ebook img

Computing Isogenies Between Abelian Varieties PDF

42 Pages·2010·0.96 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computing Isogenies Between Abelian Varieties

Computing Isogenies Between Abelian Varieties DavidLubicz1,2,DamienRobert3 1CÉLAR, BP7419,F-35174Bruz 2IRMAR,UniverstédeRennes1, CampusdeBeaulieu,F-35042Rennes 3LORIA,CampusScientifique,BP239, F-54506Vandœuvre-lès-Nancy Abstract Wedescribeanefficientalgorithmforthecomputationofseparableisogeniesbetweenabelian varietiesrepresentedinthecoordinatesystemgivenbyalgebraicthetafunctions.Ouralgorithm decomposesintwoprincipalsteps.First,fromtheknowledgeofasubgroupKisotropicforthe WeilpairingofanabelianvarietyA,weexplainhowtocomputethethetanullpointcorresponding tothequotientabelianvarietyA/K.Second,fromtheknowledgeofthethetanullpointofA/K, wegiveanalgorithmtoobtainarationalexpressionfortheisogenyfromAtoA/K.Thealgorithm resultingasthecombinationofthesetwostepscanbeviewedasahigherdimensionalanalogof thewellknownalgorithmofVélutocomputeisogeniesbetweenellipticcurves. Inordertoimprovetheefficiencyofouralgorithms,weintroduceacompressedrepresentation thatallowstoencodeapointoflevel4ℓofagdimensionalabelianvarietyusingonlyg(g+1)/2·4g coordinates.WealsogiveformulastocomputetheWeilandcommutatorpairingsgiveninput pointsinthetacoordinates.Allthealgorithmspresentedinthispaperworkingeneralforany abelianvarietydefinedoverafieldofoddcharacteristic. Contents  Introduction   Modularcorrespondencesandthetanullpoints  2.1 Thetastructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Isogeniescompatiblewithathetastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Theactionofthethetagroupontheaffineconeandisogenies . . . . . . . . . . . . . . . 11  Theadditionrelations  3.1 ThecanonicalliftoftheactionofK((cid:76))totheaffinecone . . . . . . . . . . . . . . . . . 13 3.2 ThegeneralRiemannrelations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.1 Thecasen=2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Thetagroupandadditionrelations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1 Contents  Applicationoftheadditionrelationstoisogenies  4.1 Pointcompression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.1 Additionchainswithcompressedcoordinates . . . . . . . . . . . . . . . . . . . . 27 4.2 Computingthedualisogeny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  Thecomputationofamodularpoint  5.1 AnanalogofVélu’sformulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2 Thetagroupandℓ-torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.3 Improvingthecomputationofamodularpoint. . . . . . . . . . . . . . . . . . . . . . . . . 33  Pairingcomputations  6.1 Weilpairingandcommutatorpairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.2 Commutatorpairingandadditionchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  Conclusion  References  ListofAlgorithms 3.3 Additionchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.6 Multiplicationchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.5 Pointcompression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.6 Pointdecompression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.10 Theimageofapointbytheisogeny . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.1 Vélu’slikeformula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.6 Computingallmodularpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.5 Pairingcomputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2 Glossary ListofNotations Notation Description PageList Z(n) (cid:90)g/n(cid:90)g 8 (cid:77) Themodulispaceofthetanullpointsofleveln. 9 n A (A ,(cid:76),Θ )isapolarizedabelianvarietywithathetastruc- 8 k k A tureoflevelkℓn. B (B ,(cid:76) ,Θ )isanabelianvarietyℓ-isogenoustoA witha 10 k k 0 B k k thetastructureofleveln. ϑ (ϑ ) arethecanonicalprojectivecoordinatesonA 9 i i i∈Z(ℓn) k givenbythethetastructure. 0 Thethetanull0 =ϑ (0 ) . 9 Ak Ak i Ak i∈Z(ℓn) 0 Thethetanull0 =ϑ (0 ) . 10 B B i B i∈Z(n) G(k(cid:76)) TheThetagroupkof(A ,(cid:76)k) 8 k K((cid:76)) K((cid:76))=K ((cid:76))⊕K ((cid:76))isthedecompositionofthekernel 8 1 2 ofthepolarization(cid:76) inducedbytheThetastructureΘ A H(δ) TheHeisenberggroupoftypeδ. 8 s ThenaturalsectionK((cid:76))→G((cid:76))inducedbytheTheta 8 K((cid:76)) structure. ρ(cid:101)(cid:76) TheaffineactionofG((cid:76))onA(cid:101)k. 11 A(cid:101) TheaffineconeofA . 11 k k B(cid:101) TheaffineconeofB . 11 k k ϑ(cid:101) (ϑ(cid:101)) aretheaffinecoordinatesonA(cid:101) . 11 i i i∈Z(ℓn) k (cid:101)0 Anaffineliftof0 . 13 B B k k (cid:101)0A Theaffineliftof0A suchthatπ(cid:101)((cid:101)0A )=(cid:101)0B . 13 πk Theℓ-isogenyπ:Ak →B . k k 10 k k π(cid:101) π(cid:101)(ϑ(cid:101)i((cid:101)x)i∈Z(ℓn))=ϑ(cid:101)i((cid:101)x)i∈Z(n)istheaffineliftofπtoA(cid:101)k → 11 B(cid:101) . k π π =π◦(1,i,0)=ϑ(cid:101) (·) . 12 (cid:101)i (cid:101)i (cid:101) i+j j∈Z(n) P(cid:101)i P(cid:101)i =(1,i,0).(cid:101)0Ak =(ϑi+j((cid:101)0Ak))j∈Z(ℓn). 13 R(cid:101)i R(cid:101)i =π(cid:101)i((cid:101)0A )=π(cid:101)(P(cid:101)i). 13 k (e ,...,e ) AbasisofZ(ℓn) 24 1 g (d ,...,d ) d =ne 24 1 g i i (cid:83) (cid:83) =Z(ℓ)(Whenℓ∧n=1) 12 S S={d ,d ,...,d ,d +d ,...d +d ,d +d ,...d + 25 1 2 g 1 2 1 g 2 3 g−1 d }(Whenℓ∧n=1) g e(cid:76)ℓ TheextendedcommutatorpairingonBk[ℓ] 36 0 e TheWeilpairing. 37 W ˆ 〈·,·〉 ThecanonicalpairingonZ(n)×Z(n). 8 3 Glossary Notation Description PageList ′ B(cid:102)k theaffineconeof(Bk,(cid:77)0,ΘB ,(cid:77) )where(cid:77)0 =[ℓ]∗(cid:76)0 31 andΘ isathetastructureokn(B0 ,(cid:77) )compatiblewith B ,(cid:77) k 0 Θ . k 0 B k ′ [(cid:221)ℓ] [(cid:221)ℓ]:B(cid:102) →B(cid:101) isthemorphismlifting[ℓ]:B →B . 31 k k k k chain_add Anadditionchain 15 chain_multadd Amultiplicationchain 18 4 1 Introduction  Introduction Thegeneralproblemofcomputingseparableisogeniesbetweenabelianvarietiessplitsintodifferent computationalsub-problemsdependingontheexpectedinputandoutputofthealgorithm.These problemsare: • GivenanabelianvarietyA overafieldkandanabstractfiniteabeliangroupKcomputeall k theabelianvarietiesB suchthatthereexistsanisogenyA →B whosekernelisisomorphic k k k toK,andgiverationalexpressionsforthecorrespondingisogenies. • GivenanabelianvarietyA andafinitesubgroupKofA ,recoverthequotientabelianvariety k k B =A /KaswellarationalexpressionforanisogenyA →B . k k k k • Giventwoisogenousabelianvarieties,A andB ,computearationalexpressionforanisogeny k k A →B . k k Inthepresentpaper,weareconcernedwiththefirsttwoproblems.Inthecasethattheabelianvariety isanellipticcurve,efficientalgorithmshavebeendescribedthatsolvealltheaforementionedproblems [Ler].Inparticular,analgorithmproposedbyVélu[Vél71]takesasinputafinitesubgourpG of cardinalℓofanellipticcurveE ,andreturnstheequationofthequotientE /GatthecostofO(ℓ) k k additionsinE .ThealgorithmofVélualsogivesarationalexpressionfortheisogenyE →E /Gin k k k thecoordinatesystemprovidedbytheWeierstrassformoftheellipticcurves. Forhigher-dimensionalabelianvarietiesmuchlessisknown.Richelot’sformulas[Ric36,Ric37]can beusedtocompute(2,2)-isogeniesbetweenabelianvarietiesofdimension2.Thepaper[Smi09]also introducesamethodtocomputecertainisogeniesofdegree8betweenjacobianofcurvesofgenus three.Inthispaper,wepresentanalgorithmtocompute(ℓ,...,ℓ)-isogeniesbetweenabelianvarieties ofdimensiong representedinthecoordinatesystemprovidedbyalgebraicthetafunctionsforany ℓ(cid:190)2andg (cid:190)1whenthecharacteristicofkisoddandrelativelyprimetoℓ. Letn∈(cid:78)besuchthat2|nandn(cid:190)4.Letn=(n,n,...,n)∈(cid:90)g,andZ(n)=(cid:90)g/n(cid:90)g.We denoteby(cid:77) themodularspaceofmarkedabelianvarieties(A ,(cid:76),Θ )where(cid:76) isatotally n k A symmetricamplelinebundleonA andΘ isasymmetricthetastructukreoftypeZ(n)for(cid:76) k A (see[Mum66,sec.2]).Inthefollowing,wewillkalsocallathetastructureoftypeZ(n)athetastructure ofleveln.Themodularspace(cid:77) iswell-suitedforcomputingmodularcorrespondencessincethe n algebraicsystemswhichplaythesameroleinthisspaceastheclassicalmodularpolynomialshavetheir coefficientsin{1,−1},andasaconsequencearemuchmoreamenabletocomputationsthantheir counterpartsusingthe j-invariantingenus1ortheIgusainvariantsingenus2.Inthearticle[FLR09], wehavedefinedamodularcorrespondence: (cid:88) ϕ:(cid:77) →(cid:77) ×(cid:77) ,(a ) (cid:55)→((a ) ,( a ) ) ℓn n n i i∈Z(ℓn) i i∈Z(n) i+nj i∈Z(n) j∈Z(ℓ) forℓ∈(cid:78)∗primeton,whichcanbeseenasageneralizationoftheclassicalmodularcorrespondence X (ℓ)→X (1)×X (1)forellipticcurves(seeforinstance[Koh03]).Toexplainit,let p and p be 0 0 0 1 2 respectivelythefirstandsecondprojections(cid:77) ×(cid:77) →(cid:77) ,andletϕ = p ◦ϕ,ϕ = p ◦ϕ. n n n 1 1 2 2 Themapϕ :(cid:77) →(cid:77) issuchthat(x,ϕ (x))forx∈(cid:77) (k)aremodularpointscorresponding 1 ℓn n 1 ℓn toℓ-isogenousabelianvarieties. 5 1 Introduction Infact,consider(a ) ∈ ϕ−1((b ) ). Themodularpoint(a ) definesatriple i i∈Z(ℓn) 1 i i∈Z(n) i i∈Z(ℓn) (A ,(cid:76),Θ )andtheclassicalisogenytheoremforalgebraicthetafunctions[Mum66,th.4]gives k A anexplicitiksogenyπ:A →B .Wedenotebyπˆ:B →A theisogenythatmakesthefollowing k k k k diagramcommutative: [ℓ] x∈A z∈A k k π πˆ y∈B k Themainresultofthispaperis: Theorem1.1: LetB beadimension g markedabelianvariety.Let(T ,...,T )⊂B [ℓ]beabasisofamaximal k 1 g k subgroupK ofB [ℓ]isotropicfortheWeilpairing.Letπˆ:B →B /K bethecorrespondingisogeny. k k k Onecancomputethecompressedcoordinatesofthemodularpoint(a ) correspondingtoπˆwith i i∈Z(ℓn) O(log(ℓ))additionchainsinB andO(1)ℓth-rootsofunityextractions. k Oncewehave(a ) ,wecancomputethecompressedcoordinatesoftheimageofapointinB byπˆ i i∈Z(ℓn) k withO(log(ℓ))additionchainsinB .TakingthegenericpointofB ,weobtaininparticulararational k k expressionfortheisogenyπˆ. Theprecisemeaningofadditionchainandcompressedcoordinateswillbemadeclearinthecourseof thepaper.AproofofthistheoremisgiveninSection4.2andSection5.1.Itshouldberemarkedthat thisresultconstituteahigherdimensionalanalogoftheclassicalVélu’salgorithmsincebycombining thetwoconclusionsofthetheorem,weobtainanefficientalgorithmwhichtakesasinputanabelian varietyB andamaximalsubgroupKofB [ℓ]isotropicfortheWeilpairingandcomputesarational k k expressionfortheisogenyB →B /K. k k Notethattheclassicalisogenytheoremforthetafunctionsisnotsufficientforourpurposeof computingisogeniesbetweenabelianvarieties.Althoughitiseffective,theisogenytheoremcanonly beusedtocomputeisogeniesfromamarkedabelianvarietyoflevelℓtoamarkedabelianvarietyof levelnwherendividesℓ,soitonlyprovidesuswithawaytocomputeisogeniesby“goingdown”in thelevelofthethetastructure.Atsomepoint,weneedawaytocomputeisogeniesby“goingup”the levelandthisispreciselywhatgivesTheorem1.1.Wecanthencombinethetwotheorems:oncewe havecomputedanisogenyπˆ:B →A ,itispossibletocomposeπˆwithanisogenyπ :A →C k k 2 k k givenbytheisogenytheoremsuchthatπ ◦πˆisanℓ2-isogeny(see[FLR09,Sec3]orSection2.2).In 2 (cid:16) (cid:17) fact,letC betheabelianvarietyassociatedtothemodularpoint(c ) =ϕ (a ) then k i i∈Z(n) 2 i i∈Z(ℓn) wehavethefollowingdiagram 6 1 Introduction B k πˆ [ℓ] A k π π 2 B C k k Theisogenyπ ◦πˆisthenanℓ2isogenybetweenB andC whicharetwomarkedabelianvarieties 2 k k withathetastructureofleveln.Possibleapplicationsofouralgorithmincludes: • Thetransferthediscretelogarithmfromanabelianvarietytoanotherabelianvarietywherethe discretelogarithmiseasytosolve[Smi08] • Thecomputationofisogenygraphstoobtainadescriptiontheendomorphismringofanabelian variety. • ThecomputationofHilbertclasspolynomials. Weenduptheintroductionwithsomegeneralremarksaboutthealgorithmspresentedinthispaper. Theassumptionthatnisprimetoℓisinessential.Thereisnonethelessonenoticeabledifferenceifwe dropthishypothesis.SupposethatwearegivenB [ℓ].SinceB isgivenbyathetastructureoflevel k k n,wecanrecoverB [n]usingtheactionofthethetagrouponthethetanullpoint(b ) .Ifℓis k i i∈Z(n) primeton,thisgivesusB [ℓn],andwecanusethefirstassertionofTheorem1.1toobtainamodular k pointoftypeZ(ℓn).Ifℓisnotprimeton,wehavetocomputeB [ℓn]directly. k Althoughweonlyconsiderthecaseof(ℓ,...,ℓ)-isogeny,itisalsopossibletocomputemoregen- eraltypesofisogenieswithouralgorithm.WiththenotationsofSection2,letδ =(δ ,...,δ ) 0 1 g be a sequence ofintegers suchthat2|δ andδ |δ ,andlet(b ) ∈ (cid:77) be a modular 1 i i+1 i i∈Z(δ) δ pointcorrespondingtoanabelianvarietyB . Letδ′ = (ℓ ,...,ℓ )(w0hereℓ |ℓ0 )anddefine k 1 g i i+1 (cid:128) (cid:138) δ=(δ ℓ ,...,δ ℓ ).Let(a ) ∈(cid:77) besuchthatϕ (a ) =(b ) whereϕ is 1 1 g g i i∈Z(δ) δ 1 i i∈Z(δ) i i∈Z(δ) 1 thenaturalinclusionofZ(δ )intoZ(δ).Thethetanullpoint(a ) corresponds0toanabelian 0 i i∈Z(δ) varietyA ,suchthatthereisa(ℓ ,···,ℓ )-isogenyπ :A →B ,whichcanbecomputedbythe k 1 g k k isogenytheorem[Mum66,Th.4](seeSection2.2).TheisogenywecomputeinStep2isthecon- tragredientisogenyπˆ:B →A oftype(ℓ /ℓ ,ℓ /ℓ ,···,1,ℓ ,ℓ ,···,ℓ ).Usingthemodular k k g 1 g 2 g g g correspondenceϕ togobacktoamodularpointoftypeZ(δ )(seeSection1)givesanisogenyof 1 0 type(ℓ /ℓ ,ℓ /ℓ ,···,1,ℓ ℓ ,ℓ ℓ ,···,ℓ ℓ ).Fortheclarityoftheexposition,wewillstickto g 1 g 2 1 g 2 g g g thecaseδ =nandδ=ℓnandweleavetothereadertheeasygeneralization. 0 Foranactualimplementation,wewanttousethesmallestnpossibletogetacompactrepresentation ofthepointsandafastadditionchain.InfactitispossibletotweakTheorem1.1tomakeitworks withthecasen=2.Thiscaseisveryimportantinpractice:itallowsamorecompactrepresentationof thepointsthanforn=4(wegainafactor2g inspace),afasteradditionchain(seeSection4.1.1),but 7 2 Modularcorrespondencesandthetanullpoints mostimportantlyitreducesthemostconsumingpartofouralgorithm,thecomputationofthepoints ofℓ-torsion,sincetherearehalfasmuchsuchpointsontheKummervarietyassociatedtoanabelian variety.Foreachalgorithmthatweuse,wegiveanexplanationonhowtoadaptitforthetypeZ(2) case:seeSection3.2.1andtheendofSections4.2,5.1,5.3and6.2. Thepaperisorganizedasfollow.InSection2,werecalltheisogenytheoremandwestudythe relationshipbetweenisogeniesandtheactionofthethetagroup.Werecalltheadditionrelations, whichplayacentralroleinthispaperinSection3.Wethenexplainhowtocomputetheisogeny associatedtoamodularpointinSection4.IftheisogenyisgivenbythetafunctionsoftypeZ(4ℓ),it requires(4ℓ)g coordinates.WegiveapointcompressionalgorithminSection4.1,showinghowto expresssuchanisogenywithonlyg(g+1)/2·4g coordinates.InSection5wegiveafullgeneralization ofVélu’sformulasthatconstructsanisogenousmodularpointwithprescribedkernel.Thisalgorithm ismoreefficientthanthespecialGröbnerbasisalgorithmfrom[FLR09].Thereisastrongconnection betweenisogeniesandpairings,andweusetheaboveworktoexplainhowonecancomputethe commutatorpairingandhowitrelatestotheusualWeilpairinginSection6.  Modularcorrespondencesandthetanullpoints Inthissection,wefixsomenotationsthatweuseintherestofthepaper.InSection2.1,werecallthe definitionofathetastructureandtheprojectiveembedding[Mum66,Sec.1]deducedfromit.In Section2.2werecalltheisogenytheorem,whichrelatethethetafunctionsoftwoisogenousabelian varietieswithcompatiblethetastructures.InSection2.3westudytheconnectionbetweenisogenies andtheactionofthethetagroupontheaffineconeoftheprojectiveembeddinggivenbythetheta structure. LetA beanabelianvarietyofdimensiong overaperfectfieldkanddenotebyK(A )itsfunction k k field.Anisogenyisafinitesurjectivemapofabelianvarietiesπ:A →B andissaidtobeseparable k k ifthefunctionfieldK(A )isafiniteseparableextensionofK(B ).Aseparableisogenyisuniquely k k determinedbyitskernel,whichisafinitesubgroupofA (k).Inthatcase,thecardinalityofthekernel k isthedegreeoftheisogeny.Sincewewillonlyconsiderisogeniesofdegreeprimetothecharacteristic ofk,wewillonlydealwithseparableisogenies.Intherestofthispaper,byℓ-isogenyforℓ>0,we alwaysmeana(ℓ,···,ℓ)-isogenywhere(ℓ,···,ℓ)∈(cid:78)g. . Thetastructures LetA beag dimensionalabelianvarietyoveraperfectfieldk.Let(cid:76) beanampletotallysymmetric k linebundleofdegreedonA .Wesupposemoreoverthatdisprimetothecharacteristicofk.Denote k byK((cid:76))thekerneloftheisogenyϕ :A →Aˆ ,definedongeometricpointsbyx(cid:55)→τ∗(cid:76)⊗(cid:76)−1 (cid:76) k k x whereτ isthetranslationbyx.Letδ=(δ ,...,δ )bethesequenceofintegerssatisfyingδ |δ x 1 g i i+1 suchthat,asgroupschemesK((cid:76))≃(cid:76)g ((cid:90)/δ (cid:90))2.Wesaythatδisthetypeof(cid:76).Inthefollowing i=1 i k weletZ(δ)=(cid:76)g ((cid:90)/δ (cid:90)) ,Zˆ(δ)betheCartierdualofZ(δ),andK(δ)=Z(δ)×Zˆ(δ).If i=1 i k ˆ x∈Z(δ)andℓ∈Z(δ),wedenote〈x,ℓ〉:=ℓ(x). LetG((cid:76))and(cid:72)(δ)berespectivelythethetagroupof(A ,(cid:76))andtheHeisenberggroupoftype k δ[Mum66,p.294].Inthisarticle,elementsofG((cid:76))willbewrittenas(x,ψ )withx∈K((cid:76))and x ψ :(cid:76) →τ∗(cid:76) isanisomorphism.WeknowthatG((cid:76))and(cid:72)(δ)arecentralextensionsofK((cid:76)) x x 8 2 Modularcorrespondencesandthetanullpoints andK(δ)bythemultiplicativegroup(cid:71) .Bydefinition,athetastructureΘ on(A ,(cid:76))isan m,k A k isomorphismofcentralextensionsfrom(cid:72)(δ)toG((cid:76)).Wedenotebye thecokmmutatorpairing (cid:76) ˆ [Mum66,p.203]onK((cid:76))andbye thecanonicalpairingonK(δ)=Z(δ)×Z(δ).Werecallthat δ if(x ,x )and(y ,y )areinK(δ)wehavee ((x ,x ),(y ,y ))=〈x ,y 〉/〈y ,x 〉.Weremarkthat 1 2 1 2 δ 1 2 1 2 1 2 1 2 athetastructureΘ inducesasymplecticisomorphismΘ from(K(δ),e )to(K((cid:76)),e ).Let A A δ (cid:76) k k K((cid:76))=K ((cid:76))×K ((cid:76))bethedecompositionintomaximalisotropicsubspacesinducedbyΘ . 1 2 A ThesectionK(δ)→(cid:72)(δ)definedongeometricpointsby(x,y)(cid:55)→(1,x,y)canbetransportedk bythethetastructuretoobtainanaturalsection s : K((cid:76)) → G((cid:76))oftheprojectionκ : K((cid:76)) G((cid:76))→K((cid:76)).Wenotes (resp.s )therestrictionofthissectiontoK ((cid:76))(resp.K ((cid:76))). K((cid:76)) K((cid:76)) 1 2 1 2 Recall[Mum66,p.291]thatalevelsubgroupK(cid:101)ofG((cid:76))isasubgroupsuchthatK(cid:101)isisomorphicto itsimagebyκ. LetV = Γ(A ,(cid:76)).ThereisanactionofthethetagroupG((cid:76))onV byv (cid:55)→ ψ−1τ∗(v)for k x x v∈V and(x,ψ )∈G((cid:76)).ThisactioncanbetransportedviaΘ toanactionof(cid:72)(δ)onV.It x A canbeshownthatthereisaunique(uptoascalarfactor)basis(ϑ ) k ofV suchthatthisactionis i i∈Z(δ) givenby: Θ Θ (α,i,j).ϑ Ak =α.〈−i−h,j〉.ϑ Ak. (1) h h+i Ifthereisnoambiguity,inthispaper,wewillsometimesdropthesuperscriptΘ inthenotation A Θ k ϑ Ak. k Thisbasisgivesaprojectiveembeddingϕ :A →(cid:80)d−1whichisuniquelydefinedbythetheta structureΘ .Thepoint(a ) =ϕ (Θ0Ak )iskcalledkthethetanullpointassociatedtothetheta A i i∈Z(δ) Θ A k Ak k structure.Mumfordproves[Mum66]thatif4|δ,ϕ (A )istheclosedsubvarietyof(cid:80)d−1defined ΘAk k k bythehomogeneousidealgeneratedbytheRiemannequations: Theorem2.1(Riemannequations): ˆ Forallx,y,u,v∈Z(2δ)thatarecongruentmoduloZ(δ),andallχ ∈Z(2),wehave (cid:0) (cid:88) χ(t)ϑ ϑ (cid:1).(cid:0) (cid:88) χ(t)a a (cid:1)= x+y+t x−y+t u+v+t u−v+t t∈Z(2) t∈Z(2) =(cid:0) (cid:88) χ(t)ϑ ϑ (cid:1).(cid:0) (cid:88) χ(t)a a (cid:1). (2) x+u+t x−u+t y+v+t y−v+t t∈Z(2) t∈Z(2) Thedataofatriple(A ,(cid:76),Θ )iscalledamarkedabelianvarietyoftypeZ(δ).Wedenoteby k A (cid:77) thequasi-projectivevarietydkefinedasthelocusofallthetanullpointsassociatedtomarked δ abelianvarietiesoftypeZ(δ).Werecall[Kem89,Th.28]thatifn>4,then(cid:77) isanopensubsetin n theprojectivevarietydescribedbythefollowingequationsin(cid:80)(k(Z(n))): (cid:0) (cid:88) χ(t)a a (cid:1).(cid:0) (cid:88) χ(t)a a (cid:1)= x+t x+t u+t u+t t∈Z(2) t∈Z(2) (cid:0) (cid:88) χ(t)a a (cid:1).(cid:0) (cid:88) χ(t)a a (cid:1) (3) z−x+t z−y+t z−u+t z−v+t t∈Z(2) t∈Z(2) a =a x −x 9 2 Modularcorrespondencesandthetanullpoints ˆ forallx,y,u,v,z∈Z(n),suchthatx+y+u+v=2zandallχ ∈Z(2). . Isogeniescompatiblewithathetastructure Let(a ) ∈ (cid:77) beathetanullpointassociatedtoatriple(A ,(cid:76),Θ ).Letδ ∈ (cid:90)g be i i∈Z(δ) δ k A 0 suchthat4|δ |δ,andwriteδ=δ ·δ′.InthefollowingweconsiderZ(δ )askasubgroupofZ(δ) 0 0 0 viathemapϕ : (x ) ∈ Z(δ ) (cid:55)→ (δ′x ) ∈ Z(δ).Fromnowon,whenconsidering i i∈[1..g] 0 i i i∈[1..g] Z(δ )⊂Z(δ),wealwaysrefertothismap.LetK⊂K((cid:76))beanyisotropicsubgroupfore such 0 (cid:76) thatwecanwriteK=K ×K withK ⊂K ((cid:76)). 1 2 i i LetBk =Ak/Kandπ:Ak →Bk betheassociatedisogeny.SinceKisisotropic,K(cid:101):=sK((cid:76))(K) isalevelsubgroup,sobyGrothendieckdescenttheorythereexistsapolarization(cid:76) onB andan 0 k isomorphism(cid:76) ≃ π∗((cid:76) ).ThethetagroupG((cid:76) )isisomorphicto(cid:90)(K(cid:101))/K(cid:101)where(cid:90)(K(cid:101))is K 0 0 thecentralizerofK(cid:101)inG((cid:76))[Mum66,Prop.2].WesaythatathetastructureΘ on(B ,(cid:76) )is B k 0 π-compatiblewithΘ ifitrespectsthisisomorphism.Theisogenytheorem([Mumk66,Th.4])then A givesawaytocomputke(π∗(ϑiΘBk))i∈Z(n) given(ϑiΘAk)i∈Z(ℓn).NoteΘ−A1(K) = Z1×Z2,wecall Z ×Z thetypeofπ.IfZ =0wesaythatπisoftype1,andifZ =0thatπisoftype2.Wenote 1 2 1 2 Z⊥={x∈Z(δ)|〈x,Z 〉=1}.Thenthereisabijectionbetweenπ-compatiblethetastructureson 1 2 (B ,(cid:76) )andisomorphismsσ:Z⊥/Z →Z(δ )(see[Mum66,Th4]). k 0 1 1 0 Sincewearemainlyinterestedwithℓ-isogenies,wenowspecializetothecaseδ=ℓn,δ′=ℓso ˆ ˆ thatδ =n.WetakeK=A [ℓ] ,wethenhaveZ =0,Z =Z(ℓ)⊂Z(ℓn)sothatπ:A →B 0 k 2 1 2 k k isanℓ-isogenyoftype1.InthiscasewehaveZ⊥ = Z(n) ⊂ Z(ℓn),andwealwaysconsiderthe 1 compatiblethetastructureonB correspondingtoσ=Id[FLR09,Sec.3].Werecallthefollowing k proposition[FLR09,Prop4]. Proposition2.2(Isogenytheoremforcompatiblethetastructures): Let(a ) beathetanullpointassociatedtoatriple(A ,(cid:76),Θ )and(b ) athetanullpoint i i∈Z(ℓn) k Ak i i∈Z(n) associatedto(Bk,(cid:76)0,ΘB ).Letϕ:Z(n)→Z(ℓn)bethecanonicalembedding.Then(bi)i∈Z(δ′)= ϕ1(ai)i∈Z(δ′)ifandonlyikfthereisanℓ-isogenyπoftype1suchthatΘB isπ-compatiblewithΘA .In Θ Θ k k thiscase,let(ϑi Ak)i∈Z(ℓn)(resp.(ϑi∗Bk)i∈Z(n))bethecanonicalbasisof(cid:76) (resp.(cid:76)0)associatedtoΘAk (resp.Θ ).Thereexistssomeω∈k suchthatforalli∈Z(n) B k Θ Θ π∗(ϑ Ak)=ωϑ Bk. (4) K i ϕ(i) Itiseasytodescribeℓ-isogeniesoftype2fromProposition2.2.Infact,letI betheautomorphism 0 ˆ oftheHeisenberggroup(cid:72)(ℓn)thatpermutesZ(ℓn)andZ(ℓn):I (α,x,y)=(α,y,x).Wedefine 0 I =Θ ◦I ◦Θ−1,whereI istheautomorphismoftheThetagroupofA thatpermutesK ((cid:76)) anAdkK ((cid:76)Ak).(Th0 ereAiskasimilarAauktomorphismI ofthethetagroupofB ;wekwillusuallynote1these 2 B k automorphismsIsincethethetagroupisclearfkromthecontext.)Ifπ isacompatibleisogenyof 2 type2between(A ,(cid:76),Θ )and(B ,(cid:76) ,Θ ),thenπ isacompatibleisogenyoftype1between k A k 0 B 2 k k 10

Description:
We describe an efficient algorithm for the computation of separable isogenies between abelian varieties represented in the coordinate system given
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.