ebook img

Computing coset leaders of binary codes PDF

0.08 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computing coset leaders of binary codes

Des.CodesCryptogr.manuscriptNo. (willbeinsertedbytheeditor) Computing coset leaders of binary codes M.Borges-Quintana · M.A.Borges-Trenard · E.Mart´ınez-Moro Received:date/Revised:date 0 1 Abstract We present an algorithm for computing the set of all coset leaders of a 0 2 binary code C ⊂Fn2. The method is adapted from some of the techniques related tothecomputationofGro¨bnerrepresentationsassociatedwithcodes.Thealgorithm n provides a Gro¨bner representation of the binary code and the set of coset leaders a J CL(C).Itsefficiencystandsofthefactthatitscomplexityislinearonthenumberof 8 elementsofCL(C),whichissmallerthanexhaustivesearchinFn. 2 2 Keywords Binarycodes·Cosetsleaders·Gro¨bnerrepresentations. ] T I 1 Introduction . s c [ Theerror-correctionproblemincodingtheoryaddressesgivenareceivedwordrecov- eringthecodewordclosesttoitwithrespecttotheHammingdistance.Thisprevious 1 statement is the usual formulationof the Complete Decoding Problem (CDP). The v 4 t-bounded distance decoding (t-BDD) algorithms determine a codeword (if such a 7 word exists) which is at distance less or equal to t to the received word. If t is the 0 coveringradiusofthecodethentheboundeddistancedecodingproblemisthesame 5 as CDP. In the CDP of a linear code of length n , C ⊂Fn those errorsthat can be . q 1 correctedarejustthecosetleaders,whicharevectorsofsmallestweightinthecosets 0 Fn/C.Whenthereismorethanoneleaderinacosetthereismorethanonechoice q 0 fortheerror.Thereforethefollowingproblemnaturallyfollowsknownasthe coset 1 weightsproblem(CWP): : v i PartiallysupportedbySpanishAECIDA/016959/08. X r M.Borges-Quintana·M.A.Borges-Trenard a Dpto.deMatema´tica,FacultyofMathematicsandComputerScience,UniversidaddeOriente, SantiagodeCuba,Cuba. E-mail:[email protected],[email protected] E.Mart´ınez-Moro Dpto.deMatema´ticaAplicada,UniversidaddeValladolid,Castilla,Spain. E-mail:[email protected] 2 Input:Abinaryr×nmatrixH,avectors∈Fr andanon-negativeintegert. 2 Problem:Doesabinaryvectore∈Fr ofHammingweightatmostt existsuchthat 2 He=s? RecallthatH canbeseenastheparitycheckmatrixofabinarycodeandsthesyn- dromeofareceivedword,thustheknowledgeofewouldsolvethet-BDDproblem. Unfortunatellythehopeoffindinganefficientt-BDDalgorithmisverybleaksinceit wasproventhattheCWPisNP-complete[4].Thusthecomputationofallthecoset leaders is also NP-complete.The study of the set of coset leadersis also related to the study of the set of minimalcodewords,which havebeen used in the Maximum LikelihoodDecodingAnalysis[2]andwhicharealsorelatedtotheminimalaccess structure of secret sharing schemes [13]. Furthermore,the computationof all coset leadersofacodeallowstoknowmoreaboutitsinternalstructure[7]. Allproblemsmentionedbeforeareconsideredtobehardcomputationalproblems (see for example [2,4]) even if preprocesing is allowed [10]. However, taking into accountthenatureoftheproblem,todevelopanalgorithmforcomputingthesetof all coset leaders of a binary code, in the vector space of 2n vectors, by generating a number of vectors close to the cardinality of this set may be quite efficient. This is ourpurposeextendingsome resultsonGro¨bnerrepresentationsforbinarycodes. ForpreviousresultsandapplicationsofGro¨bnerrepresentationsforlinearcodessee [6,7,5], for a summaryof the whole materialwe refer the readerto [8]. We extend somesettingsofpreviousworkinordertoobtainthesetofallcosetleaderskeeping recordoftheadditivestructureinthecosets.Thepresentationofthepaperisdonein a“Gro¨bnerbases”-freecontext. Theoutlineofthepaperisasfollows.InSection2wereviewsomeofthestan- dard facts on binary linear codes and their Gro¨bner representation.Section 3 gives a concise presentation of the results in this paper. Definition 3 corresponds to the construction of List, the main object that is used in the algorithm proposed, while Theorem2 guaranteesthat all coset leaders will belongto List. In this section it is presentedthealgorithmCLBCforcomputingthesetofallcosetleaders.Attheend ofthesectionweshowanexampletoillustrateacomputationalapproachappliedtoa binarylinearcodewith64cosetsand118cosetleaders.InSection4wediscusssome complexityissues.Finallysomeconclusionaregivenwhichincludefurtherresearch. 2 Preliminaries LetF bethefinitefieldwith2elementsandFnbetheF -vectorspaceofdimension 2 2 2 n.We willcallthevectorsinFn words.A linearcodeC ofdimensionk andlength 2 n is the image of an injective linear mapping L:Fk →Fn, where k≤n, i.e. C = 2 2 L(Fk). From now on, we will use the term code to mean binary linear code. The 2 elementsinC arecalledcodewords.Forawordy∈Fnthesupportofyissupp(y)= 2 {i∈{1,...,n}|y 6=0} and the Hamming weight of y is given by weight(y) the i cardinalofsupp(y).TheHammingdistancebetweentwowordsc ,c isd(c ,c )= 1 2 1 2 weight(c −c )andtheminimumdistancedofacodeistheminimumweightamong 1 2 allthenon-zerocodewords.ItiswellknownthatCDPhasauniquesolutionforthose 3 vectorsinB(C,t)={y∈Fn|∃c∈C s.t.d(c,y)≤ d−1 }where[·] isthegreatest 2 (cid:2) 2 (cid:3) integerfunction. Definition1 The words of minimum Hamming weight in the cosets of Fn/C are 2 calledcosetleaders. CosetscorrespondingtoB(C,t)haveauniqueleaderhoweveringeneraloutside B(C,t)theremaybealsocosetswithauniqueleader,i.e.thosecosetswithonlyone leadercouldbemorethan|B(C,t)|.LetCL(C)denotethesetofcosetleadersofthe codeC andCL(y)thesubsetofcosetleaderscorrespondingtothecosetC+y.Lete i i=1,...,nbethei-thvectorofthecanonicalbasisX={e ,...,e }⊂Fn and0the 1 n 2 zero vector of Fn. The followingtheorem givessome relations between cosets [12, 2 Corollary11.7.7]. Theorem1 Letw∈CL(C),suchthatw=w +e forsomew ∈Fnandi∈{1,...,n}. 1 i 1 2 Then,w ∈CL(w ). 1 1 Definition2 A Gro¨bner representation of Fn/C [6,8] is a pair N,f where N is a 2 transversal of Fn/C such that 0∈N and for each n∈N\{0} there exists e, i∈ 2 i 1,...,n, such thatn=n′+e and n′ ∈N, and f :N×{e}n →N be the function i i i=1 thatmapseachpair(n,e)totheelementofNwhichbelongstothecosetofn+e. i i 3 Computingthesetofcosetleaders AkeypointofthealgorithmsforcomputingGro¨bnerrepresentationsistheconstruc- tion of an object we called List which is an ordered set of elements of Fn w.r.t. a 2 linearorder≺definedasfollows:w≺vifweight(w)<weight(v)orweight(w)= weight(v)andweight(w)≺ weight(v),where≺ isanyadmissibleorderonFn in 1 1 2 thesensegivenin[3,p.167].Wewillcallsuchkindofordersasweightcompatible orderings. Definition3 (ConstructionofList).LetListbetheorderedstructuregivenbythe followingaxioms 1. 0∈List. 2. Ifv∈List,letN(v)=min {w|w∈List∩(C +v)}. ≺ 3. Ifv∈Listissuchthatweight(v)=weight(N(v)),then{v+e :i∈/supp(v),i∈ i {1,...,n}}⊂List. Remark1 ThesetNisthesubsetofListsuchthatN(v)istheleastelementinList∩ (C +v),i.e.N(v)∈C+vandN(v)=min {w|w∈List∩(C +v)}. ≺ Remark2 WestartListwith0andwewillseethat,whenevercondition3.holdsfor v, the vector v will be a coset leader of C +v. Then, we insert v+e to List, for i i=1,...,nandi∈/supp(v)(seeTheorem1).Itisnotnecessarytointroducev+e, i for i∈supp(v), because in this case v+e ≺v and then v+e has been already i i consideredinListsinceitisanorderedstructure. 4 NexttheoremstatesthatListinDefinition3includesthesetofcosetleaders. Theorem2 Letw∈CL(C),thenw∈List. Proof WewillproceedbyNoetherianInductiononthewordsofFnwiththeordering 2 ≺, since≺hasthepropertyofbeingawell-foundedorderingorNoetherianordering (i.e., any descendingchain of wordsis finite) [3, Theorem4.62, p. 168].The word 0∈CL(C) and by definition it belongs to List, let w∈CL(C)\{0}. Assume the property valid for any word less than w with respect to ≺, i.e. u∈List provided u∈CL(C) and u≺ w. Taking i∈supp(w), we write w =u+e where u ∈Fn, i 2 then by Theorem 1, u∈CL(C). In addition, supp(u)=supp(w)−1, thus u≺w. Therefore,byapplyingtheinductionprinciplewehaveu∈List.Ifuisacosetleader belongingtoListitisclearthatweight(u)=weight(N(u)).Asaconsequence,by3. inDefinition3,w=u+e ∈List. ⊓⊔ i Algorithm1 (CLBC) Input: AparitycheckmatrixofabinarycodeC. Output: CL(C),f :ThesetofallcosetleadersandthefunctionMatphi. 1: List←[0],N←0/,r←0,CL(C)←[] 2: whileList6=0/ do 3: t ←NextTerm[List],s←t H 4: j←Member[s,{s1,...,sr}] 5: if j6=falsethen 6: forksuchthatt =t ′+ekwitht ′∈Ndof (t ′,ek)←t j 7: ifweight(t )=weight(t j)then 8: CL(C)[t j]←CL(C)[t j]∪{t } 9: List←InsertNext[t ,List] 10: endif 11: else 12: r←r+1,sr←s,tr←t ,N←N∪{tr} 13: CL(C)[tr]←CL(C)[tr]∪{t } 14: List←InsertNext[tr,List] 15: forksuchthattr=t ′+ekwitht ′∈Ndo 16: f (t ′,ek)←tr 17: f (tr,ek)←t ′ 18: endfor 19: endif 20: endwhile 21: return CL(C),f Where 1. InsertNext[t ,List]Insertsallthesumst +e inList,wherek∈/supp(t ),andkeeps k Listinincreasingorderw.r.t.theordering≺. 2. NextTerm[List]returnsthefirstelementfromListanddeletesitfromthisset. 3. Member[obj,G]returnstheposition jofobjinGifobj∈Gandfalseotherwise. 5 Theorem3 CLBCcomputesthesetofcosetleadersofagivenbinarycodeandits correspondingMatphi. Proof Notethatwhenanelementt istakenoutfromListbyNextTermtheelements to be inserted in List by InsertNext are of the form t +e , where k∈/ supp(t ). As k aconsequence,t +e ≻t . ThenallelementsgeneratedbyCLBCinList,aftert is k takenout,aregreaterthant .Therefore,whent isthefirstelementinListinStep3, allelementsofListthatshallbeanalyzedbyCLBCaregreaterthant . LetusprovethattheproceduregeneratesListaccordingtoDefinition3.First,by Step1,0∈List.Lett =NextTerm[List]inStep3,inthisstepthesyndromesoft is computed.ThuswehavetwocasesregardingtheresultofStep4,namely 1. Assume j=“false”, thus Steps 5 and 11 guaranty us to find N(t ) as the least elementin List havingthe same syndromeas t . When we are in this case (t = N(t )),inStep14itisperformed(ii)ofDefinition3. 2. Ontheotherhand,assume j6=“false”(anelementN(t )=t havebeenalready j computed),if we have weight(t )=weight(t ), in Step 9 it is performed(ii) of j Definition3. ThereforeCLBCconstructstheobjectListfollowingDefinition3.ByTheorem2,the setof cosetleadersis a subsetof List. ThenSteps8 and13assure thecomputation ofthisset.TheprocedurecomputestheMatphistructureasadirectconsequenceof Steps6,16,17.ThereasonforincludingStep17isthatinthiscase t +e =t ′≺t r k r andthoseelementst +e ,wherek∈supp(t ),arenotinsertedinListsincet ′ has r k r been already considered when t is computed as a new element of N. In addition, r since ≺ is admissible, all subwordsof t are also least elementsof their cosets ac- r cordingto≺,sot ′=N(t ′)(notet ′ isacosetleaderandbyTheorem2itbelongsto List). WehaveprovedthatCLBCguaranteestheoutputsweareclaiming.Termination isaconsequenceofthefactthatthecardinalofthesetofelementsbelongingtoList is least than n|CL(C)|. Then, to a certain extent(when the set of coset leadershas beencomputed)nomoreelementsareinsertedinListinSteps9and14.Therefore, thelistgetempty,andbyStep2,CLBCterminates. ⊓⊔ Remark3 1. Weintroduceinthispapersteps7,8and9.Inourpredecessoralgorithmswhere itwasnotnecessarytointroducethem[6,7,8].Thesesteps,aswellasamodified definitionoflist,areforcedbythefactthatallcosetleadersareincorporated. 2. InStepsfrom14to 17,thepairs(t ,e ), wherek∈supp(t ), arenotnecessary r k r tocomputethecosetleadersbutforcomputingthestructureMatphiandcouldbe removedifweareonlyinterestedinthecosetleaders. Example1 Considerthe[10,4,1]codewithparitycheckmatrixH 6 10 00 100 00 0   10 11 010 00 0 11 01 001 00 0 H= . 11 10 000 10 0   11 11 000 01 0   11 11 000 00 1 We use GAP 4.12 [11] and the GAP’s package GUAVA 3.10 for Coding The- ory. We have built in this framework a collection of programs we call GBLA LC “Gro¨bnerBasesbyLinearAlgebraandLinearCodes”[9].Inparticular,wehaverun thefunction“CLBC” ofGBLA LC(CosetLeadersofBinaryCodes),itgivesa list ofthreeobjectsasanoutput,thefirstoneisthesetofcosetleaders,thesecondone thefunctionMatphi,andthethirdonetheerrorcorrectingcapabilityofthecode.The completesetofcosetleadersisthelistbelowwith64componentsandeachcompo- nentcorrespondstoacosetwithitscosetsleaders,thesetNiscomposedbythefirst elementsofeachcomponent.We haveindicatedwitharrowssomeplacesinthelist below,whichwearegoingtouseduringtheexample.TheelementsinthelistCL(C) are [[1],[e ],[e ],[e ],[e ],[e ],[e ],[e ],[e ],[e ],[e ], 1 2 3 4 5 6 7 8 9 10 [e +e ,→e +e ←],[e +e ,e +e ],[e +e ,e +e ], 1 2 5 6 1 3 5 7 1 4 5 8 [e +e ,e +e ,e +e ,e +e ],[e +e ,e +e ],[e +e ,e +e ], 1 5 2 6 3 7 4 8 1 6 2 5 1 7 3 5 [e +e ,→e +e ←],[e +e ],[e +e ],[e +e ,e +e ], 1 8 4 5 1 9 1 10 2 3 6 7 [e +e ,e +e ],[e +e ,e +e ],[e +e ,→e +e ←],[e +e ],[e +e ], 2 4 6 8 2 7 3 6 2 8 4 6 2 9 2 10 [e +e ,e +e ],[e +e ,e +e ],[e +e ],[e +e ], 3 4 7 8 3 8 4 7 3 9 3 10 [e +e ],[e +e ],[e +e ],[e +e ],[e +e ],[e +e ], 4 9 4 10 5 9 5 10 6 9 6 10 [e +e ],[e +e ],[e +e ],[e +e ],[e +e ], 7 9 7 10 8 9 8 10 9 10 [e +e +e ,e +e +e ,e +e +e ,e +e +e ], 1 2 3 1 6 7 2 5 7 3 5 6 →[e +e +e ,e +e +e ,e +e +e ,e +e +e ]←, 1 2 4 1 6 8 2 5 8 4 5 6 [e +e +e ,e +e +e ,e +e +e ,e +e +e ], 1 2 7 1 3 6 2 3 5 5 6 7 [e +e +e ,e +e +e ,e +e +e ,e +e +e ], 1 2 8 1 4 6 2 4 5 5 6 8 [e +e +e ,e +e +e ],[e +e +e ,e +e +e ], 1 2 9 5 6 9 1 2 10 5 6 10 [e +e +e ,e +e +e ,e +e +e ,e +e +e ], 1 3 4 1 7 8 3 5 8 4 5 7 [e +e +e ,e +e +e ,e +e +e ,e +e +e ], 1 3 8 1 4 7 3 4 5 5 7 8 [e +e +e ,e +e +e ],[e +e +e ,e +e +e ],[e +e +e ,e +e +e ], 1 3 9 5 7 9 1 3 10 5 7 10 1 4 9 5 8 9 [e +e +e ,e +e +e ],[e +e +e ,e +e +e ,e +e +e ,e +e +e ], 1 4 10 5 8 10 1 5 9 2 6 9 3 7 9 4 8 9 [e +e +e ,e +e +e ,e +e +e ,e +e +e ],[e +e +e ,e +e +e ], 1 5 10 2 6 10 3 7 10 4 8 10 1 6 9 2 5 9 [e +e +e ,e +e +e ],[e +e +e ,e +e +e ],[e +e +e ,e +e +e ], 1 6 10 2 5 10 1 7 9 3 5 9 1 7 10 3 5 10 [e +e +e ,e +e +e ],[e +e +e ,e +e +e ],[e +e +e ], 1 8 9 4 5 9 1 8 10 4 5 10 1 9 10 [e +e +e ,e +e +e ,e +e +e ,e +e +e ],[e +e +e ]] 2 3 8 2 4 7 3 4 6 6 7 8 5 9 10 Note that y=e +e +e in CL(C) =[e +e +e ,e +e +e ,e +e + 4 5 6 46 1 2 4 1 6 8 2 5 e ,e +e +e ] (pointed by arrows) is a coset leader such that none subword of y 8 4 5 6 is in N (see the previous elements pointed by arrows). This shows the importance of considering all coset leaders in 3. of Definition 3 and not only the coset leaders belongingtoNlikeinpreviousworks. 7 Thealgorithmcouldbeadaptedwithoutincrementingthecomplexitytogetmore informationliketheCoveringradiusandtheNewtonradius.Inthiscasebyanalyzing thelastelementCL(C) =[e +e +e ]wehaveacosetofhighestweightwhich 64 5 9 10 alsocontainsonlyoneleader;therefore,theCoveringradiusandtheNewtonradius areequalto3.Moreover,forcomputingtheseparametersthealgorithmdonotneed torununtiltheveryend. Aswestatebefore,thesetNwouldbeenoughtocomputetheWeightDistribution of the Coset Leaders WDCL=(a ,...,a ) where a is the numberof cosets with 0 n i cosetleadersofweighti,i=1,...,nofthecode.Wecanprovidealsoanobjectwhich givesmoreinformationaboutthestructureofthecode,thatwouldbethenumbersof cosetleadersineachcoset(#(CL)). WDCL=[1,10,30,23,0,0,0,0,0,0,0]. #(CL)=[1,1,1,1,1,1,1,1,1,1,2,1,1,1,2,2,4,1,1,1,1,2,2,2,2,2,2,4,2,2,2,4,4, 1,1,1,4,4,4,2,2,2,2,2,4,4,1,1,1,2,2,2,2,4,1,1,1,2,2,2,1,1,1,1]. It is also interesting to note that there are more cosets with one leader (19) out the cosetscorrespondingtoB(C,t)thancosetscorrespondingtoB(C,t) |{CL(y)|y∈B(C,t)}|=11. Therefore,thereare30ofthe64cosetswheretheCDPhasauniquesolution. 4 ComplexityAnalysis Foradetailedcomplexityanalysisandsomeusefulconsiderationsfromthecompu- tational point of view we refer the reader to [7]. Section 6 of that paper is devoted to discuss in details about the computational complexity and space complexity of thesettingforcomputingGro¨bnerbasisrepresentationforbinarycodesandgeneral linear codes. The method is also compared with other existent methodsfor similar purposes.In the case of this paper,the differenceis that we work out the set of all coset leaders and not only a set of canonical forms. Next theorem shows an upper boundforthenumberofiterationsthatwillperformCLBC. Theorem4 CLBC computes the set of coset leaders of a given binary code C of lengthnafteratmostn|CL(C)|iterations. Proof Note that the numberof iterations is exactly the size of List. In the proofof Theorem3wasshownthatthealgorithmfollowsthisdefinitiontoconstructtheobject List.ItisclearthatthesizeofListisboundedbyn|CL(C)|,notethatwecanwrite List,asasetasfollows List={w+e |w∈CL(C)and ∈{1,...,n}}. i ⊓⊔ 8 Remark4 1. BytheproofabovewerequireamemoryspaceofO(n|CL(C)|). We assumethatforcomputingthesetofcosetleadersitisrequiredatleastO(|CL(C)|); therefore,CLBCisneartheoptimalcaseofmemoryrequirements. 2. CLBC generates at most n|CL(C)| words from Fn to compute the set of coset 2 leaders.AnalgorithmforcomputingthissetneedstogeneratefromFn atleasta 2 subsetformedbyallcosetleaders,i.e.|CL(C)|;therefore,thealgorithmisnear theoptimalcaseofcomputationalcomplexity. 5 Conclusion The Algorithm CLBC is formulated in this paper, which turns out to be quite effi- cientforcomputingallcosetleadersofabinarycodefrommemoryrequirementsand computational complexity view. Although, as it is expected, the complexity of the algorithmisexponential(inthenumberofcheckpositions). The difference of CLBC with its predecessors rely also in the computation of allcosetleadersinsteadof a setofrepresentativeleadersforthecosets, however,it supports the computation of the function Matphi. We remark that the computation of Matphi is not necessary at all for the main goal of computingthe coset leaders. We have kept this resource in the algorithm because this structure provides some computationaladvantages(see [6,7,8]) and, although the algorithm will be clearly faster without computing Matphi, the nature of the computational complexity and spacecomplexitywillremainthesame. Unfortunately,ageneralizationtonon-binarylinearcodesisnottrivialfromthis work.ThemainreasonseemstobethatthesolutionbasedonHammingweightcom- patibleorderingswillnotcontinuebeingpossible;theerrorvectororderingwehave used in the general approach [7] is not a total ordering, although it allowed to set up the computationalenvironmentin order to computeGro¨bnerrepresentationsfor linearcodes. References 1. W.W.Adams,Ph.Loustaunau.: AnintroductiontoGro¨bnerbases.AmericanMathematicalSociety, Providence,RI(1994). 2. A.Barg. Complexityissuesincodingtheory. InHandbookofCodingTheory,ElsevierScience,Vol. 1,1998. 3. T.Becker, V.Weispfenning. Gro¨bnerBases.AComputational Approach toCommutative Algebra. Springer-Verlag,NewYork(1993). 4. E.R.Berlekamp,R.J.McEliece,H.C.A.vanTilborg.:OntheInherentIntractabilityofCertainCoding Problems.IEEETransactionsonInformationTheory,Vol.IT-24,N.3,384–386(1978). 5. M.Borges-Quintana,M.A.Borges-Trenard,P.Fitzpatrick,E.Mart´ınez-Moro.:OnaGro¨bnerbasesand combinatoricsforbinarycodes. Appl.AlgebraEngrg.Comm.Comput,Vol.19,N.5,393–411(2008). 6. M.Borges-Quintana, M.A.Borges-Trenard,E.Mart´ınez-Moro.: Ageneralframeworkforapplying FGLMtechniquestolinearcodes. AAECC16,LectureNotesinComput.Sci.,Springer,Berlin,Vol. 3857,76–86,2006. 7. M.Borges-Quintana,M.A.Borges-Trenard,E.Mart´ınez-Moro.:OnaGro¨bnerbasesstructureassocia- tedtolinearcodes. J.DiscreteMath.Sci.Cryptogr.,Vol.10,N.2,151–191(2007). 8. M.Borges-Quintana, M.A.Borges-Trenard, E.Mart´ınez-Moro. AGro¨bnerrepresentation oflinear codes. In:T.Shaska,W.C.Huffman,D.Joyner,V.Ustimenko(eds.)AdvancesinCodingTheoryand Cryptography,17–32,WorldScientific(2007). 9 9. M.Borges-Quintana,M.A.Borges-Trenard,E.Mart´ınez-Moro.GBLA-LC:Gro¨bnerBasesbyLinear AlgebraandLinearCodes.In:ICM2006.MathematicalSoftware,EMS,604–605(2006). 10. J.Bruck,M.Naor.TheHardnessofDecodingLinearCodeswithPreprocessing.IEEETrans.onInf. Th.,Vol36,NO.2,(1990) 11. The GAP Group, GAP – Groups, Algorithms, and Programming. Version 4.12 (2009). http://www.gap-system.org. 12. W.C. Huffman, V. Pless.: Fundamentals of error-correcting codes. Cambridge University Press, Cambridge(2003). 13. J.Massey.Minimalcodewordsandsecretsharing.In:Proc.6thJointSwedish–RussianWorkshopon InformationTheory,Mo¨lle,Sweden,246–249(1993).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.