ebook img

Computing isogenies between Abelian Varieties PDF

49 Pages·2017·0.94 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computing isogenies between Abelian Varieties

Computing isogenies between Abelian Varieties David Lubicz, Damien Robert To cite this version: David Lubicz, Damien Robert. Computing isogenies between Abelian Varieties. Compositio Mathe- matica, 2012, 2012, Online publication. ￿10.1112/S0010437X12000243￿. ￿hal-00446062v2￿ HAL Id: hal-00446062 https://hal.archives-ouvertes.fr/hal-00446062v2 Submitted on 13 Jan 2010 (v2), last revised 21 Sep 2012 (v3) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Computing isogenies between abelian varieties David Lubicz1,2, Damien Robert3 1CÉLAR, BP7419,F-35174Bruz 2IRMAR,UniverstédeRennes1, CampusdeBeaulieu,F-35042Rennes 3LORIA,CampusScientifique,BP239, F-54506Vandœuvre-lès-Nancy Abstract Wedescribean efficientalgorithm forthecomputation ofisogeniesbetween abelian varieties representedin the coordinate system providedby algebraic theta functions. Weexplainhowtocomputealltheisogeniesfromanabelianvarietywhosekernelis isomorphicto a given abstractgroup. We also describe an analog ofVélu’s formulas tocomputeanisogeniswithprescribedkernels.Allouralgorithmsrelyinanessential manneronageneralizationoftheRiemannformulas. Inordertoimprovetheefficiencyofouralgorithms,weintroduceapointcompression algorithmthatrepresentsapointoflevel4(cid:96)ofa g dimensionalabelianvarietyusingonly g(g+1)/2·4g coordinates.WealsogiveformulastocomputetheWeilandcommutator pairinggiveninputpointsinthetacoordinates.Allthealgorithmspresentedinthispaper workingeneralforanyabelianvarietydefinedoverafieldofoddcharacteristic. Contents 1 Introduction 5 2 Computing Isogenies 6 2.1 EllipticcurvesandVélu’sformulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Isogeniesonabelianvarieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Modular correspondences and theta null points 10 3.1 Thetastructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Isogeniescompatiblewithathetastructure . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Modularcorrespondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Theactionofthethetagroupontheaffineconeandisogenies. . . . . . . . . . 14 1 Contents 4 The addition relations 16 4.1 Evaluationofalgebraicthetafunctionsatpointsof(cid:96)-torsion . . . . . . . . . . 17 4.2 ThegeneralRiemannrelations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2.1 Thecasen=2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 Thetagroupandadditionrelations . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5 Application of the addition relations to isogenies 29 5.1 Pointcompression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.1.1 Additionchainswithcompressedcoordinates . . . . . . . . . . . . . . . 31 5.2 Computingthedualisogeny. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.3 Computationofthekerneloftheisogeny . . . . . . . . . . . . . . . . . . . . . . . 33 6 The computation of a modular point 34 6.1 AnanalogofVélu’sformulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.2 Thetagroupand(cid:96)-torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.3 Improvingthecomputationofamodularpoint . . . . . . . . . . . . . . . . . . . 37 7 Pairing computations 41 7.1 Weilpairingandcommutatorpairing. . . . . . . . . . . . . . . . . . . . . . . . . . 41 7.2 Commutatorpairingandadditionchains . . . . . . . . . . . . . . . . . . . . . . . 43 8 Conclusion 46 References 46 List of Algorithms 4.3 Additionchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.6 Multiplicationchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.5 Pointcompression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.6 Pointdecompression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.9 Theimageofapointbytheisogeny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.1 Vélu’slikeformula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.7 Computingallmodularpoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7.5 Pairingcomputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2 Glossary List of Notations Notation Description Page List Z(n) (cid:90)g/n(cid:90)g 9 (cid:77) Themodulispaceofthetanullpointsofleveln. 7 n A (A ,(cid:76),Θ )isapolarizedabelianvarietywithatheta 9 k k A structureofklevel(cid:96)n. B (B ,(cid:76) ,Θ ) is an abelian variety (cid:96)-isogenous to A 10 k k 0 B k k withathetastructureofleveln. ϑ (ϑ ) arethecanonicalprojectivecoordinateson 9 i i i∈Z((cid:96)n) A givenbythethetastructure. k 0 Thethetanull0 =ϑ (0 ) . 10 Ak Ak i Ak i∈Z((cid:96)n) 0 Thethetanull0 =ϑ (0 ) . 10 B B i B i∈Z(n) G(k(cid:76)) TheThetagroupkof(A ,(cid:76)k) 9 k K((cid:76)) K((cid:76))=K ((cid:76))⊕K ((cid:76))isthedecompositionofthe 9 1 2 kernelofthepolarization(cid:76) inducedbytheThetastruc- tureΘ A H(δ) TheHeisenberggroupoftypeδ. 9 s The natural section K ((cid:76)) → G((cid:76)) induced by the 9 K((cid:76)) 1 1 Thetastructure. ρ(cid:101)∗(cid:76) TheaffineactionofG((cid:76))onA(cid:101)k. 10 ρ∗ TheprojectiveactionofK((cid:76))onA . 10 (cid:76) k A(cid:101) TheaffineconeofA . 10 k k B(cid:101) TheaffineconeofB . 11 k k ϑ(cid:101) (ϑ(cid:101)) aretheaffinecoordinatesonA(cid:101) . 10 i i i∈Z((cid:96)n) k (cid:101)0 Anaffineliftof0 . 15 B B k k (cid:101)0A Theaffineliftof0A suchthatπ(cid:101)((cid:101)0A )=(cid:101)0B . 15 πk The(cid:96)-isogenyπ:Ak →B . k k 10 k k π π(ϑ(cid:101)(x) ) = ϑ(cid:101)(x) is the affine lift of π to 11 (cid:101) (cid:101) i (cid:101) i∈Z((cid:96)n) i (cid:101) i∈Z(n) A(cid:101) →B(cid:101) . k k π π =π◦(1,i,0)=ϑ(cid:101) (·) . 14 (cid:101)i (cid:101)i (cid:101) i+j j∈Z(n) P(cid:101)i P(cid:101)i =(1,i,0).(cid:101)0Ak =(ϑi+j((cid:101)0Ak))j∈Z((cid:96)n). 16 R(cid:101)i R(cid:101)i =π(cid:101)i((cid:101)0A )=π(cid:101)(P(cid:101)i). 16 k (e ,...,e ) AbasisofZ((cid:96)n) 28 1 g (d ,...,d ) d =ne 28 1 g i i (cid:83) (cid:83) =Z((cid:96))(When(cid:96)∧n=1) 14 S S={d ,d ,...,d ,d +d ,...d +d ,d +d ,...d + 28 1 2 g 1 2 1 g 2 3 g−1 d }(When(cid:96)∧n=1) g e(cid:48) TheextendedcommutatorpairingonB [(cid:96)] 16 (cid:96) k 3 Glossary Notation Description Page List e TheWeilpairing. 41 W ˆ e ThecanonicalpairingonZ(n)×Z(n). 9 c (cid:48) B(cid:102)k theaffineconeof(Bk,(cid:77)0,ΘB ,(cid:77) )where(cid:77)0=[(cid:96)]∗(cid:76)0 16 andΘ isathetastructurkeon0 (B ,(cid:77) )compatible B ,(cid:77) k 0 withΘk . 0 B (cid:48)k [(cid:221)(cid:96)] [(cid:221)(cid:96)]:B(cid:102) →B(cid:101) isthemorphismlifting[(cid:96)]:B →B . 16 k k k k chaine_add Anadditionchain 18 chaine_multadd Amultiplicationchain 21 4 1 Introduction 1 Introduction Inthispaper,weareinterestedinsomealgorithmicaspectsofisogenycomputationsbetween abelianvarieties.Computingisogeniesbetweenabelianvarietiesmaybeseenasdifferentkind ofcomputationalproblemsdependingontheexpectedinputandoutputofthealgorithm. Theseproblemsare: • GivenanabelianvarietyA andanabstractfiniteabeliangroupK computeallthe k abelianvarietiesB suchthatthereexistsanisogenyA →B whosekernelisisomor- k k k phictoK,andcomputetheseisogenies. • GivenanabelianvarietyA andafinitesubgroupK ofA ,recoverthequotientabelian k k varietyB =A /K aswellastheisogenyA →B . k k k k • Giventwoisogenousabelianvarieties,A andB ,computeexplicitequationsforan k k isogenymapA →B . k k Here,weareconcernedwiththefirsttwoproblems.Inthecasethattheabelianvarietyis anellipticcurve,efficientalgorithmshavebeendescribedthatsolvealltheaforementioned problems [Ler]. Forhigher-dimensionalabelian varieties muchless is known. Richelot’s formulas[Mes01,Mes02]canbeusedtocompute(2,2)-isogeniesbetweenabelianvarietiesof dimension2.Thepaper[Smi09]alsointroducedamethodtocomputecertainisogeniesof degree8betweenJacobianofcurvesofgenusthree.Inthispaper,wepresentanalgorithm tocompute((cid:96),...,(cid:96))-isogeniesbetweenabelianvarietiesofdimension g forany(cid:96)(cid:190)2and g (cid:190)1.Possibleapplicationsofouralgorithmincludes: • Thetransferthediscretelogarithmfromanabelianvarietytoanotherabelianvariety wherethediscretelogarithmiseasytosolve[Smi08] • Thecomputationofisogenygraphtoobtainadescriptiontheendomorphismringof anAbelianvariety. ByTorelli’stheoremthereisaoneononecorrespondencebetweenprincipallypolarized abelian varieties of dimension 2 and Jacobians of genus 2 hyperelliptic curves. Thus the modularspaceofprincipallypolarizedabelianvarietiesofdimension2isparametrizedby thethreeIgusainvariants,andonecandefinemodularpolynomialsbetweentheseinvariants muchinthesamewayasinthegenus-onecase[BL09].Howevertheheightofthesemodular polynomialsexplodeswiththeorder,makingtheircomputationsimpractical:onlythose areknown[Plo29].Inordertocircumventthisproblem,inthearticle[FLR09],wehave definedamodularcorrespondencebetweenabelianvarietiesinthemoduliofmarkedabelian varieties.Thismodulispaceiswell-suitedforcomputatingmodularcorrespondencessincethe associatedmodularpolynomialshavetheircoefficientsin{1,−1},andthereisnoexplosion asbefore. Inthispaper,weexplainhow,givenasolutiontothismodularcorrespondence(provided forinstancebythealgorithmdescribedin[FLR09]),onecancomputetheassociatedisogeny. Oncesuchamodularpointisobtained,theisogenycanbecomputedusingonlysimpleaddi- tionformulasofalgebraicthetafunctions,soinpractice,thecomputationoftheisogenytakes 5 2 ComputingIsogenies muchlesstimethanthecomputationofapointprovidedbythemodularcorrespondence. Notethatthisissimilartothegenus-onecase.Forellipticcurves,thecomputationofaroot ofthemodularpolynomialisnotmandatoryifthepointsinthekerneloftheisogenyare given,sincethisistheinputtakenbyVélu’sformulas.Here,weexplainhowtorecoverthe equations ofan isogenygiven the points ofits kernel,yielding a generalization ofVélu’s formulas. Ourgeneralizationintroduceshoweveradifferencecomparedtotheusualgenus-1case. Forellipticcurves,themodularpolynomialoforder(cid:96)givethemodulispaceof(cid:96)-isogenous ellipticcurves. In ourgeneralizedsetting,the modularcorrespondence in the coordinate system of theta null points gives (cid:96)g-isogenous abelian varieties with a theta structure of differentlevel.Asaconsequence,apointinthismodularspacecorrespondstoan(cid:96)g-isogeny, togetherwith a symplectic structure of level (cid:96). Anothermethod would be to describe a modularcorrespondencebetweenabelianvarietieswiththetastructuresofthesamelevel, see[BGL09]foranexamplewith(cid:96)=3and g =2. Thepaperisorganizedasfollow.InSection2werecallVélu’sformulasandoutlineour algorithms.InSection3,werecallthedefinitionofthemodularcorrespondencegivenin [FLR09],andwestudytherelationshipbetweenisogeniesandtheactionofthethetagroup. We recall the addition relations,which play a central role in this paperin Section 4. We then explain how to compute the isogeny associated to a modular point in Section 5. If the isogenyis given bytheta functions oflevel4(cid:96),itrequires (4(cid:96))g coordinates. We give a point compression algorithm in Section 5.1,showing how to express such an isogeny withonly g(g +1)/2·4g coordinates.InSection6wegiveafullgeneralizationofVélu’s formulasthatconstructsanisogenousmodularpointwithprescribedkernel.Thisalgorithm ismoreefficientthanthespecialGröbnerbasisalgorithmfrom[FLR09].Thereisastrong connectionbetweenisogeniesandpairings,andweusetheaboveworktoexplainhowone cancomputethecommutatorpairingandhowitrelatestotheusualWeilpairinginSection7. 2 Computing Isogenies Inthissection,werecallhowonecancomputeisogeniesbetweenellipticcurves.Wethen outlineouralgorithmtocomputeisogeniesbetweenabelianvarieties. 2.1 Elliptic curves and Vélu’s formulas Let(E ,(cid:101)0 )beanellipticcurvegivenbyaWeierstrassequationy2= f(x)with f adegree-3 k E k monicpolynomial.Vélu’sformulasrelyontheintrinsiccharacterizationofthecoordinate system(x,y)givingtheWeierstrassmodelofE as: k v (x)=−3 v (x)(cid:190)0 ifP (cid:54)=(cid:101)0 (cid:101)0Ek P Ek v (y)=−2 v (y)(cid:190)0 ifP (cid:54)=(cid:101)0 (1) (cid:101)0Ek P Ek y2/x3((cid:101)0 )=1, E k wherev denotesthevaluationofthelocalringofE intheclosedpointQ. Q k 6 2 ComputingIsogenies Theorem2.1(Vélu): LetG⊂E (k)beafinitesubgroup.ThenE /GisgivenbyY2=g(X)with g adegree3monic k k polynomialwhere (cid:88) X(P)=x(P)+ x(P+Q)−x(Q) (cid:110) (cid:111) Q∈G\ (cid:101)0Ek (cid:88) Y(P)=y(P)+ y(P+Q)−y(Q) (cid:110) (cid:111) Q∈G\ (cid:101)0Ek Proof: Indeed,X andY areink(E )G,anditiseasilyseenthattheysatisfytherelations(1).(cid:132) k Aconsequenceofthethattheoremisthat,givenafinitesubgroupGofcardinality(cid:96)ofan ellipticcurveE anequationy2= f(x)with f adegre3polynomial,itispossibletocompute k theWeierstrassequationofthequotientE /GatthecostofO((cid:96))additionsinE . k k ThemodularcurveX ((cid:96))parametrizesthesetofisomorphismclassesofellipticcurves 0 togetherwitha(cid:96)-torsionsubgroup.ForinstanceX (1)isjustthelineof j-invariants.Let 0 Φ (x,y)∈(cid:90)[x,y]betheorder(cid:96)modularpolynomial.Itiswellknownthattherootsof (cid:96) Φ (j(E ),·)givethe j-invariantsoftheellipticcurves(cid:96)-isogenoustoE .Sincean(cid:96)-isogenyis (cid:96) k k givenbyafinitesubgroupofE oforder(cid:96),weseethatΦ (x,y)cutsoutacurveisomorphic k (cid:96) toX ((cid:96))inX (1)×X (1). 0 0 0 GivenanellipticcurveE with j-invariant j ,thecomputationofisogeniescanbedone k E k intwosteps: • First,findthesolutionsofΦ (j ,X)whereΦ (X,Y)istheorder(cid:96)modularpolynomial; (cid:96) E (cid:96) thenrecoverfromaroot jEk(cid:48) thkeequationofthecorrespondingcurveEk(cid:48) whichis(cid:96)- isogenoustoE . k • Next,usingVélu’sformulas,computetheisogenyE →E(cid:48). k k Forsome applications suchas isogeny-graphcomputation,onlythe firststepis required, whileforotherapplicationsitisnecessarytoobtaintheexplicitequationsdescribingthe isogeny.Notethatthefirststepisunnecessaryifonealreadyknowthepointsinthekernel oftheisogeny. 2.2 Isogenies on abelian varieties LetA beanabelianvarietyofdimension g overafieldk anddenotebyK(A )itsfunction k k field. An isogeny is a finite surjective map of abelian varieties. In the following we only considerseparableisogeniesi.e. isogeniesπ:A →B suchthatthefunctionfieldK(A ) k k k isafiniteseparableextensionofK(B ).Aseparableisogenyisuniquelydeterminedbyits k kernel,whichisafinitesubgroupofA (k).Inthatcase,thecardinalityofthekernelisthe k degreeoftheisogeny. Intherestofthispaper,by(cid:96)-isogenyfor(cid:96)>0,wealwaysmeana ((cid:96),···,(cid:96))-isogenywhere((cid:96),···,(cid:96))∈(cid:90)g. 7 2 ComputingIsogenies WehaveseenthatitispossibletodefineamodularcorrespondencebetweentheIgusa invariants,parameterizingthesetofdimension2principallypolarizedabelianvarieties,but the coefficients explosion of the related modular polynomials makes it computationally inefficient. In orderto mitigate this problem and obtain formulas suitable forgeneral g- dimensionalabelianvarieties,weusethemodulispaceofmarkedabelianvarieties. Let g ∈(cid:78)∗andletn∈(cid:78)besuchthat2|n.Letn=(n,n,...,n)∈(cid:90)g,andZ(n)=(cid:90)g/n(cid:90)g. Wedenote(cid:77) themodularspaceofmarkedabelianvarieties(A ,(cid:76),Θ )where(cid:76) isa n k A polarizationandΘ issymmetricthetastructureΘ oftypeZ(n)(see[kMum66]). The A A forgetting map (A ,(cid:76)k ,Θ ) (cid:55)→ (A ,(cid:76)) is a finite mapk from (cid:77) to the moduli space of k A k n abelianvarietieswithapolakrizationoftypeZ(n). Werecall[Mum67a]thatif4|n,then(cid:77) isopenintheprojectivevarietydescribedby n thefollowingequationsin(cid:80)(k(Z(n))): (cid:0) (cid:88) χ(t)a a (cid:1).(cid:0) (cid:88) χ(t)a a (cid:1)= x+t x+t u+t u+t t∈Z(2) t∈Z(2) (cid:0) (cid:88) χ(t)a a (cid:1).(cid:0) (cid:88) χ(t)a a (cid:1) (2) z−x+t z−y+t z−u+t z−v+t t∈Z(2) t∈Z(2) a =a x −x ˆ forallx,y,u,v∈Z(n),suchthatx+y+u+v=2z andallχ ∈Z(2). In[FLR09],wehavedescribedamodularcorrespondenceϕ:(cid:77) →(cid:77) ×(cid:77) for(cid:96)∈(cid:78)∗, (cid:96)n n n whichcanbeseenasageneralizationofthemodularcorrespondenceX ((cid:96))→X (1)×X (1) 0 0 0 forellipticcurves.Let p and p bethecorrespondingprojections(cid:77) ×(cid:77) →(cid:77) ,andlet 1 2 n n n ϕ = p ◦ϕ,ϕ = p ◦ϕ.Themapϕ :(cid:77) →(cid:77) issuchthat(x,ϕ (x))aremodularpoints 1 1 2 2 1 (cid:96)n n 1 (cid:16) (cid:17) corresponding to (cid:96)-isogenous varieties We recall that ϕ is defined by ϕ (a ) = 1 1 i i∈Z((cid:96)n) (a ) whereZ(n)isidentifiedasasubgroupofZ((cid:96)n)bythemapx(cid:55)→(cid:96)x. i i∈Z(n) Supposethatwearegivenamodularpoint(b ) correspondingtothemarkedabelian i i∈Z(n) variety(B ,(cid:76) ,Θ ).IfB istheJacobianvarietyofanhyperellipticcurve,onemayrecover k 0 B k theassociatedmodkularpointforn=4viaThomaeformulas[Mum84]. Supposefornowthat4|nandthat(cid:96)isprimeton.Ouralgorithmworksintwosteps: 1. ModularcomputationComputeamodularpoint(a ) ∈ϕ−1(cid:128)(b ) (cid:138).This i i∈Z((cid:96)n) 1 i i∈Z(n) canbedoneviathespecializedGröbnerbasisalgorithmdescribedin[FLR09],butsee alsoSection6foramoreefficientmethod. 2. Vélu’slikeformulasUsetheadditionformulainB tocomputetheisogenyπˆ:B → k k A associatedtothemodularpointsolution.Here(A ,(cid:76),Θ )isthemarkedabelian k k A varietycorrespondingto(a ) .ThisstepisdescribedinSkection5. i i∈Z((cid:96)n) WecanalsocomputeanisogenygivenbyitskernelK byusingtheresultsofSection6.1 toconstructthecorrespondingmodularpoint(a ) fromK.Wethushaveacomplete i i∈Z((cid:96)n) generalizationofVélu’sformulasforhigherdimensionalabelianvarietiessincethereconstruc- tionofthemodularpoint(a ) fromthekernelK onlyrequirestheadditionformulas i i∈Z((cid:96)n) 8 2 ComputingIsogenies inB (togetherwiththeextractionof(cid:96)th-roots).InSection6.3weexplainhowtousethisto k speedupStep1ofouralgorithm(wecallthisStep1’). Ifthekerneloftheisogenyisunknown,themosttime-consumingpartofouralgorithm is the computation ofa maximalsubgroupofrank g ofthe (cid:96)-torsion,whichmeans that currently,with g =2wecangoupto(cid:96)=31relyingonthecurrentstate-of-the-artimplemen- tation[GS08].InordertospeedupStep2,whichrequiresO((cid:96)g)additionstobeperformed inB ,andcomputewithacompactrepresentation,itisimportanttoconsiderthesmallest k possiblen.Ifn=2,wecannotprovethatthemodularsystemtobesolvedinStep1isof dimension0.HoweverStep1’,whichisfaster,doesnotrequireamodularsolutionbutonly thekerneloftheisogeny,soouralgorithmworkswithn=2too.Note,however,thatsome caremustbetakenwhencomputingadditionsonB ,sincethealgebraicthetafunctionsonly k giveanembeddingoftheKummervarietyofB forn=2. k For an actual implementation the case n = 2 is critical (it allows for a more compact representationofthepointsthann=4:wegainafactor2g,itallowsforafasteraddition chain,seeSection5.1.1,butmostimportantlyitreducesthemostconsumingpartofour algorithm,thecomputationofthepointsof(cid:96)-torsion,sincetherearehalfasmuchsuchpoints ontheKummervariety).Foreachalgorithmthatweuse,wegiveanexplanationonhowto adaptitforthelevel2case:seeSection4.2.1andtheendofSections5.2,6.1,6.3and7.2. Theassumptionthatn isprimeto(cid:96)isnotnecessaryeitherbutthereisoneimportant differenceinthiscase.SupposethatwearegivenB [(cid:96)].SinceB isgivenbyathetastructure k k ofleveln,wealsohaveB [n].If(cid:96)isprimeton,thisgivesusB [(cid:96)n],andwecanuseStep1’ k k toreconstituteamodularpointoflevel(cid:96)n.If(cid:96)isnotprimeton,wehavetocomputeB [(cid:96)n] k directly. Itis also possible to compute more generaltypes ofisogenies via ouralgorithm. With thenotationsofSection3,letδ =(δ ,...,δ )beasequenceofintegerssuchthatδ |δ , 0 1 g i i+1 andlet(b ) ∈(cid:77) beamodularpointcorrespondingtoanabelianvarietyB . Let i i∈Z(δ) δ k δ(cid:48) =((cid:96) ,...,(cid:96) )0(where0(cid:96) |(cid:96) )anddefineδ =(δ (cid:96) ,...,δ (cid:96) ).Let(a ) ∈(cid:77) be 1 g i i+1 1 1 g g i i∈Z(δ) δ (cid:128) (cid:138) suchthatϕ (a ) =(b ) .Thethetanullpoint(a ) correspondstoanabelian i i∈Z(δ) i i∈Z(δ) i i∈Z(δ) 0 varietyA ,suchthatthereisa((cid:96) ,···,(cid:96) )-isogenyπ:A →B ,whichcanbecomputedby k 1 g k k theisogenytheorem[Mum66](seeSection3.2).TheisogenywecomputeinStep2isthe contragredientisogenyπˆ:B →A oftype((cid:96) /(cid:96) ,(cid:96) /(cid:96) ,···,1,(cid:96) ,(cid:96) ,···,(cid:96) ).Usingthe k k g 1 g 2 g g g modularcorrespondenceϕtogobacktoamodularpointoflevelδ (seeSection3.3)givesan 0 isogenyoftype((cid:96) /(cid:96) ,(cid:96) /(cid:96) ,···,1,(cid:96) (cid:96) ,(cid:96) (cid:96) ,···,(cid:96) (cid:96) ).Fortheclarityoftheexposition, g 1 g 2 1 g 2 g g g wewillsticktothecaseδ =nandδ=(cid:96)nandweleavetothereadertheeasygeneralization. 0 Letusmakesomeremarksonouralgorithm.Firstnotethattocompute(cid:96)-isogenies,we startfromathetanullpointoflevelntogetathetanullpointoflevel(cid:96)n.Wecanthengo backtoapointofleveln(seeSection3.3),butinthiscasewearecomputing(cid:96)2-isogenies.A secondremarkisthatallourcomputationsaregeometric,notarithmetic,sincetheprojective embeddinggivenbythetafunctionsoflevel(cid:96)n isnotrational.Alastremarkisthatsince weusedifferentmodulispaces,ourmethodisnotastraight-upgeneralizationofthegenus-1 case.Inparticular,computingamodularpointsolution(a ) isthesameaschoosingan i i∈Z((cid:96)n) (cid:96)-isogenyandathetastructureoflevel(cid:96),sotherearemanymoremodularsolutionsthan thereis(cid:96)-isogenies.Hence,asnotedintheintroduction,themostefficientmethodinour 9

Description:
David Lubicz, Damien Robert. To cite this version: is an affine lift of a point of l-torsion that satisfy Equation (27). We study this notion in. Section 6.2
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.