ebook img

Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear PDF

168 Pages·2012·4.567 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear

Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear Timm Krüger Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear Timm Krüger Düsseldorf, Germany ISBN 978-3-8348-2375-5 ISBN 978-3-8348-2376-2 (eBook) DOI 10.1007/978-3-8348-2376-2 Th e Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografi e; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. Springer Spektrum © Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this pub- lication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publica- tion, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Cover design: KünkelLopka GmbH, Heidelberg Printed on acid-free paper Springer Spektrum is a brand of Springer DE. Springer DE is part of Springer Science+Business Media. www.springer-spektrum.de Blut ist ein ganz besondrer Saft. Johann Wolfgang von Goethe (Faust) Abstract Understandingtherheologyofbloodhasbeenascientifictaskfornearlyonecentury—forgood reasons. Ontheonehand,bloodisvitalforthehumanbody,andsomediseaseslikemalariaor sickle-cellanemiainterferewithitsproperfunctioning. Ontheotherhand,bloodisanexamplefor adensesuspension. Uptonow,therheologicalanddynamicalpropertiesofsuchcomplexfluids isnotcompletelyunderstood. Forthisreason,investigatingthepropertiesofdensesuspensions ingeneralandthoseofdeformableparticlesuspensionsinparticularisofparamountimportance. Duetothehighlycomplexboundaryconditionswhichcanbefoundinsuspensionsontheparticle scale,analyticinvestigationsalonecannotclarifytheunansweredquestions. Especiallyinthe firstdecadeofthiscentury,thecomputationalresourcesandavailablealgorithmshavebecome mature enough to allow numerical studies of suspensions of deformable particles. This is the primaryaimofthecurrentwork. Inthepresentthesis,anumericaltoolisdevelopedwhichallowstosimulateparticulateblood suspensions and to investigate their mechanical properties. Due to the separation of cellular and molecular time and length scales, the basic idea is to follow a mesoscopic approach. The red blood cells are resolved, and their deformation state is tracked explicitly. However, the suspendingfluidisdescribedasacontinuummediumwithNewtonianproperties. Thelattice Boltzmann method (chapter 5) is employed as Navier-Stokes solver for the suspending fluid, whereasafiniteelementmethod(chapter7)isusedforthedescriptionoftheelasticredbloodcell membranes. Afluid-structureinteractionalgorithmisrequiredtocoupletheparticlemotionand thefluiddynamics. Theimmersedboundarymethod(chapter6)servesthispurposewell. The modelisextendedinsuchawaythatdensesuspensions(upto65%volumefraction)ofO(1000) deformable particles in arbitrary geometries can be simulated with reasonable computational effort(chapter8). Duringthecourseofthisthesis,anewboundaryconditionforthelatticeBoltzmannmethod isintroduced(section5.4). Thisextensionofthebounce-backboundaryconditioncanbeused to impose a well-defined shear stress to drive the fluid, even when its viscosity is not known. Thisisparticularlyimportantwhenthestaticyieldstressofasuspensionistobeinvestigated. Thestaticyieldstressisdefinedasthestressbelowwhichnoflowoccurs. Contrarily,shearing asuspensionwithafiniteshearratedoesnotallowtofindthestaticyieldstress. Instead,the dynamic yield stress (as the stress for vanishing small shear rates) may be obtained which is usuallysmallerthanthestaticyieldstress. InappendixB,itisarguedandshownviasimulationsthattheshearstressinthelatticeBoltzmann methodisasecond-orderaccurateobservable. Ontheonehand,thefocusofsuchinvestigations isusuallyonthevelocityasitisthemostrelevantobservableformanyhydrodynamicproblems. Forsuspensionrheology,ontheotherhand,thestressplaysamoreimportantrole. Aconsistent pictureofstressevaluationinimmersedboundarylatticeBoltzmannsimulationsisprovidedin chapter9. Itisshownhowtheparticlecontributiontothesuspensionstresscanbecomputed locally(inspaceandtime)andindependentlyfromthefluidstressormacroscopicassumptions. Thisapproachisespeciallyimportantwhenspatio-temporalfluctuationsoftheshearstressare soughtafter. Thesefluctuationscarrysignificantinformationaboutthestatisticalpropertiesof thesuspension. The computational model is utilized to study the rheology of blood and its microdynamics systematically(chapter10). Theinfluenceofthemostimportantcontrolparameters(theshear viii rate γ˙, the volume fraction Ht, and the red blood cell rigidity κS) is investigated. It is found thatthemodelrecoverstheexperimentallyobtainedflowcurveforbloodatintermediatevolume fractions. Theparticledeformabilitysignificantlyaffectsthemicrodynamicsinthesuspension: Whenthesuspensionstressexceedsacertainthreshold,theredbloodcellsstarttotank-tread, and an increased orientational ordering develops. The combined effect of tank-treading and collectivealignmentisoneofthemechanismscontributingtotheshearthinningbehaviorofblood. Thesimulationsprovideclearevidencefortheimportanceofacorrectmicroscopicdescription oftheredbloodcellsinsimulations. Althoughsuspensionsofrigidparticlesalsoexhibitshear thinningundersomecircumstances,themicroscopicbehaviorofthesuspensionsisfoundtobe significantlydifferent. Aremarkableresultrelatedtothesimulationparameterspaceisfound. Allrelevantresultscanbedescribedbytwo,ratherthanthreeparameters,thevolumefraction Ht and the capillary number Ca∝γ˙/κS. Thus, the effect of varying particle rigidities can be compensatedbytheshearrate. Aninterestingresultisthatsomeofthedata(e.g.,theparticle tumbling frequency, the deformation, or the collective order parameter) collapse on a single mastercurvewhenplottedasfunctionofthe‘corrected’capillarynumberCa∗∝σ/κS (σ isthe totalsuspensionstress). Theseobservationscanbeexplainedbytheideathat,independentof thesuspensionvolumefraction,tank-treadingredbloodcellsareawareoftheirneighborhood onlyviathesuspensionstressσ. Forthefirsttime,theshear-induceddiffusionofredbloodcellsinsimpleshearflowisinvestigated as function of the above-mentioned control parameters (γ˙, Ht, κS). It is shown that the deformability increases the shear-induced P´eclet number as compared to a system of rigid particleswithcomparablevolumefraction(section10.7). Consequently,diffusivemotionsetsin laterandislessefficientinmixingthesuspension. Itisalsofoundthatthefluctuationsofthe shearrateandtheparticleshearstressarecorrelated(section10.8). Thehighertheshearrate, thesmallerthestressandviceversa. Thisobservationmaypointatonepossiblemechanismfor stressrelaxationwhichisnotrelevantforfrictionlesshardspheresystems: Whenparticlesare lockedduringshearing,theycannotrotateanddeceleratetheambientfluid. Thestressincreases. Atsomepoint,thestressissufficientlylargefortheparticlestobefreedagain. Theyincrease theirangularvelocity,theshearrategrowsaswell,andthestressmayrelax. Contents Abstract vii 1 Motivation,aims,andoutlineofthethesis 1 1.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Aimsofthepresentwork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Thesisoutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 I Introduction 3 2 Introductiontocomplexfluidsandtheirrheology 5 2.1 Introductiontorheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Thecomplexityofcomplexfluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Rheologyofcomplexfluidsmadeofrigidparticles. . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Rheologyofcomplexfluidsmadeofdeformableobjects. . . . . . . . . . . . . . . . . . . . . . . . 9 3 Introductiontothephysicsofredbloodcellsandhemorheology 11 3.1 Introductiontothephysicsofredbloodcells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Introductiontohemorheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 II Numerical model for simulations of red blood cell suspensions 15 4 Physicalconsiderationsandingredientsforthenumericalmodel 17 4.1 Overviewofexistingnumericalapproaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Identificationoftherelevantphysicsforthepresenttask . . . . . . . . . . . . . . . . . . . . . . . 18 5 Fluidsolver: thelatticeBoltzmannmethod 21 5.1 IntroductiontothelatticeBoltzmannmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2 LBGKalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.3 InitialandboundaryconditionsinthelatticeBoltzmannmethod . . . . . . . . . . . . . . . . . . 26 5.3.1 InitialconditionsinthelatticeBoltzmannmethod . . . . . . . . . . . . . . . . . . . . . 26 5.3.2 BoundaryconditionsinthelatticeBoltzmannmethod . . . . . . . . . . . . . . . . . . . 27 5.4 Bounce-backboundarycondition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.4.1 Velocitybounce-backboundarycondition . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.4.2 Shearstressbounce-backboundarycondition . . . . . . . . . . . . . . . . . . . . . . . . 31 5.5 EfficiencyandchoiceofsimulationparametersinthelatticeBoltzmannmethod . . . . . . . . . . 34 6 Fluid-structureinteraction: theimmersedboundarymethod 37 6.1 Overviewoftheimmersedboundarymethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.2 Governingequationsoftheimmersedboundarymethod . . . . . . . . . . . . . . . . . . . . . . . 38 6.3 Discretizationoftheimmersedboundarymethod . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.4 Connectionbetweentheimmersedboundarymethodandviscouscoupling . . . . . . . . . . . . . 41 7 Membranemodelandenergetics 43 7.1 Membranestrainandareadilationenergetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.2 Membranebendingenergetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 7.3 Membranesurfacedilationenergetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.4 Membranevolumeenergetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 8 Advancedmodeldiscussions 49 8.1 Overviewofthecombinedsimulationalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 8.2 Conversionbetweenphysicalandlatticeunits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 x Contents 8.3 Membranemeshgeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.4 Benchmarktest: singlecapsuleinshearflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 8.5 Initializationofdensesuspensions: distributionoftheparticlesinthesimulationbox . . . . . . . 60 8.6 Limitationsandrestrictionsofthenumericalmodel . . . . . . . . . . . . . . . . . . . . . . . . . . 62 8.7 Interactionsbetweennearbymembranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 8.8 Wallslipandroughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 III Simulation results and interpretation 71 9 StressevaluationincombinedimmersedboundarylatticeBoltzmannsimulations 73 9.1 FluidstressevaluationinthelatticeBoltzmannmethod . . . . . . . . . . . . . . . . . . . . . . . 73 9.2 WallstressevaluationinthelatticeBoltzmannmethod. . . . . . . . . . . . . . . . . . . . . . . . 74 9.3 EvaluatingparticlestresseswithBatchelor’sapproach . . . . . . . . . . . . . . . . . . . . . . . . 74 9.4 Evaluatinglocalparticlestresseswiththemethodofplanes . . . . . . . . . . . . . . . . . . . . . 76 9.5 Benchmarktest: verificationofthestressevaluationmethods . . . . . . . . . . . . . . . . . . . . 79 9.5.1 Singlecapsuleinshearflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 9.5.2 Densesuspensioninshearflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 10 Rheologyandmicroscopicbehaviorofredbloodcellsuspensions 85 10.1 Simulationsetupanddataevaluationremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 10.2 Characterizationofparticledeformation,orientation,androtation . . . . . . . . . . . . . . . . . 88 10.3 Suspensionviscosityandshearthinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 10.4 Particlerotation: tumblingandtank-treading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 10.5 Particledeformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 10.6 Particlealignmentandorientationalordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 10.7 Particledisplacements: ‘ballistic’anddiffusivemotion . . . . . . . . . . . . . . . . . . . . . . . . 107 10.8 Shearstressfluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 11 Conclusionsandoutlook 121 11.1 Summaryofowncontributionsandconclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 11.2 Outlookandsuggestionsforfutureresearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 IV Appendix 127 A Conventions,abbreviations,andsymbols 129 A.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 A.2 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 A.3 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 B Chapman-EnskoganalysisandadvancedlatticeBoltzmanncalculations 133 B.1 Chapman-Enskoganalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 B.1.1 Chapman-Enskoganalysisinthepresenceofforces . . . . . . . . . . . . . . . . . . . . . 133 B.1.2 DiffusivescalinganditsrelevancefortheconvergenceoftheLBGKalgorithm . . . . . . 137 B.1.3 ErrortermsoftheLBGKequationanditsconvergencetotheNavier-Stokesequations . 138 B.1.4 Benchmarktest: ConvergencefortheTaylor-Greenvortexflow . . . . . . . . . . . . . . 140 B.2 Recoveryandinitializationofnon-equilibriumpopulations . . . . . . . . . . . . . . . . . . . . . . 144 C Derivationofthemembraneforces 145 C.1 Derivationofthestrainforce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 C.1.1 Displacementgradienttensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 C.1.2 Strainforce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 C.2 Derivationofthebendingforce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 C.3 Derivationofthesurfaceforce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 C.4 Derivationofthevolumeforce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Bibliography 153 Acknowledgments 165 Curriculumvitaeandpublications 167 List of Figures 3 Introductiontothephysicsofredbloodcellsandhemorheology 11 3.1 Schematicshapeofaredbloodcell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 Fluidsolver: thelatticeBoltzmannmethod 21 5.1 D3Q19latticeforthelatticeBoltzmannmethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2 UnknownpopulationsatboundariesinthelatticeBoltzmannmethod . . . . . . . . . . . . . . . 28 5.3 Comparisonofhalf-wayandwetboundaryconditionsinthelatticeBoltzmannmethod . . . . . . 29 5.4 StaircaseshapeofaninclinedwallinthelatticeBoltzmannmethod. . . . . . . . . . . . . . . . . 30 5.5 Bounce-backboundaryconditioninthelatticeBoltzmannmethod . . . . . . . . . . . . . . . . . 31 5.6 MomentumexchangeatasolidwallinthelatticeBoltzmannmethod. . . . . . . . . . . . . . . . 33 6 Fluid-structureinteraction: theimmersedboundarymethod 37 6.1 EulerianandLagrangianmeshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.2 Velocityinterpolationandforcespreadingintheimmersedboundarymethod . . . . . . . . . . . 40 6.3 Discretedeltafunctionsfortheimmersedboundarymethod . . . . . . . . . . . . . . . . . . . . . 42 7 Membranemodelandenergetics 43 7.1 Deformationofamembranefaceelement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 8 Advancedmodeldiscussions 49 8.1 Schemeofthecombinedsimulationalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 8.2 Membranemeshgenerationbysubdivision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.3 Examplesofsphereandredbloodcellmeshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.4 Tank-treadingcapsule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 8.5 Deformationparameterandinclinationangleforatank-treadingcapsule,part1. . . . . . . . . . 56 8.6 Deformationparameterandinclinationangleforatank-treadingcapsule,part2. . . . . . . . . . 58 8.7 Convergenceofthedeformationparameterandtheinclinationangle . . . . . . . . . . . . . . . . 59 8.8 Columninitializationofaredbloodcellsuspensionsimulation. . . . . . . . . . . . . . . . . . . . 60 8.9 Self-intersectionofaredbloodcellduringinitialization. . . . . . . . . . . . . . . . . . . . . . . . 61 8.10 Randominitializationofadenseredbloodcellsuspensionsimulation . . . . . . . . . . . . . . . . 62 8.11 Problemsrelatedtotheimmersedboundarymethod . . . . . . . . . . . . . . . . . . . . . . . . . 64 8.12 Immersedboundarymethodandsmallnodedistances . . . . . . . . . . . . . . . . . . . . . . . . 67 8.13 Implementationofwallroughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 9 StressevaluationincombinedimmersedboundarylatticeBoltzmannsimulations 73 9.1 Timeevolutionofparticlestressandwallvelocityforasinglecapsule. . . . . . . . . . . . . . . . 80 9.2 Localstressesandviscosityforasinglecapsule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 9.3 Suspensionstressesforroughandsmoothwalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 9.4 Suspensionvelocitiesforroughandsmoothwalls . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 9.5 Suspensionstress,viscosity,andvolumefractionprofiles . . . . . . . . . . . . . . . . . . . . . . . 84 10 Rheologyandmicroscopicbehaviorofredbloodcellsuspensions 85 10.1 Velocityanddensityprofilesforaredbloodcellsuspension . . . . . . . . . . . . . . . . . . . . . 87 10.2 Snapshotsofshearedredbloodcellsuspensionsatvariousshearrates . . . . . . . . . . . . . . . 89 10.3 Redbloodcellanditsinertiaellipsoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 10.4 Tank-treadingandtumblingellipsoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 xii ListofFigures 10.5 Schematicsofthedirectorandthenematicorderparameter . . . . . . . . . . . . . . . . . . . . . 92 10.6 Viscosityofredbloodcellsuspensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 10.7 Rescaledviscosityofredbloodcellsuspensions,part1 . . . . . . . . . . . . . . . . . . . . . . . . 94 10.8 Effectivebulkvolumefractionsanddensityprofilesofredbloodcellsuspensions . . . . . . . . . 96 10.9 Comparisonofbloodviscositiesobtainedfromsimulationsandexperiments . . . . . . . . . . . . 97 10.10 Averagetumblingfrequenciesofsuspendedredbloodcells.. . . . . . . . . . . . . . . . . . . . . . 99 10.11 Tumblingandtank-treadingofasingleredbloodcellinshearflow . . . . . . . . . . . . . . . . . 100 10.12 Rescaledviscosityofredbloodcellsuspensions,part2 . . . . . . . . . . . . . . . . . . . . . . . . 101 10.13 Deformationprobabilitydistributionsforsuspendedredbloodcells . . . . . . . . . . . . . . . . . 102 10.14 Deformationmaximumofsuspendedredbloodcells . . . . . . . . . . . . . . . . . . . . . . . . . 103 10.15 Orderparameteranddirectorinclinationangleforsuspendedredbloodcells. . . . . . . . . . . . 104 10.16 Inclinationangleprobabilitydistributionsforsuspendedredbloodcells. . . . . . . . . . . . . . . 105 10.17 Meansquaredisplacementsofsuspendedredbloodcells . . . . . . . . . . . . . . . . . . . . . . . 109 10.18 Reduceddiffusivitiesofsuspendedredbloodcells . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 10.19 Relativeimportanceofredbloodcelldiffusionalongthey-andthez-axes . . . . . . . . . . . . . 111 10.20 Reducedshorttimevelocitiesofsuspendedredbloodcells . . . . . . . . . . . . . . . . . . . . . . 112 10.21 Relativeimportanceofredbloodcellshorttimevelocitiesalongthey-andthez-axes . . . . . . 113 10.22 Non-Gaussianparameterfordiffusionofsuspendedredbloodcells . . . . . . . . . . . . . . . . . 114 10.23 Displacementprobabilitydistributionsofsuspendedredbloodcells . . . . . . . . . . . . . . . . . 115 10.24 Timeevolutionoftheparticlestressfluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 10.25 Relativemagnitudeofparticlestressfluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 10.26 Distributionsofparticlestressfluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 10.27 Correlationdiagramsforthefluidandtheparticlestresses . . . . . . . . . . . . . . . . . . . . . . 119 10.28 Pearsonproduct-momentcorrelationcoefficientfortheshearrateandtheparticleshearstress. . 120 B Chapman-EnskoganalysisandadvancedlatticeBoltzmanncalculations 133 B.1 ConvergenceofthestressintheTaylor-Greenvortexflow . . . . . . . . . . . . . . . . . . . . . . 143 C Derivationofthemembraneforces 145 C.1 Deformationofamembranefaceelement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 C.2 Membranefaceandnodeconventionforthederivationofthebendingforce . . . . . . . . . . . . 150 C.3 Volumeandsurfacecontributionsofasinglemembraneface . . . . . . . . . . . . . . . . . . . . . 151

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.