ebook img

Computing Systems for Autonomous Driving PDF

239 Pages·2021·7.379 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computing Systems for Autonomous Driving

Weisong Shi Liangkai Liu Computing Systems for Autonomous Driving Computing Systems for Autonomous Driving Weisong Shi • Liangkai Liu Computing Systems for Autonomous Driving WeisongShi LiangkaiLiu DepartmentofComputerScience DepartmentofComputerScience WayneStateUniversity WayneStateUniversity Detroit,MI,USA Detroit,MI,USA ISBN978-3-030-81563-9 ISBN978-3-030-81564-6 (eBook) https://doi.org/10.1007/978-3-030-81564-6 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2021 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface In the last 5 years, with the vast improvements in computing technologies, e.g., sensors, computer vision, machine learning, and hardware acceleration, and the widedeploymentofcommunicationmechanisms,e.g.,dedicatedshort-rangecom- munications(DSRC),cellularvehicle-to-everything(C-V2X),and5G,autonomous driving techniques have attracted massive attention from both the academic and automotivecommunities. Toachievethevisionofautonomousdriving,determininghowtomakethevehi- cleunderstandtheenvironmentcorrectlyandmakesafecontrolsinreal-timeisthe essentialtask.Richsensorsincludingcamera,LiDAR(lightdetectionandranging), radar,inertialmeasurementunit(IMU),globalnavigationsatellitesystem(GNSS), andsonar,aswellaspowerfulcomputationdevices,areinstalledonthevehicle.This designmakesautonomousdrivingarealpowerful“computeronwheels.”Inaddition to hardware, the rapid development of deep learning algorithms in object/lane detection, simultaneous localization and mapping (SLAM), and vehicle control also promotes the real deployment and prototyping of autonomous vehicles. The autonomousvehicle’scomputingsystemsaredefinedtocovereverything(excluding the vehicle’s mechanical parts), including sensors, computation, communication, storage, power management, and full-stack software. Plenty of algorithms and systems are designed to process sensor data and make a reliable decision in real- time. However, news of fatalities caused by early developed autonomous vehicles (AVs) arises from time to time. Until August 2020, five self-driving car fatalities happened for level 2 autonomous driving: four of them from Tesla and one from Uber. All four incidents associated with Tesla are due to perception failure, while Uber’sincidenthappenedbecauseofthefailuretopredicthumanbehavior.Another fact to pay attention to is that currently, the field-testing of level 2 autonomous driving vehicles mostly happens in places with good weather and light traffic conditionslikeArizonaandFlorida.Therealtrafficenvironmentistoocomplicated for the current autonomous driving systems to understand and handle easily. The objectivesoflevel4andlevel5autonomousdrivingrequirecolossalimprovement ofthecomputingsystemsforautonomousvehicles. v vi Preface Thisbookintendstopresentstate-of-the-artcomputingsystemsforautonomous drivingandtograbtheattentionofresearchersandpractitionersfrombothautomo- tiveindustryandcomputerscienceandengineeringcommunity.Thebookconsists of nine chapters, presenting the landscape, computing frameworks, algorithm deploymentoptimizations,systemsruntimeoptimizations,datasetandbenchmark- ing,simulators,hardwareplatforms,smartinfrastructures,andopenchallengesfor achievingL4/L5autonomousdrivingvehicles,respectively.Thisbookcanbeused byseniorundergraduatestudentsandgraduatestudentsinengineeringandcomputer sciencemajors.Wehopethisbookwillserveasareferenceandastartingpointfor thosewhoareinterestedinworkinginthisfield. Detroit,MI,USA WeisongShi Detroit,MI,USA LiangkaiLiu Acknowledgments ThisbookisacollectivewisdomoftheworkfromtheConnectedandAutonomous Driving Laboratory (CAR) at Wayne State University. We would like to thank all the past and current members in the CAR lab, including Sidi Lu, Qingyang Zhang, Yifan Wang, Xingzhou Zhang, Baofu Wu, Prabhjot Kaur, Samira Taghavi, Ren Zhong, Yongtao Yao, Ruijun Wang, Zhaofeng Tian, and Raef Abdallah. All of them contributed part of the content that is included in this book. We also thank our partners and sponsors who contributed hardware, software, and dataset andmadethesestudiespossible,includingCalmCar,Continental,DENSO,Hesai, iSmartWays, Intel, Navya, Nvidia, PerceptIn, Toyota InfoTech, Velodyne LiDAR, Xilinx,andtheCityofDetroit. vii Contents 1 AutonomousDrivingLandscape ........................................... 1 1.1 ReferenceArchitecture................................................ 1 1.2 MetricsforComputingSystem ....................................... 3 1.3 KeyTechnologies...................................................... 4 1.3.1 Sensors......................................................... 5 1.3.2 DataSource.................................................... 6 1.3.3 AutonomousDrivingApplications........................... 8 1.3.4 ComputationHardware ....................................... 12 1.3.5 Storage......................................................... 13 1.3.6 Real-TimeOperatingSystems................................ 14 1.3.7 MiddlewareSystems .......................................... 15 1.3.8 VehicularCommunication .................................... 15 1.3.9 SecurityandPrivacy........................................... 16 1.4 OverviewoftheBook................................................. 17 2 ComputingFrameworkforAutonomousDriving........................ 19 2.1 In-VehicleApplications ............................................... 19 2.1.1 Real-TimeDiagnostics........................................ 19 2.1.2 AdvancedDriver-AssistantSystems.......................... 20 2.1.3 In-VehicleInfotainment....................................... 20 2.1.4 Third-PartyApplications...................................... 21 2.2 OpenVDAP:AnOpenVehicularDataAnalyticsPlatform forCAVs ............................................................... 22 2.2.1 Introduction.................................................... 22 2.2.2 OverviewofOpenVDAP...................................... 24 2.2.3 VCU:HeterogeneousVehicleComputingUnit.............. 25 2.2.4 EdgeOSv:AnEdgeOperatingSystemforVehicles......... 28 2.2.5 DDI:DrivingDataIntegrator................................. 30 2.2.6 libvdap:LibraryforOpenVehicularDataAnalytics..... 32 ix x Contents 2.3 HydraSpace:ComputationalDataStorageforAutonomous Vehicles ................................................................ 34 2.3.1 Introduction.................................................... 34 2.3.2 Real-timeApplicationRequirement.......................... 35 2.3.3 AccessFrequency ............................................. 36 2.3.4 DataAmountandType........................................ 37 2.3.5 SystemDesign................................................. 38 2.3.6 Summary....................................................... 39 2.4 AC4AV: A Flexible and Dynamic Access Control FrameworkforConnectedandAutonomousVehicles............... 39 2.4.1 Introduction.................................................... 39 2.4.2 ProblemStatement ............................................ 42 2.4.3 SystemArchitecture........................................... 45 2.4.4 Implementation................................................ 48 2.4.5 Summary....................................................... 54 3 AlgorithmDeploymentOptimization...................................... 57 3.1 CLONE:CollaborativeLearningontheEdges ...................... 57 3.1.1 Introduction.................................................... 57 3.1.2 SystemDesign................................................. 59 3.1.3 DifferencesofTwoApplicationScenarios................... 59 3.1.4 UseCase:FailurePredictionofEVBatteryand RelatedAccessories........................................... 60 3.1.5 Summary....................................................... 70 3.2 CollaborativeCloud-EdgeComputationforPersonalized DrivingBehaviorModeling........................................... 70 3.2.1 Introduction.................................................... 70 3.2.2 SystemDesign................................................. 74 3.2.3 GARNN-Cloud................................................ 75 3.2.4 GARNN-Pruned............................................... 76 3.2.5 CGARNN-Edge............................................... 77 3.2.6 RESTfulEngine............................................... 78 3.2.7 Summary....................................................... 79 4 SystemsRuntimeOptimization ............................................ 81 4.1 E2M:AnEnergy-EfficientMiddlewareforAutonomous MobileRobots ......................................................... 81 4.1.1 Introduction.................................................... 81 4.1.2 Motivation ..................................................... 83 4.1.3 EnergyEfficientMiddleware ................................. 89 4.1.4 Implementation................................................ 97 4.1.5 Discussion ..................................................... 100 4.1.6 Summary....................................................... 101 4.2 DeterminismAnalysisofDeepNeuralNetworkInference forAutonomousDriving .............................................. 102 4.2.1 Introduction.................................................... 102 Contents xi 4.2.2 TimeVariationinDNNInference............................ 103 4.2.3 UncertaintiesinDNNInference.............................. 105 4.2.4 ProfilingTools................................................. 106 5 DatasetandBenchmark..................................................... 109 5.1 OpenDatasetforAutonomousDriving............................... 109 5.1.1 Introduction.................................................... 109 5.1.2 ObjectDetection............................................... 111 5.1.3 ObjectTracking ............................................... 115 5.1.4 SemanticSegmentation ....................................... 117 5.1.5 Stereo .......................................................... 118 5.1.6 Localization.................................................... 119 5.1.7 AdvanceIntelligentServices ................................. 121 5.1.8 Summary....................................................... 122 5.2 CAVBench: A Benchmark Suite for Connected and AutonomousVehicles ................................................. 122 5.2.1 Introduction.................................................... 122 5.2.2 RelatedWork .................................................. 124 5.2.3 BenchmarkDesign............................................ 126 5.2.4 BenchmarkCharacterization.................................. 134 5.2.5 Summary....................................................... 141 6 AutonomousDrivingSimulators........................................... 143 6.1 Introduction............................................................ 143 6.2 Motivation.............................................................. 144 6.3 Methodology........................................................... 145 6.4 Simulators.............................................................. 148 6.4.1 MATLAB/Simulink........................................... 148 6.4.2 CarSim......................................................... 149 6.4.3 PreScan ........................................................ 149 6.4.4 CARLA........................................................ 150 6.4.5 Gazebo......................................................... 151 6.4.6 LGSVL......................................................... 152 6.5 Comparison ............................................................ 152 6.6 Challenges ............................................................. 154 6.7 Summary............................................................... 156 7 HardwarePlatforms......................................................... 157 7.1 HydraOne .............................................................. 157 7.1.1 Introduction.................................................... 157 7.1.2 RelatedWork .................................................. 159 7.1.3 DesignandImplementation................................... 159 7.1.4 CaseStudies ................................................... 164 7.1.5 Summary....................................................... 166 7.2 Hydra................................................................... 167

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.