonia Unauthenticated Download Date | 2/16/20 9:07 AM Unauthenticated Download Date | 2/16/20 9:07 AM Preface The subject of this book is convergence of sequences in Banach spaces without a given compact embedding, or more specifically, structural representation of such sequences,knowninapplicationsasconcentrationcompactness,addressedonthe functional-analyticlevel. Concentrationcompactnessbecameastandardtoolofanalysisofpartialdiffer- entialequationssincethepublicationofcelebratedpapers[83,84]byP.-L.Lions,fol- lowedbytheprofiledecompositionapproachintroducedbyStruwe[119],generalized togeneralsequencesinSobolevspacesbySolimini[112],andfurthergeneralizedto sequencesinHilbertandBanachspaces,respectively,in[104]and[113]. Thisbookisasequeltoanearliermonograph[127],whosepurposewastogive afunctional-analytictheoryofconcentrationcompactnessingeneralHilbertspaces, and to illustrate this abstract approach by applications to calculus of variations, mostlyinthesettingsofLions.Inthepresentbook,thefocusisshiftedfromsampling theknownapplicationstoabroaderpresentationofthemethod,basedonthecur- rentstateofart.ThebookextendsanalysisofconcentrationfromHilberttoBanach spaces,andpresentsrealizationsofconcentrationcompactnessinavarietyoffunc- tionalspaces,while[127]dealtonlywithSobolevspaces.Nowintoconsiderationcome BesovandTriebel–Lizorkinspaces,embeddingsintospacesofcontinuousfunctions, embeddings associated with the Moser–Trudinger inequality, Strichartz embedding forthenonlinearSchrödingerequation,andtheaffineSobolevinequality.Thebook alsoextendsthenotionofprofiledecompositiontofunctionalspacesthatdonothave anontrivialgroupofinvariance. Central to this book is the notion of cocompact embedding, which in [127] ap- pearsonlyimplicitly.CocompactnessofanembeddingoftwoBanachspacesisaprop- ertysimilartobutweakerthancompactness,anditplayscentralroleinhavingwell- structuredprofiledecompositionsforboundedsequences–sumofasymptoticallyde- coupled“blowups.” Chapter1givesabriefintroductiontothebasicnotionsofthetheoryandexam- ples of an “orderlyloss”of compactness(profiledecomposition)in presence of co- compactembeddings.Chapter2containstechnicalpreliminariesconcerningDelta- convergence, a less-known cousin of weak convergence, involved in the profile de- compositionforBanachspaces,whichareconsideredinChapter4togetherwithits realizationinSobolevandotherscale-invariantfunctionspaces.Chapter3sumsup knownresultsoncocompactnessrelativetotherescalinggroup(actionsoftransla- tions and dilations), in Besov and Triebel–Lizorkin spaces (with Sobolev and frac- tionalSobolevspacesasaparticularcase),aswellascocompactnessofanembedding oftheMoser–Trudinger-typerelativetoadifferentgroupoflogarithmicdilations. Chapters 5 through 9 can be read independently one of the other. Chapter 5 presentsfurthercocompactembeddingsandprofiledecompositions.Chapter6dis- https://doi.org/10.1515/9783110532432-201 Unauthenticated Download Date | 2/16/20 9:07 AM VIII | Preface cussesdefectofcompactnessforsequencesrestrictedtodifferentsubspaces.Chap- ters 7 and 8 deal with profile decompositions that do not follow from the general framework of Chapter 4 – for nonreflexive spaces and for Sobolev spaces without invariance. Chapter 9 presents a small selection of applications of concentration methodstosemilinearellipticequations. Corrections,supportingmaterials,etc.relatedtothisbook,willappearontheau- thor’spersonalwebsite,http://sites/google.com/site/tintarev. Thebookwaswrittenindifficultcircumstances,assince2016theauthorwassub- jectedbyhisformeremployertoacompletetravelban(includinghost-andself-funded travel),togetherwithfurtherrestrictions,whichbroughttheauthortoleavehisjob atUppsalaUniversity.TheauthorexpresseshiswarmgratitudetoAcademicRights Watch and his colleagues and collaborators at Technion, University of Toulouse – LaCapitole,TataInstituteforfundamentalresearch,UniversityofBariandPolitec- nicUniversityofBari,fortheirunwaveringsupportofhisacademicrights.Hethanks TorbjörnOhlsson,attorneyatlaw,whonegotiatedauthor’scontinuedaccesstothe libraryresourcesofhisformeremployer. Theworkonthisbookwascompletedduringtheauthor’sstayasLadyDavisVis- itingProfessoratTechnion–IsraelInstituteofTechnology. Haifa,December2019 Unauthenticated Download Date | 2/16/20 9:07 AM Contents Preface|VII 1 Profiledecomposition:astructureddefectofcompactness|1 1.1 Cocompactembeddings:definitionandexamples|1 1.2 Profiledecomposition|5 1.3 Brezis–Lieblemma|7 1.4 Lions’lemmafortheMoser–Trudingerfunctional|11 1.5 Bibliographicnotes|13 2 Delta-convergenceandweakconvergence|15 2.1 DefinitionofDelta-convergence|15 2.2 Chebyshevandasymptoticcenters.Delta-completenessand Delta-compactness|16 2.3 Rotundmetricspaces|18 2.4 OpialconditionandVanDulstnorm|21 2.5 Defectofenergy.Brezis–LieblemmawithDelta-convergence|25 2.6 Bibliographicnotes|27 3 Cocompactembeddingswiththerescalinggroup|29 3.1 Definitionsandelementarypropertiesofcocompactness|29 3.2 CocompactnessofthelimitingSobolevembedding|30 3.3 EmbeddingḢ1,p(ℝN)→Lp∗,p(ℝN)isnotcocompact|34 3.4 Cocompactnessandexistenceofminimizers|35 3.5 CocompactembeddingsofBesovandTriebel–Lizorkinspaces|37 3.6 Cocompactnessandinterpolation|40 3.7 CocompactembeddingsofinhomogeneousBesovspaces|44 3.8 CocompactembeddingsofintersectionswithLp(ℝN)|49 3.9 Cocompactnessoftraceembeddings|51 3.10 Spacescocompactlyembeddedintothemselves|54 3.11 CocompactnessoftheradialMoser–Trudingerembedding|55 3.12 Bibliographicnotes|57 4 ProfiledecompositioninBanachspaces|59 4.1 Profiledecomposition|59 4.2 OpialconditioninBesovandTriebel–Lizorkinspaces|61 4.3 ProofofTheorem4.1.6|63 4.4 Profiledecompositioninthedualspace|66 4.5 Profiledecompositionforvector-valuedfunctions|68 4.6 ProfiledecompositioninBesov,Triebel–Lizorkin,andSobolev spaces|70 Unauthenticated Download Date | 2/16/20 9:07 AM