ebook img

Computing nonlinear force free coronal magnetic fields PDF

0.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computing nonlinear force free coronal magnetic fields

8 0 0 2 Computing nonlinear force free coronal magnetic fields. n a J 1 2 T. Wiegelmann1,2 and T.Neukirch1 ] 1School ofMathematicsand Statistics,UniversityofSt. Andrews,St. Andrews,KY169SS, h p UnitedKingdom - 2Max-Planck-Institutfu¨rAeronomie,Max-Planck-Strasse2, 37191Katlenburg-Lindau, o r Germany t s a [ 1 v 5 1 2 Camera-ready Copy for 3 . NonlinearProcesses inGeophysics 1 0 Manuscript-No. NonlinearProcesses inGeophysics,Volume10,Issue4/5,2003,pp.313-322 8 0 : v Offsetrequests to: i X T. Wiegelmann r a NonlinearProcessesinGeophysics(2002)25:1–10 Nonlinear Processes in Geophysics (cid:13)cEuropeanGeophysicalSociety2002 Computing nonlinear force free coronal magnetic fields. T.Wiegelmann1,2andT.Neukirch1 1SchoolofMathematicsandStatistics,UniversityofSt. Andrews,St. Andrews,KY169SS,UnitedKingdom 2Max-Planck-Institutfu¨rAeronomie,Max-Planck-Strasse2,37191Katlenburg-Lindau,Germany Received:12. August2002–Revised:22.November2002–Accepted:27. November2002 Abstract. Knowledge of the structure of the coronal mag- measurement of the coronal magnetic field is not feasible netic field is importantforourunderstandingof manysolar with the observationalmethods presently available. There- activity phenomena, e.g. flares and CMEs. However, the fore the extrapolation of the magnetic field into the corona direct measurementof coronalmagnetic fields is not possi- frommeasurementsofthemagneticfieldatthephotospheric blewithpresentmethods,andthereforethecoronalfieldhas levelisextremelyimportant. tobeextrapolatedfromphotosphericmeasurements. Dueto It is generally assumed that the magnetic pressure in the the low plasma beta the coronal magnetic field can usually coronaismuchhigherthantheplasmapressure(smallplasma beassumedtobeapproximatelyforcefree,withelectriccur- β) and that therefore the magnetic field is nearly force-free rentsflowingalongthemagneticfieldlines. Thereareboth (foracriticalviewofthisassumptionseeGary,2001). The observational and theoretical reasons which suggest that at extrapolationmethodsbasedonthisassumptionincludepo- least prior to an eruption the coronal magnetic field is in a tentialfieldextrapolation(e.g.,Schmidt,1964;Semel,1967), nonlinearforcefreestate. Unfortunatelythecomputationof linear force-free field extrapolation (e.g., Chiu and Hilton nonlinearforcefree fields is way more difficultthan poten- , 1977; Seehafer , 1978, 1982; Semel , 1988) and nonlin- tial or linear force free fields and analytic solutions are not ear force-freefieldextrapolation(e.g.,Amarietal. , 1997). generallyavailable. Wediscussseveralmethodswhichhave Methodsfornon-force-freefieldextrapolationhavealsobeen beenproposedtocomputenonlinearforcefreefieldsandfo- developed(PetrieandNeukirch,2000)butarenotusedrou- cus particularly on an optimizationmethod which has been tinely. suggestedrecently. Wecomparethenumericalperformance Whereaspotentialandlinearforce-freefieldscanbeused ofanewlydevelopednumericalcodebasedontheoptimiza- as a first step to model the general structure of magnetic tionmethodwiththeperformanceofanothercodebasedon fields in the solar corona, the use of non-linear force free an MHD relaxationmethodif bothcodesare appliedto the fieldsisessentialtounderstanderuptivephenomenaasthere reconstruction of a semi-analytic nonlinear force-free solu- arebothobservationalandtheoreticalreasonswhichsuggest tion. Theoptimizationmethodhasalsobeentestedforcases thatthepre-eruptivemagneticfieldsarenon-linearforce-free where we add random noise to the perfect boundary con- fields (see below). The calculation of nonlinear force free ditions of the analytic solution, in this way mimicking the fieldsis complicatedby theintrinsic nonlinearityof theun- morerealisticcasewheretheboundaryconditionsaregiven derlyingmathematicalproblem.Anotherproblemwhichbe- by vector magnetogramdata. We find that the convergence comes especially important when nonlinear force free field propertiesoftheoptimizationmethodareaffectedbyadding areusedformagneticfieldextrapolationisthecorrectformu- noise to the boundary data and we discuss possibilities to lation of the problemwith respectto boundaryvalues. The overcomethisdifficulty. available magnetographobservationprovideeither the line- of-sightmagneticfield(B ), whichissufficientforpoten- los tial and linear force free fields, or all three components of thephotosphericmagneticfield. Onlythelatterinformation 1 Introduction is sufficient to determine non-linear force free fields com- pletely. There are, however, tremendous difficulties to be Themagneticfieldisthemostimportantquantityforunder- overcomebothinextractingthenecessaryinformationabout standingtheplasmastructureofthesolarcoronaandtheac- themagneticfieldcomponentsontheboundaryfromthedata tivityphenomenaitshows. Unfortunatelyasystematicdirect inanunambiguouswayandintheuseofthisinformationin Correspondenceto: T.Wiegelmann the computationof the correspondingmagnetic field. Even 1 2 Coronalmagneticfields. thoughalotofresearchhasbeendevotedtotheseproblems oflinear(orconstant-α)forcefreefields. Standardmethods in the past so far none of the proposed methods has been forcalculatingpotentialandlinearforcefreefieldareavail- found to be outstanding in combining simplicity, usability able(seee.g.Gary,1989)andtheycanatleastgivearough androbustness. impressionofthecoronalmagneticfieldstructure. Thepurposeofthepresentcontributionistoassess some Thereare,however,bothobservationalandtheoreticalar- ofthemethodspresentlyavailableforcalculatingnon-linear gumentsthatatleastthemagneticfieldpriortoeruptivepro- force-free fields, with a view to implementing them into a cesses in the corona is not a linear force free (or potential) generalextrapolationcodewhichalsotakesstereoscopicin- field. If the normal componentor the line-of-sightcompo- formationinto accountin the extrapolationprocess. A first nentofthe magneticfieldonthe boundaryis giventhecor- versionofsuchamethodbasedonlinearforcefreeextrapola- respondingpotentialfield is uniquelydeterminedand is ac- tionhasrecentlybeenproposed(WiegelmannandNeukirch tuallythemagneticfieldwiththelowestmagneticenergyfor ,2002). AsstatedinWiegelmannandNeukirch (2002)and this boundary condition. Since magnetic energy is needed bearing in mind the remarksabove, it is would be very de- to drive an eruptive process pre-eruptive coronal magnetic sirable to generalize the extrapolation method to nonlinear fields cannot be expected to be in a potential state. This is forcefreefields. alsocorroboratedbyobservations(e.g.Hagyard,1990;Hag- As a first step in this directionwe investigatethe robust- yardetal. , 1990;Falconeretal. , 2002). Similarobserva- nessoftheoptimizationmethodrecentlyproposedbyWheat- tionsalsoindicatethatitwillusuallybedifficulttomatchthe landetal. (2000),andcompareitsperformancewithanother boundarymagneticfieldwithalinearforce-freefield. Also, methodbasedonMHDrelaxation.Thepaperisorganizedas from a more generalpointof view it seems highly unlikely follows. InSect. 2wediscussthebasicequationsandback- that the complexpre-eruptioncoronalmagneticfield which ground theory. Section 3 describes various methods which isslowlybutconstantlystressedbychangingboundarycon- havebeenproposedfornonlinearforcefreefield extrapola- ditions will have the current density distribution of a linear tion. Outofthesewefocusontheoptimisationmethodand, force-freefield,i.e. aconstantα. A(strongly)localizedcur- forthecaseofanalyticallygivenboundarydata,ontheMHD rent density in the erupting configuration seems to be a lot relaxationmethod.Thesemethodsaretestedusingananalyt- morenatural.Anotherargumentwhichissometimesputfor- icalsolutioninSect. 4.Theoptimisationmethodisalsosub- wardtoruleoutlinearforce-freemagneticfieldsformodels jectedtotestswithmoregeneralboundaryconditionswhere ofpre-eruptivestatesisthatlinearforcefreefieldsminimize weaddnoisetothegivenanalyticalboundarydata. Thepa- themagneticenergyundertheassumptionofglobalhelicity percloseswiththeconclusionsinSect. 5. conservation (e.g., Taylor , 1974), and therefore if helicity conservation could be assumed to hold for a coronal erup- tion,alinearforce-freefieldwouldnotbeabletoprovidethe 2 Basicequations: Force-FreeEquilibria energyfortheeruption.Eventhoughithasbeenproposedto applyvariantsofTaylor’shypothesistothestateofthecoro- Forforcefreefieldstheequationstosolveare nalmagneticfieldonlargerscales(e.g.,HeyvaertsandPriest j×B = 0 (1) , 1984), it generally does not seem to apply for models of eruptiveprocesses(e.g.,AmariandLuciani,2000).Further- ∇×B = µ j, (2) 0 more,thereisthepossibilityofhelicitytransportintoandout ∇·B = 0. (3) oftheregionofinterestandforthesereasons,wedonotwant Equation(1)impliesthatforforcefreefieldsthecurrentden- toputtoomuchemphasisonthisargument. sityandthemagneticfieldareparallel,i.e. However, we believe that the other argumentsare strong enoughtoassumethatgenerallyonehastotakeintoaccount µ0j=αB. (4) that for the force free magnetic fields of pre-eruptivestates thevalueofαchangesfromfieldlinetofieldline. Thisau- Hereαisafunctionofspace.Thisfunctionhastosatisfythe tomaticallyleadsustoconsidernonlinearforcefreefields. equation B·∇α=0 (5) 3 ExtrapolationMethods which is obtained by taking the divergence of Eq. (4) and makinguseofEqs. (2)and(3).SubstitutingEq. (4)intoEq. The problem we discuss in this section is to compute non- (2)wegetasecondequationwhichdeterminesB: linear force free magnetic fields in Cartesian coordinatesif givenallthreecomponentsofthemagneticfieldonthebound- ∇×B=αB (6) ary, i.e. the photosphere. Various methods have been pro- Equation (5) implies that α is constant along magnetic posed(seee.g.Amarietal. ,1997;De´moulinetal. ,1997; fieldlines,butthatitcanvaryacrossthemagneticfield. Ob- McClymontetal. ,1997;Semel,1998;Amarietal. ,2000; viously,Eq. (5)issolvedbyα = 0implyingthatj = 0by YanandSakurai,2000)ofwhichwewilldiscussthree. For Eq. (4). Inthiscaseweobtainpotentialfields. Anotherob- the first method we assume that the magnetic field is given viouspossibilityisαconstant,butnonzero. Thisisthecase on the lower boundary (photosphere), whereas for the sec- Coronalmagneticfields. 3 ondandthirdmethodweassumethatBisprescribedonthe 3.2 MHD-Relaxation surfacesofavolumeV. Anotherpossibilitytocalculatenonlinearforcefreefieldsis 3.1 DirectExtrapolation bythemethodofMHDrelaxation(e.g.,ChoduraandSchlu¨ter , 1981). The idea is to start with a suitable magnetic field Directextrapolation(Wuetal. ,1990)isaconceptuallysim- which is not in equilibrium and to relax it into a force free ple method, in which the Eqs. (6) and (5) are reformulated state. This is done by using the MHD equationsin the fol- in such way that they can be used to extrapolatethe photo- lowingform: sphericboundaryconditionsgivenbyavectormagnetogram νv = (∇×B)×B (14) intothesolarcorona. E+v×B = 0 (15) If we suppose that the boundary condition on the lower ∂B boundaryis given by B0(x,y,0) then we can calculate the = −∇×E (16) z-componentofthecurrentdensityatz =0byusingEq.(2) ∂t ∇·B = 0 (17) ∂B ∂B µ j = y0 − x0. (7) Theequationofmotion(14)hasbeenmodifiedinsuchaway 0 z0 ∂x ∂y that it ensures that the (artificial) velocity field is reduced. Knowingthez-componentofthephotosphericmagneticfield Equation(15)ensuresthatthemagneticconnectivityremains (B ),wecanuseEqs. (7)and(4)todetermineα(x,y,0)= unchangedduringthe relaxation. Therelaxationcoefficient z0 α : canbechoseninsuchwaythatitacceleratestheapproachto 0 theequilibriumstate. Weuse j α = z0 (8) 1 0 B ν = |B|2 (18) z0 µ We remarkthatspecialcarehasto betakenatphotospheric withµ=constant.Choosingtherelaxationcoefficientνpro- polarityinversionlines,i.e. linesalongwhichBz0 = 0(see portionalto B2 speeds up the relaxation process in regions e.g.,Cupermanetal. ,1991). Equation(8)allowsustocal- of weak magnetic field (see Roumeliotis , 1996). Combin- culate the x and y-component of the current density using ingEqs. (14),(15),(16)and(18)wegetanequationforthe Eq. (4) evolutionofthemagneticfieldduringtherelaxationprocess: ∂B [(∇×B)×B]×B jx0 = α0Bx0, (9) =µ∇× . (19) ∂t (cid:18) B2 (cid:19) j = α B . (10) y0 0 y0 Thisequationisthensolvednumericallystartingwithagiven WenowuseEq.(3)andthexandy-componentofEq.(2) initialconditionforB. Equation(19)ensuresthatEq. (17) to obtain expressionsfor the z-derivativesof all three mag- is satisfied duringthe relaxationif the initialmagneticfield neticfieldcomponentsintheform satisfiesit. The difficulty with the relaxation method in the present ∂B ∂B x0 = j + z0, (11) form is that it cannot be guaranteed that for the boundary y0 ∂z ∂x conditionswe impose and for a given initial magnetic field ∂B ∂B y0 = z0 −j , (12) (i.e. givenconnectivity),asmoothforce-freeequilibriumex- x0 ∂z ∂y ists to which the system can relax. If such a smooth equi- ∂Bz0 = −∂Bx0 − ∂By0. (13) libriumdoesnotexisttheformationofcurrentsheetsistobe ∂z ∂x ∂y expectedwhichwillleadtonumericaldifficulties.Therefore, carehastobetakenwhenchoosinganinitialmagneticfield. Theideaistointegratethissetofequations(numerically)in Thisclearlylimitstheapplicabilityoftherelaxationmethod, thedirectionofincreasingz,basicallyrepeatingtheprevious and further work will be needed to overcome this obstacle. stepsateachheight. We therefore only apply the relaxation method for compar- Unfortunatelyitcanbeshownthattheformulationofthe ison with the optimizationmethodto cases wherewe know force free equationsin this way is unstable because it is an theboundaryconditionstobecompatible. ill-posedproblem(e.g.,Cupermanetal. ,1990;Amarietal. One can show, however, that the relaxation method con- ,1997).Inparticularonefindsthatexponentialgrowthofthe vergesunderlessrestrictiveboundaryconditions. Bymulti- magneticfieldwithincreasingheightisatypicalbehaviour. plyingEq. (16)byB,integratingoverthecompletecompu- Thereasonforthisisthatthemethodtransportsinformation tationalvolumeV andusingEq. (15),wefindthat onlyfromthephotosphereupwards. Otherboundarycondi- d tions. e.g. at an upperboundary,either at a finite heightor W = [(v·B)B−B2v]·ndS− (j×B)·vdV,(20) B atinfinitycannotbetakenintoaccount. Attemptshavebeen dt I∂V ZV madetoregularizethemethod(e.g.,Cupermanetal. ,1991; where De´moulin et al. , 1992), but cannot be considered as fully 1 W = B2dV. (21) successful. B 2Z V 4 Coronalmagneticfields. Underline-tyingboundaryconditionswehavev =0onthe Here µ is a constant which can be chosen to speed up the boundary,andonlythevolumeintegralsurvives. UsingEq. convergenceof the iterationprocess. Equation(19)and the (14)andthefactthatν >0onecanshowthatinthiscase leadingtermsofEq.(31)areidentical,butEq. (31)contains d µ additionalterms. W =− 0 (j×B)2dV <0, (22) B ForthismethodthevectorfieldBisnotnecessarilysole- dt Z ν V noidalduringthecomputation,butwillbedivergence-freeif and an equilibrium is achieved if and only if the magnetic theoptimalstate withL = 0isreached. A disadvantageof fieldisforcefree. the method is that it cannot be guaranteedthat this optimal We emphasizethattheseboundaryconditionsareusually stateisindeedreachedforagiveninitialfieldandboundary notcompatiblewithprescribingallthreemagneticfieldcom- conditions. If this is not the case then the resulting B will ponentsonthe boundaries,butonlythe normalcomponent. eitherbenotforcefreeornotsolenoidalorboth. Therefore,inthefollowingwediscusstherelaxationmethod onlyfortestcasesinwhichweknowthattheboundarycon- ditionsarecompatible.Thisisdoneforcomparisonwiththe 4 Tests othermethodwediscussnow,theoptimizationmethod. We encodedthe MHD-relaxationmethodand the optimiza- 3.3 Optimization tion method in one program. The code is written in C and uses4thorderfinitedifferencesonanequalspacedgrid.The Recently Wheatland et al. (2000) have proposed an opti- timeiterationiscomputedwiththemethodofsteepestgradi- mization method which refines a proposal by Roumeliotis ent(seee.g.textbookslikeGeigerandKanzow,1999).The (1996).Inthismethodthefunctional programisparallelizedwithOpenMP. L= B−2|(∇×B)×B|2+|∇·B|2 d3V (23) Z 4.1 Thesemi-analyticaltestfield V (cid:2) (cid:3) is minimized. Obviously, L is bounded from below by 0. To test the reconstruction methods, we try to reconstruct a Thisboundisattainedifthemagneticfieldsatisfiestheforce semi-analyticnonlinearforcefreesolutionfoundbyLowand freeequations Lou (1990).Wheatlandetal. (2000)haveusedsimilartests. (∇×B)×B = 0 (24) The main difference between their paper and ours is in the ∇·B = 0. (25) diagnosticquantitiesusedandinthecomparisonwithi)the relaxationmethodandii)thenoisyboundarydata(whichwe The variation of L with respect to an iteration parameter t thinkismorerepresentativeofarealisticsituation).Lowand leadsto(seeWheatlandetal. (2000)fordetails) Lou (1990) solved the Grad-Shafranov equation for axis- 1 dL ∂B ∂B =− ·Fd3V − ·Gd2S (26) symmetric force free fields in sphericalcoordinatesr, θ, φ. 2 dt Z ∂t Z ∂t V S For axis-symmetry the magnetic field can be written in the where form F = ∇×(Ω×B)−Ω×(∇×B) 1 1 ∂A ∂A −∇(Ω·B)+Ω(∇·B)+Ω2 B (27) B= rsinθ (cid:18)r ∂θer− ∂reθ+Qeφ(cid:19) (32) G = nˆ×(Ω×B)−nˆ(Ω·B) (28) whereAisthefluxfunction,andQrepresentstheφ-component Ω = B−2 [(∇×B)×B−(∇·B)B] (29) ofB,dependingonlyonA. ThefluxfunctionAsatisfiesthe Grad-Shafranovequation The surface term in (26) vanishes for ∂B/∂t = 0 1 on the boundaryandLdecreasesfor ∂2A 1−µ2 ∂2A dQ + +Q =0 (33) ∂B ∂r2 r2 ∂µ2 dA =µF (30) ∂t whereµ=cosθ.Amongothers,LowandLou (1990)derive Thisleadstoaniterationprocedureforthemagneticfield solutionsfor whichisbasedontheequation dQ ∂B [(∇×B)×B]×B =α=constant (34) = µ∇× dA ∂t (cid:18) B2 (cid:19) bylookingforseparablesolutionsoftheform +µ −Ω×(∇×B)−∇(Ω·B) P(µ) n A(r,θ)= . (35) rn +Ω(∇·B)+Ω2 B (31) o The solutions are axis-symmetric in spherical coordinates 1Thisconditionmakesitnecessarythatallthreecomponentsofthemag- withapointsourceattheorigin,butifusedfortestingforce neticfieldhavetobeprescribedonthesixboundariesofthecomputational freecodesinCartesiangeometrythesymmetryisnolonger box.Insection4.2.3wediscusshowthesurfaceintegralin(26)canbeused obviousafteratranslationwhichplacesthepointsourceout- toupdatethelateral andtopboundaryconditions duringtheoptimization sidethecomputationaldomainandarotationofthesymme- process. Underthisconditiononlythebottomboundaryisprescribedtime tryaxiswithrespecttotheCartesiancoordinateaxis. independentlywiththehelpofphotosphericvectormagnetograms. Coronalmagneticfields. 5 4.2 Testruns Table 1. Details ofruns toreconstruct aLow andLou (1990)solution. ThevaluesoftheparametersusedbyLowandLouarel = 0.3andΦ = Forthe testwe havefirst calculatedBz(x,y,0)onthe pho- π/4.Thefirstcolumncontainstheusedgridsizeandcommentswhichcode tosphericboundaryz = 0 fortheappropriateLowandLou (relaxation oroptimization) and boundary conditions have been used. If solution.UsingthisB asaboundaryconditionwecalculate notspecifiedtheboundaryconditionshavebeenextractedfromtheanalytic z solution. We specify if noise is added to the boundary conditions. The thepotentialfieldcorrespondingtothisboundaryconditions remarkPot-boundarymeansthatthelateralandtopboundaryconditionsare inside our computational box. The potential field is com- notextractedfromtheanalyticsolution,butprescribedasaglobalpotential putedwithhelpofamethoddevelopedbySeehafer (1978). field. The second column contains the iteration step. The third column This method gives the componentsof the magnetic field in containsthevalueofthefunctionalL,thefourthcolumntheLorentzforce terms of a Fourier series. The observed magnetogram (or (averaged over the numerical grid) and the last column the relative error comparedwiththeanalyticsolution. here the extractedmagnetogramfromthe Low and Lou so- lution) covers a rectangular region extending from 0 to Lx nx×ny×nz Step [T2Lm] [n|Nj×mB−|3] RelativeError in x and 0 to L in y is artificially extendedonto a rectan- 40×40×20 discret.error 3.2 2.0 Reference y Start 0 46573 264 0.42 gularregioncovering−L to L and−L to L bytaking x x y y Relaxation 50 3092 38.2 0.26 anantisymmetricmirrorimageoftheoriginalmagnetogram 500 769 7.5 0.095 in the extended region, i.e. Bz(−x,y) = −Bz(x,y) and 5,000 25.0 1.4 0.0016 B (x,−y) = −B (x,y). We use a Fast Fourier Transfor- Optimization 50 832 44.1 0.19 z z mation (FFT) scheme (see Alissandrakis (1981)) to deter- 500 23.1 7.0 0.03 5,000 3.15 2.05 0.0001 minethecoefficientsoftheFourierseries. Formoredetails 1%noise 5,000 9.5 3.7 0.00017 regardingthismethodseeSeehafer (1978,1982). 10%noise 5,000 645.0 29.2 0.0055 Thepotentialfieldisusedasstartingfieldinsidethecom- 20%noise 5,000 2584 58.6 0.028 putational box but the Low and Lou B field is imposed on Pot-boundary 500 468 9.1 0.39 the boundaries. We then use either the MHD relaxation or Pot-boundary 5,000 458 6.3 0.37 the optimization method to calculate the correct force free 80×80×40 discret.error 0.6 0.65 Reference Start 0 109203 297 0.48 equilibriumfield. Duringthecomputationswecalculatethe Optimization 50 1590 52 0.26 quantities L/[T2m] (for both relaxation and the optimiza- 500 81 12 0.079 tion method), the absolute value of the Lorentz force |J× 5,000 0.79 1.02 0.0013 B|/[nN m−3](averagedoverthenumericalgrid),thevalue 25,000 0.6 0.65 0.000003 of|∇·B|/[mGaussm−1](averagedoverthenumericalgrid), 10%noise 25,000 1876 37.6 0.0078 Pot-boundary 1,000 563 12.8 0.42 andthedifferencebetweenthenumericalmagneticfieldand Pot-boundary 10,000 529 5.3 0.36 the known analytical solution |B(t)−Bana|2 (averaged over |Bana|2 the numerical grid) at each time step. In section 4.2.1 and 4.2.2allcomponentsofthemagneticfieldarefixedonallsix canbeseen. boundaries. Insection4.2.3onlythebottomboundarycon- ToquantifythisstatementweshowinFig.2acomparison ditionisprescribedtime-independentandthelateralandtop oftheevolutionofthefourdiagnosticquantitiesforthetwo boundariesareupdatedduringthe iteration. Thedetails are methodsduringthecomputation. Forbothmethodsallfour describedin4.2.3. diagnosticquantitiesdecreaseduringthecomputationbutaf- 4.2.1 Standardtests ter 5,000 steps the optimization method shows significant smaller valuesforthe quantitiesL, ∇·B and thecompari- InFig. 1weshowthree-dimensionalplotsofselectedmag- sonwiththeanalyticsolution.Thereforewecanstatethatin netic field linesfor the Low and Lou solution, the potential thiscasetheoptimizationmethodseemstobeslightlymore fieldcalculatedbytakingtheLowandLouB onthelower efficientthantheMHD relaxationmethod. Thisiscorrobo- z boundary,the field ofthe MHD relaxationmethodafter50, rated by a look a Table 1 in which we summarize the main 500and5,000relaxationtimesteps, andthesameplotsfor resultsofthevarioustestrunswehavemade. Thefirstrow the optimization method. In these runs we used a grid size shows the discretisation errors for L and the Lorentz force of40×40×20. Thecolourcodingofthebottomboundary if the knownsolution is discretised ona 40×40×20-grid indicatestheB distributiononthatboundary. and usedto calculate the valuesof thisquantities. Thesec- z It can bee seen that the potential field which is used as ondrowcontainsthevaluesofL, theLorentzforceandthe startingfieldofthecomputationsforbothmethodsisclearly relativeerroraftertheinteriorgridpointshavebeenreplaced differentfrom the Low and Lou test field. The state of the bythepotentialfieldcalculatedfromthephotosphericBz of system after 50 steps still shows some resemblance to the theLowandLousolution. Therelativelylargevaluesofthe initialpotentialfieldforbothmethodsbutthefieldlineshave threediagnosticquantitiesshowthedeviationfromtheequi- started to evolve away from the potential field. One can librium. also see small differences between the two methods. Af- Thenexttworowsshowhowthethreediagnosticquanti- ter5,000stepsnoobviousdifferencesbetweenthemagnetic tiesevolveduringtheMHDrelaxationmethodforthe40× fieldreachedwitheithermethodandtheLowandLoufield 40×20-grid. One can see that after 5,000 steps the value 6 Coronalmagneticfields. Fig.1.Toprow,leftpanel:AsetofselectedfieldlinesoftheLowandLousolution.Toprow,rightpanel:Thesamefieldlinesforthecorrespondingpotential fieldcalculatedasdescribedinthemaintext. Thedifferencebetweenthetwofieldsisobvious. Middlerow: Thefieldlinesafter50(left)and5,000(right) stepsoftheMHDrelaxationmethod. Bottomrow: Thefieldlinesafter50(left)and5,000(right)stepsoftheoptimizationmethod. Theboxdrawnshows thespatialextensionofthenumericalbox. Thecolourcodingatthebottomoftheboxesshowsthenormalcomponentofthephotosphericmagneticfieldin Gauss. Coronalmagneticfields. 7 ofLhasdroppedbyalmostthreeordersofmagnitude,butis stilloneorderofmagnitudeabovethevaluecalculatedwith thediscretisedexactsolution.TheLorentzforcehasdropped tothelevelofthedicretisationerror,andtherelativeerrorhas droppedmorethantwoordersofmagnitude. We are giving the same quantities for the optimization methodinthefollowingthreerows. Itcanbeseenthatespe- ciallythevaluesofLarealwayswaybelowthecorrespond- ing values of the MHD relaxation method. This is not sur- prisingastheoptimizationmethodreliesontheminimization ofthefunctionalL. ThefinalvalueofLisactuallybelowthe discretisationerror. Itcanalsobeseenthattherelativeerror after 5,000 iterations is more than one order of magnitude smallerthanthecorrespondingvalueoftheMHDrelaxation method. Wehavemadeasteptowardscheckingnumericalconver- gencefortheoptimizationmethodbyrepeatingthecalcula- tiononagridwith doubledresolution(80×80×40). The resultsareshowninthelowerpartofTable1. Thefirstthing tonoticeisthatthediscretisationerrorisalmostanorderof magnitude smaller than for the previousgrid. For this grid 25,000 iteration steps have been carried out, and after that thevaluesofLandtheLorentzforcehavereachedthelevel ofthediscretisationerror.Therelativeerrorismorethantwo ordersofmagnitudesmallerthanforthecoarsergrid. 4.2.2 Effectofaddingnoise The previous calculations have been carried out under the assumption that the magnetic field on the boundary of the computationalboxisknownexactly. Suchanidealizedsitu- ationwillnotbefoundwhenrealdataareused.Vectormag- netogramswillhavefinite resolutionandsufferfromobser- vational uncertainties making the reconstruction potentially moredifficult. Especiallytheoptimizationmethodhasbeen proposed in view of coping with these difficulties (Wheat- landetal. ,2000). To investigate how the optimization method works if the boundary conditions are not given by the exact analytical field, but to keep control over the amount of uncertainty, we have carried out test runs with the optimization method adding random noise with to the boundary conditions. We add the noise by multiplyingthe exactboundaryconditions withanumber1+δwhereδisarandomnumberintherange −n ≤δ ≤n andn isthenoiselevel. l l l Fig. 2. Evolution of the diagnostic quantities. Top panel: functional L To study the effect of the noise we have done runs with (definedinEq. (23)),secondpanel: Lorentzforce|j×B|(averagedover differentamplitudesofnoiseonthe40×40×20grid. The thenumericalgrid),thirdpanel:|∇·B|(averagedoverthenumericalgrid) bottom panel: relative error |B(t)−Bana|2 (averagedoverthenumerical evolutionofLandtheLorentzforcewiththenumbersofit- |Bana|2 eration for variousnoise levels are shown in Fig. 3. It can grid). The quantities are drawn for the MHD relaxation method (dotted lines)andfortheoptimizationmethod(solidlines). Thegridsizeusedwas clearlybeseenthatthemethodconvergeslessandlesswell 40×40×20. withincreasingnoise.Fornoiselevelsof10%and20%,the correspondingvaluesafter5,000stepsforthe40×40×20 gridaregiveninTable1. Wehavealsocarriedoutarunon the80×80×40gridwithanoiselevelof10%. Forthisrun thevaluesofthediagnosticquantitiesafter25,000stepsare stillhigherthanthevaluesofthecorrespondingquantitieson thecoarsergridafter5,000steps. Wehavetoconcludethat 8 Coronalmagneticfields. wellposedproblem. Apopularwellposedboundarycondi- tion for non linear force free fields is to impose the normal component B of the magnetic field and the normal com- n ponentofthecurrentdensityj inregionsforapositive(or n negative)B . (seeAly,1989, regardingthecompatibilityof n photospheric vector magnetograph data). These conditions have been derived under the very strict constraint of a flux balanced magnetogram where all magnetic flux is closed. Thisimpliesthateachmagneticfieldlinestartingatonepoint onthephotospherealsohastoendonthephotosphere(ina regionofoppositemagneticflux,butwiththesamevalueof α). Suchstrictlyisolatedactiveregionsseemtobeatoore- strictiveconstraintforrealvectormagnetograms. Realvec- tormagnetogramsprovideall three componentsof the mag- neticfieldforeithersignofB andthusalsoj onthecom- n n pletebottomboundary. Itseemsreasonabletoimposethese observed data on the bottom boundary. The price we have to pay is that field lines starting on the photosphere might pass the lateraland topboundary. 2 Consequentlywe need toupdatethelateralandtopboundaryduringtheiteration. Fig.3. EvolutionofLand|j×B|fortheoptimization codeforvarious Asafirststeptowardsconsistentboundaryconditionsfor levels of boundary value noise. The lowest lines correspond to an ideal vectormagnetogramandthehigherlinestovectormagnetogramswith1%, the optimizationmethod, we choosea potentialfield on the 10%and20%noise,respectively.Thegridsizeusedhereis40×40×20. lateral and top boundaries. Firstly, a potential field can be Theconvergenceofthemethodgetssmallerwithincreasingnoiselevel. easily computedjust from the measurednormalcomponent of the photospheric magnetic field and secondly, it can be assumedthatthesolarmagneticfieldisreasonablywellap- evena10%uncertaintyintheboundaryconditionscouldaf- proximatedbya potentialfield outsideactiveregions. Here fecttheconvergenceoftheoptimizationmethodquitebadly. we compute the potential field on the boundaryas a global Themainproblemisthatwithnoiseandfixedboundarycon- potential field computed from the B distribution at z = 0 z ditionsonallsixboundariestheboundaryconditionareover- alone.Table1showsthatthevalueofLforthe40×40×20 imposedandwillnolongerbecompatible. Wediscusshow griddropstoaslightlylowervaluethanforthecorrespond- thisproblemcanbesolvedinthenextsection. ingrunwith10%noise,whiletheremaining|j×B|forces areafactorofthreelower. Therelativeerrorcomparedwith 4.2.3 The problem of the lateral and top boundary condi- theexactsolutionisquitehighhere,whichisnowonderbe- tions causethemagneticfieldisforcedtostaypotentialclosetothe side and top boundaries. One mightnotice that the error in Untilnowtherunshavebeencarriedoutundertheassump- theforcesisafactorof3largerthanthediscretisationerror, tionthatthemagneticfieldboundaryconditionsarewellknown whileLismorethantwoordersofmagnitudelargerthanthe onall six boundariesofthe box. Unfortunatelyrealvector- discretisation error. The reason is that an inconsistencyoc- magnetogramsonly provideinformationregardingthe pho- cursattheedgesoftheboxbetweenthephotosphericbound- tospheric magnetic field. The top and side boundary con- aryandthesideboundaries.TheLowandLousolutionisnot ditions are unknown and have to be fixed somehow. Here potentialonthephotosphereclosetothesideboundaries,but we want to investigate the influence of the choice of these thechosensideboundaryconditionsarepotential. boundaryconditions. An additionalproblemoccursby fix- To overcome this difficulty we cannot fix the lateral and ingthevectormagneticfieldonallsixboundaries(asdonein top boundaries during the iteration, but have to relax also the previoussections) because one overimposesthe bound- these boundaries. As the iteration equation (30) has been ary conditions. For the test cases in the previous sections derived under the condition ∂B = 0 on all boundaries we ∂t the boundary conditions have been extracted from an ana- havetoextendtheoptimizationapproach.Ifweallow ∂B 6= lyticsolutionandconsequentlytheboundariesareautomati- ∂t 0onsomeboundariesthesurfaceterminequation(26)does callycompatible(thisimpliesthattherearenoproblemswith over-imposed boundary conditions). Section 4.2.2 showed 2Ifthefluxisnotbalancedintheregion,itimpliesthatpartoftheflux that this compatibility mightget lost if the boundariescon- distributionismissingfromthelimited-sizeofthemagnetogramorthatthe tain noise. To overcome this difficulty and to take into ac- calibrationofthemagnetographisbad.Inbothcases,anymagneticextrap- count that measured data are only available for the bottom olationmethodwillonlyderiveanapproximatefield.Unfortunatelythesize boundary we describe how the strict condition ∂B = 0 on of observed vectormagnetograms is limited and a real magnetogram will ∂t usuallynotbeexactlyfluxbalanced.Fieldlinespassingtheboundaryofthe allboundariescanbeavoidedwithintheoptimizationproce- computationalboxcanbeeitheropenfieldlinesorcloseonthephotosphere dure. First we havetoimposethe boundaryconditionsasa outsidetheobservedmagnetogram. Coronalmagneticfields. 9 not necessarily vanish. It is straightforward to extend the aknownsemi-analyticsolution(LowandLou,1990)froma iterationby givennon-equilibriuminitial condition. Both methodscon- vergetotheexactsolution,buttheoptimizationmethodhas ∂B =µG (36) higheraccuracy.TheMHDrelaxationmethodisonlyapplied ∂t tothiscasesinceinitspresentnumericalimplementation,the on the open boundaries. Equation (36) changesthe bound- boundaryconditionscouldgiverisetoinconsistencies. aryvaluesinsuchwaythatLdecreases.Inthefollowingwe To simulate a more realistic situation which is closer to choose the lateral and top boundariesas open (theyare ini- workingwithobservationaldatafromvectormagnetograms tializedwithapotentialfield)andapplyEq. (36)here. The we added noise to the boundary conditions. We have only bottom boundaryremainstime independentduring the iter- appliedtheoptimizationmethodtothistypeofproblemand ation. Let us remark that one might as well use the above found that already a relatively small noise level of 10 % described photospheric boundary condition for isolated ac- canaffecttheconvergenceofthemethodquiteconsiderably. tive regions(j fixed on the photosphereonly in regionsof Moreworkisneededtosee howthisdifficultycanbeover- n positiveB ). TodosoonehastoapplyEq. (36)alsoforthe come. Wealsointendtogeneralizetherelaxationmethodin n transversalmagneticfieldonthephotosphereinregionswith suchwaythatisableofcopingwithmorerealisticboundary negativeB . data. n Ifwedonotkeepthelateralandtopboundaryconditions Theultimateaimforthefutureistoapplythesemethodsto fixed,butallowthemtorelaxwithhelpofEq. (36),Ldrops datafromvectormagnetograms. Unfortunatelyvectormag- to36.2whichisonlyoneorderofmagnitudeabovethedis- netogramsarelessaccuratethanline-of-sightmagnetograms cretisationerror. Thecorrespondingvalueofthe totalforce (e.g. fromMDIonSOHO).Therefore,inthelightofourre- decreasesslightly(|j×B|=5.3)comparedtofixedbound- sultsinthecaseswherenoisewasaddedtotheboundarycon- ary conditions. For observed vectormagnetogramsit might ditionsitwillbeinterestingtoseewhetherandhowquickly beusefultochooseasufficientlylargeareaaroundanactive the methodsconverge. We also planto use stereoscopicin- region,i.e. withthesideboundariesrelativelyfarawayfrom formation as a further constraint in the reconstruction pro- thenon-potentialactiveregion,sothatthemagneticfieldcan cess. This will become especially important for the analy- be assumed to be approximately potential close to the side sis of data from the STEREO mission. A method which is boundaries. We remark that it might be hard to find cor- based onlinearforcefree fieldshasrecentlybeenproposed responding vector magnetogramsas these instruments (e.g. by Wiegelmannand Neukirch (2002), but linear force free IVMinHawaii)donotobservethecompletesolardisk,but fieldsseemtobetoorestrictivetodescribecoronalphenom- onlyrestricted areas. We havealso carriedouta runonthe enaappropriately.Therefore,thenaturalnextstepwillbethe 80×80×40gridwithpotentialfieldboundaryconditions. useofnonlinearforcefreefieldsinsuchacode. Forthisruna stationarystate isreachedafter10,000steps, and the forces are less than one order of magnitude higher Acknowledgements. TheauthorsthankBerndInhesterandHardiPeterfor thanthediscretisationerror,whileLisnearlythreeordersof useful discussions. TWacknowledges supportbytheEuropean Commu- nitysHumanPotentialProgrammethroughaMarie-Curie-Fellowship. TN magnitudeabovethediscretisationerror.Pleasenotethatthe thanksPPARCforsupportbyanAdvancedFellowship. Thecomputations absoluteerrorinthe|j×B|hasthesameorderofmagnitude havebeencarriedoutonthePPARCfundedMHDClusterinSt. Andrews. hereasforthecorresponding40×40×20run. Ifweallow WethankNorbertSeehaferandanunknownrefereeforeusefulcomments. relaxationonthesideandtopboundaries,Ldropsto96and |j×B|=8.7isslightlyhigherthanforfixedsideboundary conditions. Weconcludethattheuncertaintyofthesideand References topboundaryconditionsaffectstheconvergenceoftheopti- mizationmethod.Itsinfluencecanbereducedsignificantlyif Alissandrakis, C.E.: Onthecomputation ofaconstant-α force-free mag- neticfield,Astron.Astrophys.,100,197-200,1981. weallowforarelaxationoftheseboundariesandonlyfixthe Aly,J.J:Onthereconstructionofthenonlinearforce-freecoronalmagnetic photosphericboundaryconditions,butfurtherimprovements fieldfromboundarydata,SolarPhys.,120,19-48,1989. wouldstillbewelcome. Amari, T. and Luciani, J. F.: Helicity redistribution during relaxation of astrophysicalplasmas,Phys.Rev.Lett.,84,1196-1199,2000. Amari, T., Aly, J. J., Luciani, J. F., Boulmezaoud, T. Z., and Mikic, Z.: 5 Conclusions Reconstructingthesolarcoronalmagneticfieldasaforce-freemagnetic field,SolarPhys.,174,129-149,1997. Amari,T.,Boulmezaoud,T.Z.,andMikic,Z.:Aniterativemethodforthe In the present paper we have presented an assessment of reconstructionofthesolarmagneticfield.I.Methodforregularsolutions, thepropertiesofanoptimizationmethodwhichhasrecently Astron.Astrophys.,350,1051-1059,2000. beenproposedforthecalculationofnonlinearforce-freefields Chiu,Y.T.andHilton,H.H.:ExactGreen’sfunctionmethodofsolarforce- fromgivenboundarydata(Wheatlandetal.,2000).Onepart freemagnetic-fieldcomputationswithconstantalpha.I.Theoryandba- oftheassessmentwasa comparisontheperformanceofthe sictestcases,Astrophys.J.,212,873-885,1977. Chodura,R.,andSchlu¨ter,A.:A3-DcodeforMHDequilibriumandstabil- optimizationmethodwiththeperformanceofanMHDrelax- ity,J.Comp.Phys.,41,68-88,1981. ationmethod.Forbothmethodsnewparallelizedcodeshave Cuperman,S.,Ofman,L.,andSemel,M.:Determinationofforce-freemag- beendeveloped. Bothmethodshavebeenappliedtofinding neticfieldsabovethephotosphereusingthree-componentboundarycon-

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.