ebook img

Concentration Compactness: Functional-Analytic Theory of Concentration Phenomena (De Gruyter Series in Nonlinear Analysis and Applications, Band 33) PDF

231 Pages·2020·5.163 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Concentration Compactness: Functional-Analytic Theory of Concentration Phenomena (De Gruyter Series in Nonlinear Analysis and Applications, Band 33)

CyrilTintarev ConcentrationCompactness Unauthenticated Download Date | 2/16/20 9:07 AM De Gruyter Series in Nonlinear Analysis and Applications | Editor-inChief JürgenAppell,Würzburg,Germany Editors CatherineBandle,Basel,Switzerland AlainBensoussan,Richardson,Texas,USA AvnerFriedman,Columbus,Ohio,USA MikioKato,Tokyo,Japan WojciechKryszewski,Torun,Poland UmbertoMosco,Worcester,Massachusetts,USA LouisNirenberg,NewYork,USA SimeonReich,Haifa,Israel AlfonsoVignoli,Rome,Italy VicenţiuD.Rădulescu,Krakow,Poland Volume 33 Unauthenticated Download Date | 2/16/20 9:07 AM Cyril Tintarev Concentration Compactness | Functional-Analytic Theory of Concentration Phenomena Unauthenticated Download Date | 2/16/20 9:07 AM MathematicsSubjectClassification2010 Primary:46B50,35J60,46N20;Secondary:46E35,35A15 Author CyrilTintarev Technion DepartmentofMathematics 32000Haifa Israel [email protected] ISBN978-3-11-053034-6 e-ISBN(PDF)978-3-11-053243-2 e-ISBN(EPUB)978-3-11-053058-2 ISSN0941-813X LibraryofCongressControlNumber:2019952753 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2020WalterdeGruyterGmbH,Berlin/Boston Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Unauthenticated Download Date | 2/16/20 9:07 AM | ToSonia Unauthenticated Download Date | 2/16/20 9:07 AM Unauthenticated Download Date | 2/16/20 9:07 AM Preface The subject of this book is convergence of sequences in Banach spaces without a given compact embedding, or more specifically, structural representation of such sequences,knowninapplicationsasconcentrationcompactness,addressedonthe functional-analyticlevel. Concentrationcompactnessbecameastandardtoolofanalysisofpartialdiffer- entialequationssincethepublicationofcelebratedpapers[83,84]byP.-L.Lions,fol- lowedbytheprofiledecompositionapproachintroducedbyStruwe[119],generalized togeneralsequencesinSobolevspacesbySolimini[112],andfurthergeneralizedto sequencesinHilbertandBanachspaces,respectively,in[104]and[113]. Thisbookisasequeltoanearliermonograph[127],whosepurposewastogive afunctional-analytictheoryofconcentrationcompactnessingeneralHilbertspaces, and to illustrate this abstract approach by applications to calculus of variations, mostlyinthesettingsofLions.Inthepresentbook,thefocusisshiftedfromsampling theknownapplicationstoabroaderpresentationofthemethod,basedonthecur- rentstateofart.ThebookextendsanalysisofconcentrationfromHilberttoBanach spaces,andpresentsrealizationsofconcentrationcompactnessinavarietyoffunc- tionalspaces,while[127]dealtonlywithSobolevspaces.Nowintoconsiderationcome BesovandTriebel–Lizorkinspaces,embeddingsintospacesofcontinuousfunctions, embeddings associated with the Moser–Trudinger inequality, Strichartz embedding forthenonlinearSchrödingerequation,andtheaffineSobolevinequality.Thebook alsoextendsthenotionofprofiledecompositiontofunctionalspacesthatdonothave anontrivialgroupofinvariance. Central to this book is the notion of cocompact embedding, which in [127] ap- pearsonlyimplicitly.CocompactnessofanembeddingoftwoBanachspacesisaprop- ertysimilartobutweakerthancompactness,anditplayscentralroleinhavingwell- structuredprofiledecompositionsforboundedsequences–sumofasymptoticallyde- coupled“blowups.” Chapter1givesabriefintroductiontothebasicnotionsofthetheoryandexam- ples of an “orderlyloss”of compactness(profiledecomposition)in presence of co- compactembeddings.Chapter2containstechnicalpreliminariesconcerningDelta- convergence, a less-known cousin of weak convergence, involved in the profile de- compositionforBanachspaces,whichareconsideredinChapter4togetherwithits realizationinSobolevandotherscale-invariantfunctionspaces.Chapter3sumsup knownresultsoncocompactnessrelativetotherescalinggroup(actionsoftransla- tions and dilations), in Besov and Triebel–Lizorkin spaces (with Sobolev and frac- tionalSobolevspacesasaparticularcase),aswellascocompactnessofanembedding oftheMoser–Trudinger-typerelativetoadifferentgroupoflogarithmicdilations. Chapters 5 through 9 can be read independently one of the other. Chapter 5 presentsfurthercocompactembeddingsandprofiledecompositions.Chapter6dis- https://doi.org/10.1515/9783110532432-201 Unauthenticated Download Date | 2/16/20 9:07 AM VIII | Preface cussesdefectofcompactnessforsequencesrestrictedtodifferentsubspaces.Chap- ters 7 and 8 deal with profile decompositions that do not follow from the general framework of Chapter 4 – for nonreflexive spaces and for Sobolev spaces without invariance. Chapter 9 presents a small selection of applications of concentration methodstosemilinearellipticequations. Corrections,supportingmaterials,etc.relatedtothisbook,willappearontheau- thor’spersonalwebsite,http://sites/google.com/site/tintarev. Thebookwaswrittenindifficultcircumstances,assince2016theauthorwassub- jectedbyhisformeremployertoacompletetravelban(includinghost-andself-funded travel),togetherwithfurtherrestrictions,whichbroughttheauthortoleavehisjob atUppsalaUniversity.TheauthorexpresseshiswarmgratitudetoAcademicRights Watch and his colleagues and collaborators at Technion, University of Toulouse – LaCapitole,TataInstituteforfundamentalresearch,UniversityofBariandPolitec- nicUniversityofBari,fortheirunwaveringsupportofhisacademicrights.Hethanks TorbjörnOhlsson,attorneyatlaw,whonegotiatedauthor’scontinuedaccesstothe libraryresourcesofhisformeremployer. Theworkonthisbookwascompletedduringtheauthor’sstayasLadyDavisVis- itingProfessoratTechnion–IsraelInstituteofTechnology. Haifa,December2019 Unauthenticated Download Date | 2/16/20 9:07 AM Contents Preface|VII 1 Profiledecomposition:astructureddefectofcompactness|1 1.1 Cocompactembeddings:definitionandexamples|1 1.2 Profiledecomposition|5 1.3 Brezis–Lieblemma|7 1.4 Lions’lemmafortheMoser–Trudingerfunctional|11 1.5 Bibliographicnotes|13 2 Delta-convergenceandweakconvergence|15 2.1 DefinitionofDelta-convergence|15 2.2 Chebyshevandasymptoticcenters.Delta-completenessand Delta-compactness|16 2.3 Rotundmetricspaces|18 2.4 OpialconditionandVanDulstnorm|21 2.5 Defectofenergy.Brezis–LieblemmawithDelta-convergence|25 2.6 Bibliographicnotes|27 3 Cocompactembeddingswiththerescalinggroup|29 3.1 Definitionsandelementarypropertiesofcocompactness|29 3.2 CocompactnessofthelimitingSobolevembedding|30 3.3 EmbeddingḢ1,p(ℝN)󳨅→Lp∗,p(ℝN)isnotcocompact|34 3.4 Cocompactnessandexistenceofminimizers|35 3.5 CocompactembeddingsofBesovandTriebel–Lizorkinspaces|37 3.6 Cocompactnessandinterpolation|40 3.7 CocompactembeddingsofinhomogeneousBesovspaces|44 3.8 CocompactembeddingsofintersectionswithLp(ℝN)|49 3.9 Cocompactnessoftraceembeddings|51 3.10 Spacescocompactlyembeddedintothemselves|54 3.11 CocompactnessoftheradialMoser–Trudingerembedding|55 3.12 Bibliographicnotes|57 4 ProfiledecompositioninBanachspaces|59 4.1 Profiledecomposition|59 4.2 OpialconditioninBesovandTriebel–Lizorkinspaces|61 4.3 ProofofTheorem4.1.6|63 4.4 Profiledecompositioninthedualspace|66 4.5 Profiledecompositionforvector-valuedfunctions|68 4.6 ProfiledecompositioninBesov,Triebel–Lizorkin,andSobolev spaces|70 Unauthenticated Download Date | 2/16/20 9:07 AM

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.