Computing Isogenies Between Abelian Varieties DavidLubicz1,2,DamienRobert3 1CÉLAR, BP7419,F-35174Bruz 2IRMAR,UniverstédeRennes1, CampusdeBeaulieu,F-35042Rennes 3LORIA,CampusScientifique,BP239, F-54506Vandœuvre-lès-Nancy Abstract Wedescribeanefficientalgorithmforthecomputationofseparableisogeniesbetweenabelian varietiesrepresentedinthecoordinatesystemgivenbyalgebraicthetafunctions.Ouralgorithm decomposesintwoprincipalsteps.First,fromtheknowledgeofasubgroupKisotropicforthe WeilpairingofanabelianvarietyA,weexplainhowtocomputethethetanullpointcorresponding tothequotientabelianvarietyA/K.Second,fromtheknowledgeofthethetanullpointofA/K, wegiveanalgorithmtoobtainarationalexpressionfortheisogenyfromAtoA/K.Thealgorithm resultingasthecombinationofthesetwostepscanbeviewedasahigherdimensionalanalogof thewellknownalgorithmofVélutocomputeisogeniesbetweenellipticcurves. Inordertoimprovetheefficiencyofouralgorithms,weintroduceacompressedrepresentation thatallowstoencodeapointoflevel4ℓofagdimensionalabelianvarietyusingonlyg(g+1)/2·4g coordinates.WealsogiveformulastocomputetheWeilandcommutatorpairingsgiveninput pointsinthetacoordinates.Allthealgorithmspresentedinthispaperworkingeneralforany abelianvarietydefinedoverafieldofoddcharacteristic. Contents Introduction Modularcorrespondencesandthetanullpoints 2.1 Thetastructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Isogeniescompatiblewithathetastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Theactionofthethetagroupontheaffineconeandisogenies . . . . . . . . . . . . . . . 11 Theadditionrelations 3.1 ThecanonicalliftoftheactionofK((cid:76))totheaffinecone . . . . . . . . . . . . . . . . . 13 3.2 ThegeneralRiemannrelations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 Thecasen=2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Thetagroupandadditionrelations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1 Contents Applicationoftheadditionrelationstoisogenies 4.1 Pointcompression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.1 Additionchainswithcompressedcoordinates . . . . . . . . . . . . . . . . . . . . 27 4.2 Computingthedualisogeny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Thecomputationofamodularpoint 5.1 AnanalogofVélu’sformulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2 Thetagroupandℓ-torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.3 Improvingthecomputationofamodularpoint. . . . . . . . . . . . . . . . . . . . . . . . . 33 Pairingcomputations 6.1 Weilpairingandcommutatorpairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.2 Commutatorpairingandadditionchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Conclusion References ListofAlgorithms 3.3 Additionchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.6 Multiplicationchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.5 Pointcompression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.6 Pointdecompression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.10 Theimageofapointbytheisogeny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1 Vélu’slikeformula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.6 Computingallmodularpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.5 Pairingcomputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2 Glossary ListofNotations Notation Description PageList Z(n) (cid:90)g/n(cid:90)g 8 (cid:77) Themodulispaceofthetanullpointsofleveln. 9 n A (A ,(cid:76),Θ )isapolarizedabelianvarietywithathetastruc- 8 k k A tureoflevelkℓn. B (B ,(cid:76) ,Θ )isanabelianvarietyℓ-isogenoustoA witha 10 k k 0 B k k thetastructureofleveln. ϑ (ϑ ) arethecanonicalprojectivecoordinatesonA 9 i i i∈Z(ℓn) k givenbythethetastructure. 0 Thethetanull0 =ϑ (0 ) . 9 Ak Ak i Ak i∈Z(ℓn) 0 Thethetanull0 =ϑ (0 ) . 10 B B i B i∈Z(n) G(k(cid:76)) TheThetagroupkof(A ,(cid:76)k) 8 k K((cid:76)) K((cid:76))=K ((cid:76))⊕K ((cid:76))isthedecompositionofthekernel 8 1 2 ofthepolarization(cid:76) inducedbytheThetastructureΘ A H(δ) TheHeisenberggroupoftypeδ. 8 s ThenaturalsectionK((cid:76))→G((cid:76))inducedbytheTheta 8 K((cid:76)) structure. ρ(cid:101)(cid:76) TheaffineactionofG((cid:76))onA(cid:101)k. 11 A(cid:101) TheaffineconeofA . 11 k k B(cid:101) TheaffineconeofB . 11 k k ϑ(cid:101) (ϑ(cid:101)) aretheaffinecoordinatesonA(cid:101) . 11 i i i∈Z(ℓn) k (cid:101)0 Anaffineliftof0 . 13 B B k k (cid:101)0A Theaffineliftof0A suchthatπ(cid:101)((cid:101)0A )=(cid:101)0B . 13 πk Theℓ-isogenyπ:Ak →B . k k 10 k k π(cid:101) π(cid:101)(ϑ(cid:101)i((cid:101)x)i∈Z(ℓn))=ϑ(cid:101)i((cid:101)x)i∈Z(n)istheaffineliftofπtoA(cid:101)k → 11 B(cid:101) . k π π =π◦(1,i,0)=ϑ(cid:101) (·) . 12 (cid:101)i (cid:101)i (cid:101) i+j j∈Z(n) P(cid:101)i P(cid:101)i =(1,i,0).(cid:101)0Ak =(ϑi+j((cid:101)0Ak))j∈Z(ℓn). 13 R(cid:101)i R(cid:101)i =π(cid:101)i((cid:101)0A )=π(cid:101)(P(cid:101)i). 13 k (e ,...,e ) AbasisofZ(ℓn) 24 1 g (d ,...,d ) d =ne 24 1 g i i (cid:83) (cid:83) =Z(ℓ)(Whenℓ∧n=1) 12 S S={d ,d ,...,d ,d +d ,...d +d ,d +d ,...d + 25 1 2 g 1 2 1 g 2 3 g−1 d }(Whenℓ∧n=1) g e(cid:76)ℓ TheextendedcommutatorpairingonBk[ℓ] 36 0 e TheWeilpairing. 37 W ˆ 〈·,·〉 ThecanonicalpairingonZ(n)×Z(n). 8 3 Glossary Notation Description PageList ′ B(cid:102)k theaffineconeof(Bk,(cid:77)0,ΘB ,(cid:77) )where(cid:77)0 =[ℓ]∗(cid:76)0 31 andΘ isathetastructureokn(B0 ,(cid:77) )compatiblewith B ,(cid:77) k 0 Θ . k 0 B k ′ [(cid:221)ℓ] [(cid:221)ℓ]:B(cid:102) →B(cid:101) isthemorphismlifting[ℓ]:B →B . 31 k k k k chain_add Anadditionchain 15 chain_multadd Amultiplicationchain 18 4 1 Introduction Introduction Thegeneralproblemofcomputingseparableisogeniesbetweenabelianvarietiessplitsintodifferent computationalsub-problemsdependingontheexpectedinputandoutputofthealgorithm.These problemsare: • GivenanabelianvarietyA overafieldkandanabstractfiniteabeliangroupKcomputeall k theabelianvarietiesB suchthatthereexistsanisogenyA →B whosekernelisisomorphic k k k toK,andgiverationalexpressionsforthecorrespondingisogenies. • GivenanabelianvarietyA andafinitesubgroupKofA ,recoverthequotientabelianvariety k k B =A /KaswellarationalexpressionforanisogenyA →B . k k k k • Giventwoisogenousabelianvarieties,A andB ,computearationalexpressionforanisogeny k k A →B . k k Inthepresentpaper,weareconcernedwiththefirsttwoproblems.Inthecasethattheabelianvariety isanellipticcurve,efficientalgorithmshavebeendescribedthatsolvealltheaforementionedproblems [Ler].Inparticular,analgorithmproposedbyVélu[Vél71]takesasinputafinitesubgourpG of cardinalℓofanellipticcurveE ,andreturnstheequationofthequotientE /GatthecostofO(ℓ) k k additionsinE .ThealgorithmofVélualsogivesarationalexpressionfortheisogenyE →E /Gin k k k thecoordinatesystemprovidedbytheWeierstrassformoftheellipticcurves. Forhigher-dimensionalabelianvarietiesmuchlessisknown.Richelot’sformulas[Ric36,Ric37]can beusedtocompute(2,2)-isogeniesbetweenabelianvarietiesofdimension2.Thepaper[Smi09]also introducesamethodtocomputecertainisogeniesofdegree8betweenjacobianofcurvesofgenus three.Inthispaper,wepresentanalgorithmtocompute(ℓ,...,ℓ)-isogeniesbetweenabelianvarieties ofdimensiong representedinthecoordinatesystemprovidedbyalgebraicthetafunctionsforany ℓ(cid:190)2andg (cid:190)1whenthecharacteristicofkisoddandrelativelyprimetoℓ. Letn∈(cid:78)besuchthat2|nandn(cid:190)4.Letn=(n,n,...,n)∈(cid:90)g,andZ(n)=(cid:90)g/n(cid:90)g.We denoteby(cid:77) themodularspaceofmarkedabelianvarieties(A ,(cid:76),Θ )where(cid:76) isatotally n k A symmetricamplelinebundleonA andΘ isasymmetricthetastructukreoftypeZ(n)for(cid:76) k A (see[Mum66,sec.2]).Inthefollowing,wewillkalsocallathetastructureoftypeZ(n)athetastructure ofleveln.Themodularspace(cid:77) iswell-suitedforcomputingmodularcorrespondencessincethe n algebraicsystemswhichplaythesameroleinthisspaceastheclassicalmodularpolynomialshavetheir coefficientsin{1,−1},andasaconsequencearemuchmoreamenabletocomputationsthantheir counterpartsusingthe j-invariantingenus1ortheIgusainvariantsingenus2.Inthearticle[FLR09], wehavedefinedamodularcorrespondence: (cid:88) ϕ:(cid:77) →(cid:77) ×(cid:77) ,(a ) (cid:55)→((a ) ,( a ) ) ℓn n n i i∈Z(ℓn) i i∈Z(n) i+nj i∈Z(n) j∈Z(ℓ) forℓ∈(cid:78)∗primeton,whichcanbeseenasageneralizationoftheclassicalmodularcorrespondence X (ℓ)→X (1)×X (1)forellipticcurves(seeforinstance[Koh03]).Toexplainit,let p and p be 0 0 0 1 2 respectivelythefirstandsecondprojections(cid:77) ×(cid:77) →(cid:77) ,andletϕ = p ◦ϕ,ϕ = p ◦ϕ. n n n 1 1 2 2 Themapϕ :(cid:77) →(cid:77) issuchthat(x,ϕ (x))forx∈(cid:77) (k)aremodularpointscorresponding 1 ℓn n 1 ℓn toℓ-isogenousabelianvarieties. 5 1 Introduction Infact,consider(a ) ∈ ϕ−1((b ) ). Themodularpoint(a ) definesatriple i i∈Z(ℓn) 1 i i∈Z(n) i i∈Z(ℓn) (A ,(cid:76),Θ )andtheclassicalisogenytheoremforalgebraicthetafunctions[Mum66,th.4]gives k A anexplicitiksogenyπ:A →B .Wedenotebyπˆ:B →A theisogenythatmakesthefollowing k k k k diagramcommutative: [ℓ] x∈A z∈A k k π πˆ y∈B k Themainresultofthispaperis: Theorem1.1: LetB beadimension g markedabelianvariety.Let(T ,...,T )⊂B [ℓ]beabasisofamaximal k 1 g k subgroupK ofB [ℓ]isotropicfortheWeilpairing.Letπˆ:B →B /K bethecorrespondingisogeny. k k k Onecancomputethecompressedcoordinatesofthemodularpoint(a ) correspondingtoπˆwith i i∈Z(ℓn) O(log(ℓ))additionchainsinB andO(1)ℓth-rootsofunityextractions. k Oncewehave(a ) ,wecancomputethecompressedcoordinatesoftheimageofapointinB byπˆ i i∈Z(ℓn) k withO(log(ℓ))additionchainsinB .TakingthegenericpointofB ,weobtaininparticulararational k k expressionfortheisogenyπˆ. Theprecisemeaningofadditionchainandcompressedcoordinateswillbemadeclearinthecourseof thepaper.AproofofthistheoremisgiveninSection4.2andSection5.1.Itshouldberemarkedthat thisresultconstituteahigherdimensionalanalogoftheclassicalVélu’salgorithmsincebycombining thetwoconclusionsofthetheorem,weobtainanefficientalgorithmwhichtakesasinputanabelian varietyB andamaximalsubgroupKofB [ℓ]isotropicfortheWeilpairingandcomputesarational k k expressionfortheisogenyB →B /K. k k Notethattheclassicalisogenytheoremforthetafunctionsisnotsufficientforourpurposeof computingisogeniesbetweenabelianvarieties.Althoughitiseffective,theisogenytheoremcanonly beusedtocomputeisogeniesfromamarkedabelianvarietyoflevelℓtoamarkedabelianvarietyof levelnwherendividesℓ,soitonlyprovidesuswithawaytocomputeisogeniesby“goingdown”in thelevelofthethetastructure.Atsomepoint,weneedawaytocomputeisogeniesby“goingup”the levelandthisispreciselywhatgivesTheorem1.1.Wecanthencombinethetwotheorems:oncewe havecomputedanisogenyπˆ:B →A ,itispossibletocomposeπˆwithanisogenyπ :A →C k k 2 k k givenbytheisogenytheoremsuchthatπ ◦πˆisanℓ2-isogeny(see[FLR09,Sec3]orSection2.2).In 2 (cid:16) (cid:17) fact,letC betheabelianvarietyassociatedtothemodularpoint(c ) =ϕ (a ) then k i i∈Z(n) 2 i i∈Z(ℓn) wehavethefollowingdiagram 6 1 Introduction B k πˆ [ℓ] A k π π 2 B C k k Theisogenyπ ◦πˆisthenanℓ2isogenybetweenB andC whicharetwomarkedabelianvarieties 2 k k withathetastructureofleveln.Possibleapplicationsofouralgorithmincludes: • Thetransferthediscretelogarithmfromanabelianvarietytoanotherabelianvarietywherethe discretelogarithmiseasytosolve[Smi08] • Thecomputationofisogenygraphstoobtainadescriptiontheendomorphismringofanabelian variety. • ThecomputationofHilbertclasspolynomials. Weenduptheintroductionwithsomegeneralremarksaboutthealgorithmspresentedinthispaper. Theassumptionthatnisprimetoℓisinessential.Thereisnonethelessonenoticeabledifferenceifwe dropthishypothesis.SupposethatwearegivenB [ℓ].SinceB isgivenbyathetastructureoflevel k k n,wecanrecoverB [n]usingtheactionofthethetagrouponthethetanullpoint(b ) .Ifℓis k i i∈Z(n) primeton,thisgivesusB [ℓn],andwecanusethefirstassertionofTheorem1.1toobtainamodular k pointoftypeZ(ℓn).Ifℓisnotprimeton,wehavetocomputeB [ℓn]directly. k Althoughweonlyconsiderthecaseof(ℓ,...,ℓ)-isogeny,itisalsopossibletocomputemoregen- eraltypesofisogenieswithouralgorithm.WiththenotationsofSection2,letδ =(δ ,...,δ ) 0 1 g be a sequence ofintegers suchthat2|δ andδ |δ ,andlet(b ) ∈ (cid:77) be a modular 1 i i+1 i i∈Z(δ) δ pointcorrespondingtoanabelianvarietyB . Letδ′ = (ℓ ,...,ℓ )(w0hereℓ |ℓ0 )anddefine k 1 g i i+1 (cid:128) (cid:138) δ=(δ ℓ ,...,δ ℓ ).Let(a ) ∈(cid:77) besuchthatϕ (a ) =(b ) whereϕ is 1 1 g g i i∈Z(δ) δ 1 i i∈Z(δ) i i∈Z(δ) 1 thenaturalinclusionofZ(δ )intoZ(δ).Thethetanullpoint(a ) corresponds0toanabelian 0 i i∈Z(δ) varietyA ,suchthatthereisa(ℓ ,···,ℓ )-isogenyπ :A →B ,whichcanbecomputedbythe k 1 g k k isogenytheorem[Mum66,Th.4](seeSection2.2).TheisogenywecomputeinStep2isthecon- tragredientisogenyπˆ:B →A oftype(ℓ /ℓ ,ℓ /ℓ ,···,1,ℓ ,ℓ ,···,ℓ ).Usingthemodular k k g 1 g 2 g g g correspondenceϕ togobacktoamodularpointoftypeZ(δ )(seeSection1)givesanisogenyof 1 0 type(ℓ /ℓ ,ℓ /ℓ ,···,1,ℓ ℓ ,ℓ ℓ ,···,ℓ ℓ ).Fortheclarityoftheexposition,wewillstickto g 1 g 2 1 g 2 g g g thecaseδ =nandδ=ℓnandweleavetothereadertheeasygeneralization. 0 Foranactualimplementation,wewanttousethesmallestnpossibletogetacompactrepresentation ofthepointsandafastadditionchain.InfactitispossibletotweakTheorem1.1tomakeitworks withthecasen=2.Thiscaseisveryimportantinpractice:itallowsamorecompactrepresentationof thepointsthanforn=4(wegainafactor2g inspace),afasteradditionchain(seeSection4.1.1),but 7 2 Modularcorrespondencesandthetanullpoints mostimportantlyitreducesthemostconsumingpartofouralgorithm,thecomputationofthepoints ofℓ-torsion,sincetherearehalfasmuchsuchpointsontheKummervarietyassociatedtoanabelian variety.Foreachalgorithmthatweuse,wegiveanexplanationonhowtoadaptitforthetypeZ(2) case:seeSection3.2.1andtheendofSections4.2,5.1,5.3and6.2. Thepaperisorganizedasfollow.InSection2,werecalltheisogenytheoremandwestudythe relationshipbetweenisogeniesandtheactionofthethetagroup.Werecalltheadditionrelations, whichplayacentralroleinthispaperinSection3.Wethenexplainhowtocomputetheisogeny associatedtoamodularpointinSection4.IftheisogenyisgivenbythetafunctionsoftypeZ(4ℓ),it requires(4ℓ)g coordinates.WegiveapointcompressionalgorithminSection4.1,showinghowto expresssuchanisogenywithonlyg(g+1)/2·4g coordinates.InSection5wegiveafullgeneralization ofVélu’sformulasthatconstructsanisogenousmodularpointwithprescribedkernel.Thisalgorithm ismoreefficientthanthespecialGröbnerbasisalgorithmfrom[FLR09].Thereisastrongconnection betweenisogeniesandpairings,andweusetheaboveworktoexplainhowonecancomputethe commutatorpairingandhowitrelatestotheusualWeilpairinginSection6. Modularcorrespondencesandthetanullpoints Inthissection,wefixsomenotationsthatweuseintherestofthepaper.InSection2.1,werecallthe definitionofathetastructureandtheprojectiveembedding[Mum66,Sec.1]deducedfromit.In Section2.2werecalltheisogenytheorem,whichrelatethethetafunctionsoftwoisogenousabelian varietieswithcompatiblethetastructures.InSection2.3westudytheconnectionbetweenisogenies andtheactionofthethetagroupontheaffineconeoftheprojectiveembeddinggivenbythetheta structure. LetA beanabelianvarietyofdimensiong overaperfectfieldkanddenotebyK(A )itsfunction k k field.Anisogenyisafinitesurjectivemapofabelianvarietiesπ:A →B andissaidtobeseparable k k ifthefunctionfieldK(A )isafiniteseparableextensionofK(B ).Aseparableisogenyisuniquely k k determinedbyitskernel,whichisafinitesubgroupofA (k).Inthatcase,thecardinalityofthekernel k isthedegreeoftheisogeny.Sincewewillonlyconsiderisogeniesofdegreeprimetothecharacteristic ofk,wewillonlydealwithseparableisogenies.Intherestofthispaper,byℓ-isogenyforℓ>0,we alwaysmeana(ℓ,···,ℓ)-isogenywhere(ℓ,···,ℓ)∈(cid:78)g. . Thetastructures LetA beag dimensionalabelianvarietyoveraperfectfieldk.Let(cid:76) beanampletotallysymmetric k linebundleofdegreedonA .Wesupposemoreoverthatdisprimetothecharacteristicofk.Denote k byK((cid:76))thekerneloftheisogenyϕ :A →Aˆ ,definedongeometricpointsbyx(cid:55)→τ∗(cid:76)⊗(cid:76)−1 (cid:76) k k x whereτ isthetranslationbyx.Letδ=(δ ,...,δ )bethesequenceofintegerssatisfyingδ |δ x 1 g i i+1 suchthat,asgroupschemesK((cid:76))≃(cid:76)g ((cid:90)/δ (cid:90))2.Wesaythatδisthetypeof(cid:76).Inthefollowing i=1 i k weletZ(δ)=(cid:76)g ((cid:90)/δ (cid:90)) ,Zˆ(δ)betheCartierdualofZ(δ),andK(δ)=Z(δ)×Zˆ(δ).If i=1 i k ˆ x∈Z(δ)andℓ∈Z(δ),wedenote〈x,ℓ〉:=ℓ(x). LetG((cid:76))and(cid:72)(δ)berespectivelythethetagroupof(A ,(cid:76))andtheHeisenberggroupoftype k δ[Mum66,p.294].Inthisarticle,elementsofG((cid:76))willbewrittenas(x,ψ )withx∈K((cid:76))and x ψ :(cid:76) →τ∗(cid:76) isanisomorphism.WeknowthatG((cid:76))and(cid:72)(δ)arecentralextensionsofK((cid:76)) x x 8 2 Modularcorrespondencesandthetanullpoints andK(δ)bythemultiplicativegroup(cid:71) .Bydefinition,athetastructureΘ on(A ,(cid:76))isan m,k A k isomorphismofcentralextensionsfrom(cid:72)(δ)toG((cid:76)).Wedenotebye thecokmmutatorpairing (cid:76) ˆ [Mum66,p.203]onK((cid:76))andbye thecanonicalpairingonK(δ)=Z(δ)×Z(δ).Werecallthat δ if(x ,x )and(y ,y )areinK(δ)wehavee ((x ,x ),(y ,y ))=〈x ,y 〉/〈y ,x 〉.Weremarkthat 1 2 1 2 δ 1 2 1 2 1 2 1 2 athetastructureΘ inducesasymplecticisomorphismΘ from(K(δ),e )to(K((cid:76)),e ).Let A A δ (cid:76) k k K((cid:76))=K ((cid:76))×K ((cid:76))bethedecompositionintomaximalisotropicsubspacesinducedbyΘ . 1 2 A ThesectionK(δ)→(cid:72)(δ)definedongeometricpointsby(x,y)(cid:55)→(1,x,y)canbetransportedk bythethetastructuretoobtainanaturalsection s : K((cid:76)) → G((cid:76))oftheprojectionκ : K((cid:76)) G((cid:76))→K((cid:76)).Wenotes (resp.s )therestrictionofthissectiontoK ((cid:76))(resp.K ((cid:76))). K((cid:76)) K((cid:76)) 1 2 1 2 Recall[Mum66,p.291]thatalevelsubgroupK(cid:101)ofG((cid:76))isasubgroupsuchthatK(cid:101)isisomorphicto itsimagebyκ. LetV = Γ(A ,(cid:76)).ThereisanactionofthethetagroupG((cid:76))onV byv (cid:55)→ ψ−1τ∗(v)for k x x v∈V and(x,ψ )∈G((cid:76)).ThisactioncanbetransportedviaΘ toanactionof(cid:72)(δ)onV.It x A canbeshownthatthereisaunique(uptoascalarfactor)basis(ϑ ) k ofV suchthatthisactionis i i∈Z(δ) givenby: Θ Θ (α,i,j).ϑ Ak =α.〈−i−h,j〉.ϑ Ak. (1) h h+i Ifthereisnoambiguity,inthispaper,wewillsometimesdropthesuperscriptΘ inthenotation A Θ k ϑ Ak. k Thisbasisgivesaprojectiveembeddingϕ :A →(cid:80)d−1whichisuniquelydefinedbythetheta structureΘ .Thepoint(a ) =ϕ (Θ0Ak )iskcalledkthethetanullpointassociatedtothetheta A i i∈Z(δ) Θ A k Ak k structure.Mumfordproves[Mum66]thatif4|δ,ϕ (A )istheclosedsubvarietyof(cid:80)d−1defined ΘAk k k bythehomogeneousidealgeneratedbytheRiemannequations: Theorem2.1(Riemannequations): ˆ Forallx,y,u,v∈Z(2δ)thatarecongruentmoduloZ(δ),andallχ ∈Z(2),wehave (cid:0) (cid:88) χ(t)ϑ ϑ (cid:1).(cid:0) (cid:88) χ(t)a a (cid:1)= x+y+t x−y+t u+v+t u−v+t t∈Z(2) t∈Z(2) =(cid:0) (cid:88) χ(t)ϑ ϑ (cid:1).(cid:0) (cid:88) χ(t)a a (cid:1). (2) x+u+t x−u+t y+v+t y−v+t t∈Z(2) t∈Z(2) Thedataofatriple(A ,(cid:76),Θ )iscalledamarkedabelianvarietyoftypeZ(δ).Wedenoteby k A (cid:77) thequasi-projectivevarietydkefinedasthelocusofallthetanullpointsassociatedtomarked δ abelianvarietiesoftypeZ(δ).Werecall[Kem89,Th.28]thatifn>4,then(cid:77) isanopensubsetin n theprojectivevarietydescribedbythefollowingequationsin(cid:80)(k(Z(n))): (cid:0) (cid:88) χ(t)a a (cid:1).(cid:0) (cid:88) χ(t)a a (cid:1)= x+t x+t u+t u+t t∈Z(2) t∈Z(2) (cid:0) (cid:88) χ(t)a a (cid:1).(cid:0) (cid:88) χ(t)a a (cid:1) (3) z−x+t z−y+t z−u+t z−v+t t∈Z(2) t∈Z(2) a =a x −x 9 2 Modularcorrespondencesandthetanullpoints ˆ forallx,y,u,v,z∈Z(n),suchthatx+y+u+v=2zandallχ ∈Z(2). . Isogeniescompatiblewithathetastructure Let(a ) ∈ (cid:77) beathetanullpointassociatedtoatriple(A ,(cid:76),Θ ).Letδ ∈ (cid:90)g be i i∈Z(δ) δ k A 0 suchthat4|δ |δ,andwriteδ=δ ·δ′.InthefollowingweconsiderZ(δ )askasubgroupofZ(δ) 0 0 0 viathemapϕ : (x ) ∈ Z(δ ) (cid:55)→ (δ′x ) ∈ Z(δ).Fromnowon,whenconsidering i i∈[1..g] 0 i i i∈[1..g] Z(δ )⊂Z(δ),wealwaysrefertothismap.LetK⊂K((cid:76))beanyisotropicsubgroupfore such 0 (cid:76) thatwecanwriteK=K ×K withK ⊂K ((cid:76)). 1 2 i i LetBk =Ak/Kandπ:Ak →Bk betheassociatedisogeny.SinceKisisotropic,K(cid:101):=sK((cid:76))(K) isalevelsubgroup,sobyGrothendieckdescenttheorythereexistsapolarization(cid:76) onB andan 0 k isomorphism(cid:76) ≃ π∗((cid:76) ).ThethetagroupG((cid:76) )isisomorphicto(cid:90)(K(cid:101))/K(cid:101)where(cid:90)(K(cid:101))is K 0 0 thecentralizerofK(cid:101)inG((cid:76))[Mum66,Prop.2].WesaythatathetastructureΘ on(B ,(cid:76) )is B k 0 π-compatiblewithΘ ifitrespectsthisisomorphism.Theisogenytheorem([Mumk66,Th.4])then A givesawaytocomputke(π∗(ϑiΘBk))i∈Z(n) given(ϑiΘAk)i∈Z(ℓn).NoteΘ−A1(K) = Z1×Z2,wecall Z ×Z thetypeofπ.IfZ =0wesaythatπisoftype1,andifZ =0thatπisoftype2.Wenote 1 2 1 2 Z⊥={x∈Z(δ)|〈x,Z 〉=1}.Thenthereisabijectionbetweenπ-compatiblethetastructureson 1 2 (B ,(cid:76) )andisomorphismsσ:Z⊥/Z →Z(δ )(see[Mum66,Th4]). k 0 1 1 0 Sincewearemainlyinterestedwithℓ-isogenies,wenowspecializetothecaseδ=ℓn,δ′=ℓso ˆ ˆ thatδ =n.WetakeK=A [ℓ] ,wethenhaveZ =0,Z =Z(ℓ)⊂Z(ℓn)sothatπ:A →B 0 k 2 1 2 k k isanℓ-isogenyoftype1.InthiscasewehaveZ⊥ = Z(n) ⊂ Z(ℓn),andwealwaysconsiderthe 1 compatiblethetastructureonB correspondingtoσ=Id[FLR09,Sec.3].Werecallthefollowing k proposition[FLR09,Prop4]. Proposition2.2(Isogenytheoremforcompatiblethetastructures): Let(a ) beathetanullpointassociatedtoatriple(A ,(cid:76),Θ )and(b ) athetanullpoint i i∈Z(ℓn) k Ak i i∈Z(n) associatedto(Bk,(cid:76)0,ΘB ).Letϕ:Z(n)→Z(ℓn)bethecanonicalembedding.Then(bi)i∈Z(δ′)= ϕ1(ai)i∈Z(δ′)ifandonlyikfthereisanℓ-isogenyπoftype1suchthatΘB isπ-compatiblewithΘA .In Θ Θ k k thiscase,let(ϑi Ak)i∈Z(ℓn)(resp.(ϑi∗Bk)i∈Z(n))bethecanonicalbasisof(cid:76) (resp.(cid:76)0)associatedtoΘAk (resp.Θ ).Thereexistssomeω∈k suchthatforalli∈Z(n) B k Θ Θ π∗(ϑ Ak)=ωϑ Bk. (4) K i ϕ(i) Itiseasytodescribeℓ-isogeniesoftype2fromProposition2.2.Infact,letI betheautomorphism 0 ˆ oftheHeisenberggroup(cid:72)(ℓn)thatpermutesZ(ℓn)andZ(ℓn):I (α,x,y)=(α,y,x).Wedefine 0 I =Θ ◦I ◦Θ−1,whereI istheautomorphismoftheThetagroupofA thatpermutesK ((cid:76)) anAdkK ((cid:76)Ak).(Th0 ereAiskasimilarAauktomorphismI ofthethetagroupofB ;wekwillusuallynote1these 2 B k automorphismsIsincethethetagroupisclearfkromthecontext.)Ifπ isacompatibleisogenyof 2 type2between(A ,(cid:76),Θ )and(B ,(cid:76) ,Θ ),thenπ isacompatibleisogenyoftype1between k A k 0 B 2 k k 10
Description: