ebook img

Computing algorithms for solutions of problems in applied mathematics and their standard program realization. Part 2, Stochastic mathematics PDF

389 Pages·2015·3.05 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computing algorithms for solutions of problems in applied mathematics and their standard program realization. Part 2, Stochastic mathematics

MATHEMATICS RESEARCH DEVELOPMENTS C A OMPUTING LGORITHMS S P FOR OLUTIONS OF ROBLEMS IN A M T PPLIED ATHEMATICS AND HEIR S P R TANDARD ROGRAM EALIZATION P 1 ART D M ETERMINISTIC ATHEMATICS No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. MATHEMATICS RESEARCH DEVELOPMENTS Additional books in this series can be found on Nova’s website under the Series tab. Additional e-books in this series can be found on Nova’s website under the e-book tab. MATHEMATICS RESEARCH DEVELOPMENTS C A OMPUTING LGORITHMS S P FOR OLUTIONS OF ROBLEMS IN A M T PPLIED ATHEMATICS AND HEIR S P R TANDARD ROGRAM EALIZATION P 1 ART D M ETERMINISTIC ATHEMATICS K. J. KACHIASHVILI, D. YU. MELIKDZHANIAN AND A. I. PRANGISHVILI New York Copyright © 2015 by Nova Science Publishers, Inc. All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying, recording or otherwise without the written permission of the Publisher. We have partnered with Copyright Clearance Center to make it easy for you to obtain permissions to reuse content from this publication. Simply navigate to this publication’s page on Nova’s website and locate the “Get Permission” button below the title description. This button is linked directly to the title’s permission page on copyright.com. Alternatively, you can visit copyright.com and search by title, ISBN, or ISSN. For further questions about using the service on copyright.com, please contact: Copyright Clearance Center Phone: +1-(978) 750-8400 Fax: +1-(978) 750-4470 E-mail: [email protected]. NOTICE TO THE READER The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained in this book. The Publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or in part, from the readers’ use of, or reliance upon, this material. Any parts of this book based on government reports are so indicated and copyright is claimed for those parts to the extent applicable to compilations of such works. Independent verification should be sought for any data, advice or recommendations contained in this book. In addition, no responsibility is assumed by the publisher for any injury and/or damage to persons or property arising from any methods, products, instructions, ideas or otherwise contained in this publication. This publication is designed to provide accurate and authoritative information with regard to the subject matter covered herein. It is sold with the clear understanding that the Publisher is not engaged in rendering legal or any other professional services. If legal or any other expert assistance is required, the services of a competent person should be sought. FROM A DECLARATION OF PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS. Additional color graphics may be available in the e-book version of this book. Library of Congress Cataloging-in-Publication Data ISBN: (cid:28)(cid:26)(cid:27)(cid:16)(cid:20)(cid:16)(cid:25)(cid:22)(cid:23)(cid:25)(cid:22)(cid:16)(cid:26)(cid:20)(cid:23)(cid:16)(cid:24)(cid:3)(eBook) Published by Nova Science Publishers, Inc. † New York Contents List of Figures xi List of Tables xiii Introduction xv 1 NumericalMethodsofLinearAlgebra 1 1.1 GeneralPropertiesofLinearEquations. . . . . . . . . . . . . . . . . . . . 1 1.2 SolvingSystemsofLinearEquationsUsingtheCramer andGaussianMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 GaussianAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 SolutionofLinearEquationsContainingTridiagonal Matrixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 IterativeMethodsofSolutionofLinearEquations . . . . . . . . . . . . . . 9 1.6 PseudoinverseMatrixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.7 EigenvaluesandEigenvectorsofLinearOperators . . . . . . . . . . . . . . 15 1.8 CharacteristicPolynomialsofMatrixes . . . . . . . . . . . . . . . . . . . . 21 1.9 NumericalMethodsofDeterminationofEigenvalues andEigenvectorsofMatrixes . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.9.1 IterativeMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.9.2 RotationMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.10 Clebsch–GordanCoefficients . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.10.1 AngularMomentumOperator . . . . . . . . . . . . . . . . . . . . 31 1.10.2 AdditionofAngularMomentumOperators . . . . . . . . . . . . . 34 1.10.3 PropertiesofClebsch–GordanCoefficients . . . . . . . . . . . . . 35 2 NumericalAnalysisofPowerSeriesandPolynomials 43 2.1 ActionswithPowerSeries . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2 SomePropertiesofPolynomialsandtheirZeros . . . . . . . . . . . . . . . 52 2.2.1 SomePropertiesofPolynomials . . . . . . . . . . . . . . . . . . . 52 2.2.2 ZerosofPolynomials . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.3 DivisionofPolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.4 ExpansionofFractionalRationalFunctionsintoPartialFractions . . . . . . 60 2.5 PolynomialswithRealCoefficients . . . . . . . . . . . . . . . . . . . . . . 64 2.5.1 ElementaryPropertiesofPolynomialswithRealCoefficients . . . . 64 2.5.2 PropertiesofZerosofPolynomialsInfluencingonStability ofDynamicalSystems . . . . . . . . . . . . . . . . . . . . . . . . 65 2.5.3 BoundariesofRealZerosofPolynomialswithRealCoefficients . . 66 2.5.4 TheNumberRealZerosofPolynomialswithRealCoefficients . . . 67 vi Contents 2.5.5 Algorithm of Determination of Real Zeros of Polynomials with RealCoefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.6 RestorationofPolynomialbyitsZeros . . . . . . . . . . . . . . . . . . . . 70 2.6.1 ExpressionsforthePolynomialanditsCoefficients . . . . . . . . . 70 2.6.2 PropertiesofElementarySymmetricFunctions . . . . . . . . . . . 71 2.7 RestorationofPolynomialbyitsValuesinGivenPoints . . . . . . . . . . . 73 2.7.1 ExpressionsforthePolynomialanditsCoefficientsandSomeProp- ertiesoftheAuxiliaryFunctions . . . . . . . . . . . . . . . . . . . 74 (m) 2.7.2 MainPropertiesoftheFunctionsλ (...). . . . . . . . . . . . . . 78 jk 2.8 DeterminationofZerosofPolynomialsbyMeansofExplicitExpressions . 80 2.9 Approximate Solution of Algebraic Equations by Gra¨ffe–Lobatchevsky Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.10 CalculationofSomeSpecialPolynomials andTheirCoefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 2.10.1 BinomialCoefficients . . . . . . . . . . . . . . . . . . . . . . . . 88 2.10.2 PolynomialsofType(ξ+z)n andAnalogousPolynomialsofSev- eralVariables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2.10.3 PolynomialsofTypeξ zn . . . . . . . . . . . . . . . . . . . . . 90 ± 2.10.4 PochhammerSymbol . . . . . . . . . . . . . . . . . . . . . . . . . 91 2.10.5 MainPropertiesofStirlingNumbers . . . . . . . . . . . . . . . . . 92 2.10.6 BernoulliPolynomialsandEulerPolynomials . . . . . . . . . . . . 94 2.10.7 MainPropertiesofBernoulliNumbersandEulerNumbers . . . . . 95 2.11 CalculationofValuesofClassicalOrthogonalPolynomials . . . . . . . . . 96 2.11.1 GeneralPropertiesofOrthogonalPolynomials . . . . . . . . . . . 96 2.11.2 JacobiPolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 98 2.11.3 LaguerrePolynomials . . . . . . . . . . . . . . . . . . . . . . . . 99 2.11.4 HermitePolynomials . . . . . . . . . . . . . . . . . . . . . . . . . 100 2.11.5 LegendrePolynomials . . . . . . . . . . . . . . . . . . . . . . . . 102 2.11.6 TchebyshevPolynomials . . . . . . . . . . . . . . . . . . . . . . . 104 2.11.7 SomeFunctionsConnectedwithOrthogonalPolynomials . . . . . 106 2.11.8 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 2.12 SumsContainingPolynomialsandFractionalRationalFunctions . . . . . . 113 3 SolutionofNonlinearEquations andDeterminationofExtremums 117 3.1 AuxiliaryTheoremsforNumericalSolutionofEquations . . . . . . . . . . 117 3.2 Numericalequations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 3.2.1 GeneralPropertiesofNumericalEquations . . . . . . . . . . . . . 120 3.2.2 NumericalSolutionofEquationsContainingRealVariables . . . . 121 3.2.3 NumericalSolutionofEquationsContainingComplexVariables . . 124 3.2.4 NumericalSolutionofSystemsofEquations . . . . . . . . . . . . 125 3.3 Maximumsandminimums . . . . . . . . . . . . . . . . . . . . . . . . . . 127 3.3.1 Conditions of Existence of Maximums and Minimums for Func- tionsofOneRealVariable . . . . . . . . . . . . . . . . . . . . . . 128 Contents vii 3.3.2 Conditions of Existence of Maximums and Minimums for Func- tionsofSeveralRealVariables . . . . . . . . . . . . . . . . . . . . 129 3.3.3 NumericalMethods. . . . . . . . . . . . . . . . . . . . . . . . . . 131 4 InterpolationandApproximation ofFunctions 135 4.1 AuxiliaryTheoremforApproximationofFunctionsandtheQuestionsCon- nectedwithIt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 4.2 Interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 4.2.1 DifferentTypesofRestoredFunction . . . . . . . . . . . . . . . . 138 4.2.2 InterpolationError . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.3 InterpolationbyMeansofPolynomialsandRelatedFunctions . . . . . . . 140 4.4 InterpolationofNonlinearFunctionsoftheCertainClass . . . . . . . . . . 144 4.4.1 Functiona+becx . . . . . . . . . . . . . . . . . . . . . . . . . . 144 4.4.2 Function(a+bx) ecx . . . . . . . . . . . . . . . . . . . . . . . 145 · 4.4.3 Functionh+(a+bx) ecx . . . . . . . . . . . . . . . . . . . . . 146 · 4.4.4 Functionaxc (1 bx)d . . . . . . . . . . . . . . . . . . . . . . 148 · − 4.4.5 Functionaecx+bedx . . . . . . . . . . . . . . . . . . . . . . . . 149 4.4.6 Functionh+aecx+bedx . . . . . . . . . . . . . . . . . . . . . . 150 4.4.7 Functionesx A cos(ωx)+B sin(ωx) . . . . . . . . . . . . . . 151 · 4.4.8 Functionh+esx A cos(ωx)+B sin(ωx) . . . . . . . . . . . 153 (cid:0) · (cid:1) 4.4.9 RealizationoftheAlgorithms . . . . . . . . . . . . . . . . . . . . 154 (cid:0) (cid:1) 4.5 Spline-Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 4.5.1 InterpolationofFunctionofOneVariable . . . . . . . . . . . . . . 155 4.5.2 InterpolationofFunctionsofTwoandThreeVariables . . . . . . . 158 4.6 Approximationof FunctionsbytheGeneralized LeastSquares Method on DiscreteSetofPoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 4.6.1 LinearDependenceofRestoredFunctiononParameters . . . . . . 160 4.6.2 NonlinearDependenceoftheRestoredFunctiononParameters . . 162 4.7 DeterminationofBoundariesofSearchof ApproximationParameters . . . . . . . . . . . . . . . . . . . . . . . . . . 164 4.8 OtherMethodsofDeterminationofBoundaries . . . . . . . . . . . . . . . 167 4.9 ApproximationofFunctionsbytheGeneralized LeastSquaresMethodinIntervalorRegion . . . . . . . . . . . . . . . . . 169 4.10 OtherMethodsofApproximationofFunctions . . . . . . . . . . . . . . . 172 5 NumericalDifferentiationandIntegration 175 5.1 NumericalDifferentiation. . . . . . . . . . . . . . . . . . . . . . . . . . . 175 5.1.1 SomeFormulasforDerivatives. . . . . . . . . . . . . . . . . . . . 175 5.1.2 ApproximationofDifferentialOperatorswithDifferenceOperators 176 5.2 NumericalIntegrationofFunctionsbyMeans ofNewton–CotesFormulas . . . . . . . . . . . . . . . . . . . . . . . . . . 179 5.3 NumericalIntegrationofFunctionsbyMeansofthe FormulasofGaussianType . . . . . . . . . . . . . . . . . . . . . . . . . . 184 5.3.1 MostImportantQuadratureFormulas . . . . . . . . . . . . . . . . 184 viii Contents 5.3.2 AdditionalQuadratureFormulas . . . . . . . . . . . . . . . . . . . 188 6 CalculationofValuesofSomeFunctions 191 6.1 MainTranscendentalMathematicalConstants . . . . . . . . . . . . . . . . 192 6.2 SolutionofTranscendentalEquationsofSpecialTypes . . . . . . . . . . . 193 6.2.1 Equations Containing Linear-Exponential or Geometric- ExponentialDependence . . . . . . . . . . . . . . . . . . . . . . . 193 6.2.2 EquationsContainingProductofGeometricalDependences . . . . 197 6.2.3 EquationsContainingSumofExponents . . . . . . . . . . . . . . 202 6.3 CalculationofValuesofGamma-FunctionandConnectedwithitFunctions 206 6.3.1 MainPropertiesofConsideredFunctions . . . . . . . . . . . . . . 206 6.3.2 RepresentationoftheFunctionsintheForms ofConvergentSeries andIntegrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 6.3.3 AsymptoticExpansions . . . . . . . . . . . . . . . . . . . . . . . 213 6.3.4 RiemannZetaFunctionandFunctionsConnectedwithit . . . . . . 216 6.3.5 CalculationofValuesoftheFunctions . . . . . . . . . . . . . . . . 218 6.4 HypergeometricFunctions . . . . . . . . . . . . . . . . . . . . . . . . . . 218 6.4.1 ElementaryPropertiesofHypergeometricFunction . . . . . . . . . 219 6.4.2 DifferentialEquations . . . . . . . . . . . . . . . . . . . . . . . . 220 6.4.3 PowerSeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 6.4.4 FunctionalEquationsandLimits . . . . . . . . . . . . . . . . . . . 223 6.4.5 FunctionalEquationsforHypergeometricFunctionsSatisfying Second-OrderDifferentialEquations. . . . . . . . . . . . . . . . . 225 6.4.6 DifferentiationandIntegrationFormulas. . . . . . . . . . . . . . . 229 6.4.7 IntegralRepresentations . . . . . . . . . . . . . . . . . . . . . . . 230 6.4.8 InequalitiesforHypergeometricFunctions . . . . . . . . . . . . . 232 6.5 CylindricalFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 6.6 UseofHypergeometricFunctionsforSolvingtheLinearDifferentialEqua- tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 6.6.1 DifferentialEquationsofanyOrderN 2 . . . . . . . . . . . . . 242 ≥ 6.6.2 Second-OrderDifferentialEquations. . . . . . . . . . . . . . . . . 244 6.7 ReductionFormulasforHypergeometricFunction . . . . . . . . . . . . . . 247 6.7.1 ReductionFormulasGenerally . . . . . . . . . . . . . . . . . . . . 248 6.7.2 ReductionFormulasfortheFunction F (γ,z) . . . . . . . . . . . 253 0 1 6.7.3 ReductionFormulasfortheFunction F (α ,α ,z) . . . . . . . . 255 2 0 1 2 6.7.4 ReductionFormulasfortheKummerHypergeometricFunction . . 256 6.7.5 ReductionFormulasfortheGaussHypergeometricFunction . . . . 259 6.8 AsymtoticExpansionofHypergeometricFunctions inTermsofParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 6.8.1 AsymptoticExpansions . . . . . . . . . . . . . . . . . . . . . . . 265 6.8.2 MainPropertiesofFunctionsh (z). . . . . . . . . . . . . . . . . . 270 r 6.8.3 MainPropertiesofFunctionsχ (λ,z) . . . . . . . . . . . . . . . . 271 r 6.8.4 MainPropertiesofFunctionsU (λ),V (λ),W (λ)andΥ (...) 272 jk jk jk jk 6.8.5 AsymptoticExpansionofHypergeometricFunctionsSatisfyingthe Second-OrderDifferentialEquations. . . . . . . . . . . . . . . . . 275 Contents ix 6.8.6 ControlExamples . . . . . . . . . . . . . . . . . . . . . . . . . . 277 6.8.7 FinalRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 6.9 ElementaryMethodsofCalculationofValuesof HypergeometricandCylindricalFunctions . . . . . . . . . . . . . . . . . . 278 6.10 Calculation of Values of Hypergeometric Functions by Means of Power SeriesandRecurrenceRelations . . . . . . . . . . . . . . . . . . . . . . . 284 6.10.1 DescriptionoftheMethod . . . . . . . . . . . . . . . . . . . . . . 284 6.10.2 DeterminationofParameter ξ . . . . . . . . . . . . . . . . . . . . 290 6.10.3 FinalRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 7 NumericalMethodsforSolvingDifferentialEquations 295 7.1 Numerical Solution of Ordinary Differential Equations by Runge–Kutta Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 7.2 NumericalSolvingofOrdinaryDifferentialEquationsbyMultistepDiffer- enceMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 7.3 One-dimensionalBoundaryProblems . . . . . . . . . . . . . . . . . . . . 307 7.4 BoundaryProblemsofGeneralForm . . . . . . . . . . . . . . . . . . . . . 310 7.5 MultidimensionalBoundaryProblemsofSpecialType . . . . . . . . . . . 315 7.6 DiffusionEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 7.6.1 ExplicitScheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 7.6.2 ClassicalDifferenceSchemeintheGeneralForm . . . . . . . . . . 320 7.6.3 MethodofDecompositionoftheOperator . . . . . . . . . . . . . . 324 7.7 WaveEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 7.8 EstimationofDerivativesofUnknownFunction . . . . . . . . . . . . . . . 328 7.9 MethodsofApproximatingFunctionsforthe NumericalSolutionofDifferentialEquations . . . . . . . . . . . . . . . . 329 8 NumericalMethodsUsedinGeometry 333 8.1 Three-DimensionalRotationMatrixes . . . . . . . . . . . . . . . . . . . . 333 8.2 DescriptionofPlaneCurvesbySplines . . . . . . . . . . . . . . . . . . . 339 8.2.1 CurvilinearCoordinatesConnectedwiththePlaneCurve . . . . . . 339 8.2.2 UsingSpline–InterpolationforRepresentationofaCurve . . . . . . 341 References 349 About the Authors 367 Index 369

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.