ebook img

Computer Vision Analysis of Image Motion by Variational Methods PDF

212 Pages·2014·3.651 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computer Vision Analysis of Image Motion by Variational Methods

Springer Topics in Signal Processing Amar Mitiche J.K. Aggarwal Computer Vision Analysis of Image Motion by Variational Methods Springer Topics in Signal Processing Volume 10 For furthervolumes: http://www.springer.com/series/8109 Amar Mitiche J. K. Aggarwal • Computer Vision Analysis of Image Motion by Variational Methods 123 AmarMitiche J.K.Aggarwal INRS-Energie, Matériaux et Department of Electricaland Computer Télécommunications Engineering InstitutNational de laRecherche The Universityof Texas Scientifique Austin, TX Montreal, QC USA Canada ISSN 1866-2609 ISSN 1866-2617 (electronic) ISBN 978-3-319-00710-6 ISBN 978-3-319-00711-3 (eBook) DOI 10.1007/978-3-319-00711-3 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013939338 (cid:2)SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Contents 1 Image Motion Processing in Visual Function. . . . . . . . . . . . . . . . . 1 1.1 Image Motion in Visual Function. . . . . . . . . . . . . . . . . . . . . . 1 1.2 Computer Vision Applications. . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Variational Processing of Image Motion. . . . . . . . . . . . . . . . . 6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Background Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Curvature of a Parametric Curve . . . . . . . . . . . . . . . . 13 2.1.2 Curvature of an Implicit Curve . . . . . . . . . . . . . . . . . 15 2.2 Euler-Lagrange Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 Definite Integrals. . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 Variable Domain of Integration. . . . . . . . . . . . . . . . . 22 2.3 Differentiation Under the Integral Sign. . . . . . . . . . . . . . . . . . 31 2.4 Descent Methods for Unconstrained Optimization . . . . . . . . . . 31 2.4.1 Real Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.2 Integral Functionals . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.5 Level Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Optical Flow Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 The Optical Flow Constraint. . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3 The Lucas-Kanade Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4 The Horn and Schunck Algorithm . . . . . . . . . . . . . . . . . . . . . 48 3.4.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.2 Gauss-Seidel and Jacobi Iterations. . . . . . . . . . . . . . . 50 3.4.3 Evaluation of Derivatives . . . . . . . . . . . . . . . . . . . . . 51 3.4.4 Ad hoc Variations to Preserve Motion Boundaries. . . . 52 3.5 Deriche–Aubert–Kornprobst Method . . . . . . . . . . . . . . . . . . . 54 v vi Contents 3.6 Image-Guided Regularization . . . . . . . . . . . . . . . . . . . . . . . . 59 3.6.1 The Oriented-Smoothness Constraint . . . . . . . . . . . . . 61 3.6.2 Selective Image Diffusion. . . . . . . . . . . . . . . . . . . . . 61 3.7 Minimum Description Length . . . . . . . . . . . . . . . . . . . . . . . . 63 3.8 Parametric Estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.9 Variations on the Data and Smoothness Terms . . . . . . . . . . . . 70 3.10 Multiresolution and Multigrid Processing . . . . . . . . . . . . . . . . 70 3.10.1 Multiresolution Processing . . . . . . . . . . . . . . . . . . . . 71 3.10.2 Multigrid Computation. . . . . . . . . . . . . . . . . . . . . . . 72 3.11 Joint Estimation and Segmentation. . . . . . . . . . . . . . . . . . . . . 75 3.12 Joint Optical Flow and Disparity Estimation. . . . . . . . . . . . . . 83 3.13 State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4 Motion Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2 Background Modelling and Point-Wise Background Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2.1 Parametric Modelling: The Stauffer–Grimson Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2.2 Nonparametric Modelling . . . . . . . . . . . . . . . . . . . . . 102 4.2.3 Image Spatial Regularization. . . . . . . . . . . . . . . . . . . 102 4.3 Variational Background Subtraction. . . . . . . . . . . . . . . . . . . . 104 4.3.1 Probability Models. . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.2 Template Models. . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.4 Detection by Image Differencing. . . . . . . . . . . . . . . . . . . . . . 113 4.4.1 Region-Based Image Differencing Detection. . . . . . . . 114 4.4.2 MAP Image Differencing Detection. . . . . . . . . . . . . . 116 4.4.3 Boundary-Based Image Differencing Detection . . . . . . 117 4.5 Optical Flow Based Motion Detection . . . . . . . . . . . . . . . . . . 121 4.6 Motion Detection with a Moving Viewing System. . . . . . . . . . 125 4.6.1 Region Based Detection Normal Component Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.6.2 Detection by Optical Flow Residuals . . . . . . . . . . . . . 128 4.6.3 Detection by a Geodesic. . . . . . . . . . . . . . . . . . . . . . 130 4.6.4 A Contrario Detection by Displaced Frame Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4.7 Selective Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.7.1 Connected Component Analysis. . . . . . . . . . . . . . . . . 133 4.7.2 Variational Integration of Object Features in Motion Detection. . . . . . . . . . . . . . . . . . . . . . . . . 134 4.8 Motion Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Contents vii 5 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.2 Kernel-Based Tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.2.1 Mean-Shift Density Mode Estimation. . . . . . . . . . . . . 148 5.2.2 Tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5.3 Active Curve Density Tracking . . . . . . . . . . . . . . . . . . . . . . . 152 5.3.1 The Bhattacharyya Flow. . . . . . . . . . . . . . . . . . . . . . 153 5.3.2 The Kullback-Leibler Flow. . . . . . . . . . . . . . . . . . . . 155 5.3.3 Level Set Equations. . . . . . . . . . . . . . . . . . . . . . . . . 156 5.4 Tracking by Region-Based Matching . . . . . . . . . . . . . . . . . . . 157 5.4.1 Basic Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.4.2 Matching Local Statistics . . . . . . . . . . . . . . . . . . . . . 160 5.4.3 Using Shape and Motion. . . . . . . . . . . . . . . . . . . . . . 161 5.5 Tracking in the Spatiotemporal Domain . . . . . . . . . . . . . . . . . 165 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 6 Optical Flow Three-Dimensional Interpretation . . . . . . . . . . . . . . 175 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.2 Projection Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 6.3 Ego-Motion in a Static Environment . . . . . . . . . . . . . . . . . . . 181 6.3.1 Indirect Interpretation. . . . . . . . . . . . . . . . . . . . . . . . 182 6.3.2 Direct Interpretation. . . . . . . . . . . . . . . . . . . . . . . . . 183 6.4 Non-Stationary Environment. . . . . . . . . . . . . . . . . . . . . . . . . 184 6.4.1 Point-Wise Interpretation . . . . . . . . . . . . . . . . . . . . . 185 6.4.2 Region-Based Interpretation . . . . . . . . . . . . . . . . . . . 188 6.5 Scene Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 Chapter 1 Image Motion Processing in Visual Function Retinal motion comes about whenever we move or look at moving objects. Small involuntaryretinalmovementstakeplaceevenwhenwefixateonastationarytarget. Processingofthisever-presentimagemotionplaysseveralfundamentalfunctional rolesinhumanvision.Inmachinevisionaswell,imagemotionprocessingbycom- putervisionalgorithmshasinmanyusefulapplicationsseveralessentialfunctions reminiscentoftheprocessingbythehumanvisualsystem.Asthefollowingdiscus- sionsetstopointout,computervisionmodellingofmotionhasaddressedproblems similartosomethathaveariseninhumanvisionresearch,includingthoseconcerning theearliestfundamentalquestionsandexplanationsputforthbyHelmholtzandby Gibsonabouthumanmotionperception.However,computervisionmotionmodels have evolved independently ofhuman perception concerns andspecificities,much like the camera has evolved independently of the understanding of the human eye biologyandfunction[1]. 1.1 ImageMotion inVisualFunction The most obvious role of image motion processing by the human visual system is to perceive the motion of real objects. The scope and quality of this perception varieswidelyaccordingtothevisualtaskperformed,rangingfromdetectionwhere moving versus static labelling of objects in the visual field is sufficient, to event interpretation where a characterization of motion by more detailed evaluation or attributesisrequired. Less evident a role is the perception of depth. Computational and experimental investigationshaverevealedthelinkbetweentheimagemotionandthevariablesof depthandthree-dimensional(3D)motion.Toemphasizethisroleofimagemotion, Nakayama and Loomis [2] named kineopsis, by analogy to stereopsis, the process ofrecoveringdepthand3Dmotionfromimagemotion. A.MiticheandJ.K.Aggarwal,ComputerVisionAnalysisofImageMotionbyVariational 1 Methods,SpringerTopicsinSignalProcessing10,DOI:10.1007/978-3-319-00711-3_1, ©SpringerInternationalPublishingSwitzerland2014 2 1 ImageMotionProcessinginVisualFunction Kineopsis:Theroleofmotionintheperceptionofdepth,andstructurethereof,has beenknownforalongtime.InthewordsofHelmholtzforinstance([3],pp.297), overahundredyearsagoinhisHandbookofPhysiologicalOptics,1910: “Ifanybodywithtwogoodeyeswillcloseoneofthemandlookatunfamiliarobjectsof irregularform,hewillbeapttogetawrong,oratanyrateanunreliable,ideaoftheirshape. Buttheinstanthemovesabout,hewillbegintohavethecorrectapperceptions.” Headdsthefollowingexplanationastotheoriginofthisperceptionofenviron- mentalstructure,orapperceptionashecalledit: “Inthevariationsoftheretinalimage,whicharetheresultsofmovements,theonlywayan apperceptionofdifferencesofdistanceisobtainedisbycomparingtheinstantaneousimage withthepreviousimagesintheeyethatareretainedinmemory.” Thisisthefirstrecordedenunciationofstructure-from-motion,tyingthepercep- tion of structure to image brightness variations. By distinguishing geometry from photometry, Gibson elaborated on this Helmholtz view of structure-from-motion andstatedinhisbookThePerceptionoftheVisualWorld,1950,thatimagemotion wastheactualstimulusfortheperceptionofstructure,ratherthanimagevariations asHelmholtzconjectured.Hewasquiteexplicitaboutitwhenhewrote([4],pp.119): “Whenitissoconsidered,asaprojectionoftheterrainorastheprojectionofanarrayof slantedsurfaces,theretinalimageisnotapictureofobjectsbutacomplexofvariations.Ifthe relativemotionisanalyzedoutandisolatedfromthecomplexofothervariations,itproves tobealawfulandregularphenomenon.Definedasagradient ofmotion,itispotentially astimuluscorrelateforanexperienceofcontinuousdistanceonasurface,asweshallsee, andonenolongerisrequiredtopostulateaprocessofunconsciousinferenceaboutisolated objects.” By gradient of motion Gibson meant not the spatial or temporal variations of image motion but the image motion field itself, or optical flow, stating, when he discussedtheexampleofthemotionfieldontheretinaofaflierlandingonarunway ([4],pp.128),that: “Thegradientsofmotionareapproximatelyrepresentedbyasetofvectorsindicatingdirec- tionandrateatvariouspoints.Allvelocitiesvanishatthehorizon”. TheveracityofGibson’sstatementthatimagemotionisthestimulusfortheper- ceptionofstructureisnotsomuchsurprisingwhenweobservethattheperception ofthestructureofasurfaceinmotiondoesnotchangefordifferenttexturecover- ingsofthissurface.Therehavebeenseveralexperimentsdesignedtodemonstrate unequivocally this perception of structure-from-motion, first the landmark kinetic deptheffect experimentofWallachandO’Connell[5]whichusedtheshadowofa tiltedrodprojectedonatranslucentscreenwhichviewersobservedfromtheback. ItwasalsodemonstratedbyGibsonetal.[6]whousedatextureofpaintsplashed on two lined-up parallel transparent screens the shadows of which were presented toviewersonafrontaltranslucentscreen.Themoststrikingdemonstrationsareper- haps the experiments of Ullman [7] and of Rogers and Graham [8] with random dot distributions. Random dots constitute stimuli void of any texture or geometric arrangement.RogersandGraham’sdemonstration[8]istosomeextentamechan- ical counterpart of Ullman’s experiment with computer-generated random dots on rotating cylinders [7]. Ullman presented viewers with the orthographic projection onacomputer screenofabout ahundred pointsoneach oftwoimaginarycoaxial 1.1 ImageMotioninVisualFunction 3 Fig.1.1 Ullman’srotatingcylinderssetupsimulatedbyacomputerprogram:Viewerswereshown theorthographicprojectiononacomputerscreenofasetofaboutahundredrandompointsoneach oftwocoaxialcylindersofdifferentradii.Thecylindersoutlinewasnotincludedinthedisplay sothattheywereimaginarytotheviewersand,therefore,contributednocluetotheperception. Lookingattherandomdotsimageonthescreenwhenthecylinderswerenotmovingaffordedno perceptionofdepth.Butwhenthecylindersweremadetomove,byacomputerprogram,observers reportedthevividperceptionoftworotatingcoaxialcylindersandwerealsoabletogiveagood estimateoftheamountofrotation cylindersofdifferentradii(Fig.1.1).Thecylinderswereimaginaryinthesensethat theiroutlinewasnotpresentedinthedisplaysoasnottoofferviewersacuetothe perceptionofstructure.Lookingattheimageonthescreenoftherandomdotson staticcylindersaffordednoperceptionofdepth.Butwhenthecylindersweremade tomove,byacomputerprogram,observersreportedperceivingvividlytworotating coaxialcylindersandcouldalsoestimatetheamountofrotation. TheviewofHelmholtzontheroleofimagevariationsintheperceptionofstruc- ture,whichwequotedpreviously,isquitegeneralbutotherwisecorrect,becausethe linkbetweenimagevariationsandimagemotionislawful,toemploythisexpression oftenusedbyGibsontomeanarelationwhichcanbeformallyspecifiedbygoverning laws.HornandSchunckprovideduswithsuchalaw[9]intheformofarelation,or equation,deducedfromtheassumptionthattheimagesensedfromagivenpointof asurfaceinspaceremainsunchangedwhenthesurfacemoves.Theequation,which wewillinvestigatethoroughlyinChap.3anduserepeatedlyintheotherchapters,is calledtheopticalflowconstraint,ortheHornandSchunckequation: I u+I v+I =0, (1.1) x y t where I ,I ,I aretheimagespatiotemporalderivatives,t beingthetimeand x,y x y t theimagespatialcoordinates,and(u,v) = (dx,dy)istheopticalflowvector.The dt dt equationiswrittenforeverypointoftheimagepositionalarray. As to the link between image motion and environmental motion and structure, onecangetalaw,orequation,bydrawingaviewingsystemconfiguration model, projecting points in three-dimensional space onto the imaging surface, and taking thetimederivativeoftheprojectedpointscoordinates.UnderaCartesianreference

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.