Table Of ContentComputer Models in Biomechanics
Gerhard A. Holzapfel (cid:2) Ellen Kuhl
Editors
Computer Models
in Biomechanics
From Nano to Macro
Editors
GerhardA.Holzapfel EllenKuhl
InstituteofBiomechanics DepartmentofMechanicalEngineering
CenterofBiomedicalEngineering DepartmentofBioengineering(courtesy)
GrazUniversityofTechnology DepartmentofCardiothoracicSurgery
Graz,Austria (courtesy)
url:http://www.biomech.tugraz.at StanfordUniversity
and Stanford,CA,USA
ChairofBiomechanics url:
RoyalInstituteofTechnology(KTH) http://biomechanics.stanford.edu/Main_Page
DepartmentofSolidMechanics
SchoolofEngineeringSciences
Stockholm,Sweden
ISBN978-94-007-5463-8 ISBN978-94-007-5464-5(eBook)
DOI10.1007/978-94-007-5464-5
SpringerDordrechtHeidelbergNewYorkLondon
LibraryofCongressControlNumber:2012950597
©SpringerScience+BusinessMediaDordrecht2013
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof
thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,
broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation
storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology
nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.
PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations
areliabletoprosecutionundertherespectiveCopyrightLaw.
Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication
doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant
protectivelawsandregulationsandthereforefreeforgeneraluse.
Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub-
lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany
errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect
tothematerialcontainedherein.
Printedonacid-freepaper
SpringerispartofSpringerScience+BusinessMedia(www.springer.com)
Preface
ThisbookcontainsacollectionofpapersthatwerepresentedattheIUTAMSympo-
siumonComputerModelsinBiomechanics:FromNanotoMacro,whichwasheld
atStanfordUniversity,California,USA,fromAugust29toSeptember2,2011.The
settingofStanfordUniversityinPaloAltoandtheSanFranciscoBayAreaofCali-
forniaisarichmelting-potofculture,andanareawithprobablythehighestdensity
ofstimulatingexpertsandpioneersintheworld,henceitisamagicalplacewhich
hasalottoofferandwhichwasveryappropriateforthesymposium.Forexample,
inthe120yearssinceitsfounding,StanfordUniversityhasbeenhometo26Nobel
Laureates,16ofwhomarestillalive.PaloAltoisalsohometoanumberofhigh-
techSiliconValleycompaniesincludingHewlett-Packard,foundedbytwoStanford
graduatesinaone-cargarageinPaloAlto,andthebiggestsocial-networkingsite,
Facebook.
TheIUTAMSymposiumbroughttogether68participantsfromuniversities,re-
searchcentersandclinicsin14countries.Therewere35invitedoralpresentations,
including 5 keynote lectures to open the morning sessions throughout the week,
and 33 young researchers to give poster presentations on the second afternoon of
the meeting. The keynote lectures were given by P. Fratzl (Max Planck Institute,
Potsdam, Germany), P. Hunter (University of Auckland, New Zealand), L. Taber
(WashingtonUniversity,St.Louis,USA),andA.Yoganathan(GeorgiaInstituteof
Technology,USA),whileK.Parker(HarvardUniversity,USA)couldnotcometo
givehiskeynotelectureduetotheHurricaneIrene.
Thecomputationalmodelingofbiomechanicsandmechanobiologyisoneofthe
most exciting multidisciplinary areas of this century. It is a rapidly expanding re-
searchareawhichinvolvesresearchersinengineering,physics,biology,medicine,
applied mathematics and mechanics. Biomechanical modeling and computational
simulationsinbiologyholdpromisetoprovidenewinsightintothecomplexmul-
tiscale and multiphysics phenomena of living tissue: the quantitative analysis of
biomechanical processes on the molecular, cellular, tissue, and organ levels might
enablereliablepredictionsoftheprogressionofvarioustypesofdisease.Thismay
allow us to perform real-time,patient-specificsimulations and to guide the design
of optimal treatment strategies. The IUTAM Symposium aimed to bring together
v
vi Preface
youngresearchersandtheworld’sleadingexpertsworkinginthefield,toprovidea
forumfordiscussionandtostimulatethestudyofchallengingnewtopicsincom-
putationalbiomechanics.
One important aim was to provide computer algorithms, and the skill for im-
plementations of biomechanical models in numerical codes; and this is essential
because of the complexity of the materials and the geometries encountered in ap-
plications. Efficient computer models at the molecular, cellular, tissue and organ
levels are key to better understand inter-relations between coupled processes such
as growth, remodeling, and repair, and how mechanical information is processed
andprogrammedbythecells(mechanobiology).Efficientcomputermodelsareone
of the prerequisites for effective design and development of soft and hard tissue
prostheses. Thematically, the IUTAM Symposium revealed a number of exciting
new trends; several new aspects have been discussed in detail, which distinguish
livingbiologicalmaterialsfromstandardengineeringmaterialssuchasadaptivere-
sponses(growth,remodeling)andactiveresponses(forcegenerationduetomuscle
contraction).
Thisvolumeincludestopicson:
• ProteinandCellMechanics
One of the most promising trends to accurately characterize biomechanical
phenomenaistoexploretheirresponsesonthecellularlevelandtogeneratere-
latedcomputermodels.Observationsonthemicroscopicscaleprovideadditional
information, and, ideally, these observations feed back to macroscopic models
that help to explain the biomechanical response of the overall tissue or organ.
Inthepresentvolumethisareaiscoveredbythesuggestionofacoarse-grained
modelforunfoldedproteins,acollagen-proteoglycanmodeltocapturethestruc-
turalinteractioninthehumancornea,andamodeltopredictthevaluesofforces
generatedbycellsadheredonflatgelsandonbedsofmicro-postsofvariegated
stiffness.
• MuscleMechanics
Computationalmodelsforsmooth,cardiacandskeletalmusclesarepresented.
Inparticular,amathematicalapproachforstudyingCa2+-regulatedsmoothmus-
clecontractionisreviewedandthechemomechanicalmodelisimplementedinto
a finite element (FE) program; 3D boundary-value problems are solved and the
modelisvalidatedbyexperimentsonporcinesmoothmuscletissuestrips.Finally,
in regard to smooth muscle contraction, a homogeneous model is illustrated by
usingacontinuumthermodynamicalframework.Anactomyosinmodelisstudied
tocapturethemechanicalcontractionandenergyconsumptionbythecardiomy-
ocytes. Finally, two skeletal muscle models are presented; one is on the basis
of electromechanics and the other combines principles of multi-body dynamics
withcontinuummechanicsandtheFEmethodtoachievea3Dforward-dynamics
modelofthemusculoskeletalsystem.
• CardiovascularMechanics
Thistopicisofmajorinterestandisthemostextensiveareacoveredinthisvol-
ume.Itincludesareviewofcontinuumlevelmodelsofarterialadaptations,their
validations,andsuggestsanapproachtoincorporatemolecularlevelinformation
Preface vii
withinsuchmodels.Thenextchapterpresentsanexperimentalandcomputational
framework todefineandpredictdamageduetomechanicalloadingwithanap-
plicationtoarterialclamping.Twochaptersaredevotedtoaneurysms,inparticu-
lartotheevaluationofdissectionpropertiesofhumanascendingthoracicaortas
andtoacomputationalmethodologytoremoveanintracranialaneurysmandre-
constructthegeometryofthehealthyartery;afluid-solid-growthframeworkfor
modelinganeurysmevolutionisalsooutlinedanditsapplicationtoclinicalcases
illustrated.Twochaptersfocusonthemathematicalmodelingandcomputationof
electromechanicalmechanismsintheheartbyconsideringtheanisotropyofmy-
ocardialtissue.Acomputationalfluid-solid-interactionmodelinvestigatespossi-
bleeffectsonthehemodynamicswithinthoracicaortaandcoronary,carotidand
cerebral arteries due to a distal aortic coarctation. The last chapter within this
topic shows the importance of combining medical imaging, computer graphics
andcomputationalfluidsimulationstobetterguidesurgicalinterventionssuchas
theFontanprocedure.
• MultiphasicModels
The next key topic deals with computational models required to analyze bi-
ologicalmixturesconsistingofaporous(neutralandcharged)deformablesolid
matrix and interstitial solvent and solutes. It starts by describing some features
oftheopensourcefiniteelementprogramFEBioandcontinueswiththepresen-
tationof analternativeapproachtomixturetheory-basedporoelasticityinorder
to establish a basis for the development of constitutive equations for growth of
tissues.Amultiphasicmodelingapproachisusedtoanalyzebraintissuesconsid-
eredasanelasticsolidskeletonwhichisperfusedbytwoliquids,thebloodand
the interstitial fluid. Special attention is focused on tumor therapies carried out
byconvection-enhanceddeliveryprocesses;2Dand3Dexamplesarediscussed.
A 3D computational model for remodeling of microperfusion is also presented.
Thebiphasicmodelisbasedonthetheoryofporousmedia;applicationisshown
bycoveringmicrocirculationinliverlobes.Next,theeffectivenessofmechano-
transport coupling in simulating biological growth, in particular tumor growth
dynamics, is demonstrated. Thereby, the effectiveness of tools such as adaptive
meshrefinementandautomaticdifferentiationisalsodemonstrated.Finally,crack
growthinaswellingporousmediumsuchastheintervertebraldiscisnumerically
analyzedandtwooptionsarediscussedtoaccountforthesharppressuregradient
aroundthecrack.
• Morphogenesis,BiologicalTissuesandOrgans
Anotherchallengingandtrend-settingtopicisthecomputationalbiomechanics
of morphogenesis and development of various morphogenetic processes. Here,
recent advances of the physical mechanisms of morphogenesis during brain de-
velopment, in particular the formation of the primary brain vesicles and fold-
ingofthecerebralcortex,isdiscussed.Finally,mechanicalcharacterizationand
predictivecomputermodelsofnativeandengineeredanteriorcruciateligaments
(ACLs), human liver, bone and lung are presented. In particular, a microme-
chanicalconstitutivemodelisreviewedtocapturetheinhomogeneous,nonlinear
viscoelastic properties of native ACLs and of tissue engineered ligament grafts
viii Preface
uponexplantation.Characterizationoftheinvivomechanicalbehaviorofhuman
liver is conducted during open surgery using an aspiration device, and related
histopathology is identified with biopsies taken at the measurement locations.
Next, an in vivo validation framework for tissue level models such as bone re-
modeling and mechanobiology, based on true geometries, is analyzed. Finally,
differenttypesofoveralllungmodelsarereviewedconcludingwithanapproach
thatcouples3Dandlumpedairwaymodels.
The IUTAM Symposium provided scientific impetus, a good basis for generat-
ing new ideas for future research directions and some cultural impressions. It has
also provided a unique forum to discuss mathematical equations that characterize
(sub)cellularresponses,specificbiologicaltissuesandcomputationaltoolsthatcan
beusedtosimulatetheircomplexspatialandtemporalresponses.Itcreatedexcit-
ing new synergies and initiatednew collaborationsacross disciplines and between
youngresearchersandtheworld’sleadingexpertsinmolecular,cellular,tissue,and
organ biomechanics to shape pathways for the future multiscale and multiphysics
modelingofbiomechanicalphenomena.
TheorganizerswouldliketothankthemembersoftheScientificCommitteefor
their help in making the IUTAM Symposium such a success. They are J. Engel-
brecht (Tallinn, Estonia), K. Garikipati (Ann Arbor, USA), P. Hunter (Auckland,
New Zealand), A. Quarteroni (Lausanne, Switzerland), and Y. Ventikos (Oxford,
UK).Thisvolumehasbeenmadepossiblebytheconsiderableeffortsofalltheau-
thors;weareverygratefulfortheircontributions.SpecialthanksalsogotoJianhua
Tong from the Institute of Biomechanics, Graz University of Technology, for his
helpineditingthisvolumeusingthedocumentpreparationsystemLaTeX.Finan-
cialsupportfortheSymposium,inparticularfortheyoungresearchers,wasgener-
ouslyprovidedbyIUTAM,Springer,andtheNationalScienceFoundation.Finally,
wewouldliketothankNathalieJacobs,SeniorPublishingEditor(Engineering)of
Springer,forherencouragementtopublishthisvolume.
Graz,Austria/Stockholm,Sweden GerhardA.Holzapfel
Stanford,USA EllenKuhl
June,2012
Contents
PartI ProteinandCellMechanics
1 TowardsaCoarse-GrainedModelforUnfoldedProteins . . . . . . . 3
AliGhavami,ErikVanderGiessen,andPatrickR.Onck
2 ModelingCollagen-ProteoglycanStructuralInteractionsinthe
HumanCornea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
XiCheng,HamedHatami-Marbini,andPeterM.Pinsky
3 SimulationsofCellBehavioronSubstratesofVariegatedStiffness
andArchitecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
AmitPathak, VikramS.Deshpande, AnthonyG.Evans, and
RobertM.McMeeking
PartII MuscleMechanics
4 AMathematicalApproachforStudyingCa2+-RegulatedSmooth
MuscleContraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
SaeilC.MurtadaandGerhardA.Holzapfel
5 ACoupledChemomechanicalModelforSmoothMuscleContraction 63
MarkusBölandAndreSchmitz
6 ModelingofSmoothMuscleActivation . . . . . . . . . . . . . . . . . 77
JonasStålhand,AndersKlarbring,andGerhardA.Holzapfel
7 A Cross-Bridge Model Describing the Mechanoenergetics of
ActomyosinInteraction . . . . . . . . . . . . . . . . . . . . . . . . . 91
MariKalda,PearuPeterson,JüriEngelbrecht,andMarkoVendelin
8 MultiscaleSkeletalMuscleModeling:FromCellularLeveltoa
Multi-segmentSkeletalMuscleModeloftheUpperLimb . . . . . . 103
OliverRöhrle, MichaelSprenger, EllankaviRamasamy, and
ThomasHeidlauf
ix
x Contents
PartIII CardiovascularMechanics
9 Multiscale Modeling of Arterial Adaptations: Incorporating
Molecular Mechanisms Within Continuum Biomechanical
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
JayD.Humphrey
10 Cardiovascular Tissue Damage: An Experimental and
ComputationalFramework . . . . . . . . . . . . . . . . . . . . . . . 129
NeleFamaey,EllenKuhl,GerhardA.Holzapfel,andJosVanderSloten
11 MechanicalPropertiesofAscendingThoracicAorticAneurysm
(ATAA):AssociationwithValveMorphology . . . . . . . . . . . . . 149
SalvatorePasta,JulieA.Phillipi,ThomasG.Gleason,andDavidA.Vorp
12 IntracranialAneurysms:ModelingInceptionandEnlargement . . . 161
PaulN.Watton,HaoyuChen,AlisaSelimovic,HarryThompson,and
YiannisVentikos
13 Micro-structurally Based Kinematic Approaches to
ElectromechanicsoftheHeart. . . . . . . . . . . . . . . . . . . . . . 175
SerdarGöktepe,AndreasMenzel,andEllenKuhl
14 Activation Models for the Numerical Simulation of Cardiac
ElectromechanicalInteractions . . . . . . . . . . . . . . . . . . . . . 189
RicardoRuiz-Baier,DavideAmbrosi,SimonePezzuto,SimoneRossi,
andAlfioQuarteroni
15 HemodynamicAlterationsAssociatedwithCoronaryandCerebral
Arterial Remodeling Following a Surgically-Induced Aortic
Coarctation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
C.AlbertoFigueroa,JessicaS.Coogan,andJayD.Humphrey
16 Patient-SpecificSurgeryPlanningfortheFontanProcedure . . . . . 217
ChristopherM.Haggerty, LuciaMirabella, MariaRestrepo,
DianeA.deZélicourt, JarekRossignac, FotisSotiropoulos,
ThomasL.Spray,KirkR.Kanter,MarkA.Fogel,andAjitP.Yoganathan
PartIV MultiphasicModels
17 Finite Element Modeling of Solutes in Hydrated Deformable
BiologicalTissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
GerardA.AteshianandJeffreyA.Weiss
18 Reformulation of Mixture Theory-Based Poroelasticity for
InterstitialTissueGrowth . . . . . . . . . . . . . . . . . . . . . . . . 251
StephenC.Cowin
19 ConstitutiveandComputationalAspectsinTumorTherapiesof
MultiphasicBrainTissue . . . . . . . . . . . . . . . . . . . . . . . . 263
WolfgangEhlersandArndtWagner
Contents xi
20 ABiphasic3D-FEMModelfortheRemodelingofMicrocirculation
inLiverLobes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
TimRicken,UtaDahmen,OlafDirsch,andDanielQ.Werner
21 Multiphysics Modeling of Reactions, Mass Transport and
MechanicsofTumorGrowth . . . . . . . . . . . . . . . . . . . . . . 293
ShivaRudraraju,KristenL.Mills,RalfKemkemer,andKrishnaGarikipati
22 MulticompartmentalPoroelasticityasaPlatformfortheIntegrative
ModelingofWaterTransportintheBrain . . . . . . . . . . . . . . . 305
JohnC.Vardakis,BrettJ.Tully,andYiannisVentikos
23 DiscontinuousVersusContinuousChemicalPotentialAcrossa
CrackinaSwellingPorousMedium . . . . . . . . . . . . . . . . . . 317
JacquesM.Huyghe, FamkeKraaijeveld, JorisJ.C.Remmers, and
RenédeBorst
PartV Morphogenesis,BiologicalTissuesandOrgans
24 MechanismsofBrainMorphogenesis . . . . . . . . . . . . . . . . . . 337
BenjamenA.Filas,GangXu,andLarryA.Taber
25 AMicromechanicalViscoelasticConstitutiveModelforNativeand
EngineeredAnteriorCruciateLigaments . . . . . . . . . . . . . . . 351
JinjinMaandEllenM.Arruda
26 MechanicalCharacterizationoftheHumanLiver . . . . . . . . . . . 365
MarcHollensteinandEdoardoMazza
27 InVivoValidationofPredictiveModelsforBoneRemodelingand
Mechanobiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
AlinaLevchukandRalphMüller
28 BridgingScalesinRespiratoryMechanics . . . . . . . . . . . . . . . 395
LenaYoshihara,MahmoudIsmail,andWolfgangA.Wall
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
Description:This book contains a collection of papers that were presented at the IUTAM Symposiumon “Computer Models in Biomechanics: From Nano to Macro” held at Stanford University, California, USA, from August 29 to September 2, 2011.It contains state-of-the-art papers on:- Protein and Cell Mechanics: coar