ebook img

Computer Graphics for Java Programmers PDF

388 Pages·2017·1.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computer Graphics for Java Programmers

Leen Ammeraal · Kang Zhang Computer Graphics for Java Programmers Third Edition Computer Graphics for Java Programmers Leen Ammeraal (cid:129) Kang Zhang Computer Graphics for Java Programmers Third Edition LeenAmmeraal KangZhang Kortenhoef,TheNetherlands DepartmentofComputerScience TheUniversityofTexasatDallas Richardson,TX,USA ISBN978-3-319-63356-5 ISBN978-3-319-63357-2 (eBook) DOI10.1007/978-3-319-63357-2 LibraryofCongressControlNumber:2017947160 ©SpringerInternationalPublishingAG2017 1stedition:©JohnWiley&SonsLtd1998 2ndedition:©JohnWiley&SonsLtd2007 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinor for anyerrors oromissionsthat may havebeenmade. Thepublisher remainsneutralwith regardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Ithasbeen10yearssincethepublicationofthesecondedition.Theprogramming language,Java,hasnowdevelopedintoitsmaturity,beingthelanguageofchoicein many industrial and business domains. Yet the skills of developing computer graphics applications using Java are surprisingly lacked in the computer science curricula. Though no longer active in classroom teaching, the first author has developed and published several Android applications using Java, the main lan- guageforAndroiddevelopers.ThesecondauthorhastaughtComputerGraphicsat his current university for the past 17 years using the first and second editions of thistextbook,apartfromhispreviousyearsinAustraliausingdifferenttextbooks. Wefeelstronglyaneedforupdatingthebook. This third edition continues the main theme of the first two editions, that is, graphicsprogramminginJava,withallthesourcecode,exceptthoseforexercises, availabletothereader.Majorupdatesinthisneweditionincludethefollowing: 1. The contents of all chapters are updated according to the authors’ years of classroomexperiencesandrecentfeedbackfromourstudents. 2. Hidden-line elimination and hidden-face elimination are merged into a single chapter. 3. Anewchapteroncolor,texture,andlightingisadded,asChap.7. 4. The companion software package, CGDemo, that demonstrates the working of differentalgorithmsandconceptsintroducedinthebook,isenhancedwithtwo newalgorithmsaddedandafewbugsfixed. 5. A set of 37 video sessions (7–11 min each) in MOOC (Massive Open Online Course)style,coveringallthetopicsofthetextbook,issupplemented. 6. A major exercise, split into four parts, on implementing the game of Tetris is addedattheendoffourrelevantchapters. Many application examples illustrated in this book could be readily implementedusingJava3DorOpenGLwithoutanyunderstandingoftheinternal working of the implementation, which we consider undesirable for computer science students. We therefore believe that this textbook continues to serve as an indispensable introduction to the foundation of computer graphics, and more v vi Preface importantly, how various classic algorithms are designed. It is essential for com- putersciencestudentstolearntheskillsonhowtooptimizetime-criticalalgorithms andhowtodevelopelegantalgorithmicsolutions. TheexampleprogramscanbedownloadedfromtheInternetat: http://home.kpn.nl/ammeraal/ orat: http://www.utdallas.edu/~kzhang/BookCG/ Finally,wewouldliketothanktheUT-DallascolleaguePushpaKumar,whohas been using this textbook to teach undergraduate Computer Graphics class and providedvaluablefeedback.WearegratefultoSusanLagerstrom-FifeofSpringer forherenthusiasticsupportandassistanceinpublishingthisedition. Kortenhoef,TheNetherlands LeenAmmeraal Richardson,TX,USA KangZhang Contents 1 ElementaryConcepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 PixelsandDeviceCoordinates. . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 LogicalCoordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 AnisotropicandIsotropicMappingModes. . . . . . . . . . . . . . . . . 12 1.4 DefiningaPolygonThroughMouseInteraction. . . . . . . . . . . . . 19 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2 AppliedGeometry. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . 29 2.1 Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2 InnerProductandVectorProduct. . . . . . . . . . . . . . . . . . . . . . . 31 2.3 TheOrientationofThreePoints. . . . . . . . . . . . . . . . . . . . . . . . 34 2.4 PolygonsandTheirAreas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5 Point-in-PolygonTest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.6 TriangulationofPolygons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.7 Point-on-LineTest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.8 ProjectionofaPointonaLine. . . . . . . . . . . . . . . . . . . . . . . . . 55 2.9 DistanceBetweenaPointandaLine. . . . . . . . . . . . . . . . . . . . . 57 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3 GeometricalTransformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1 MatrixMultiplication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 LinearTransformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3 Translations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.4 HomogeneousCoordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.5 InverseTransformationsandMatrixInversion. . . . . . . . . . . . . . 72 3.6 RotationAboutanArbitraryPoint. . . . . . . . . . . . . . . . . . . . . . . 73 3.7 ChangingtheCoordinateSystem. . . . . . . . . . . . . . . . . . . . . . . . 78 3.8 RotationsAbout3DCoordinateAxes. . . . . . . . . . . . . . . . . . . . 79 3.9 RotationAboutanArbitraryAxis. . . . . . . . . . . . . . . . . . . . . . . 80 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 vii viii Contents 4 Classic2DAlgorithms. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. 91 4.1 BresenhamLineDrawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2 DoublingtheLine-DrawingSpeed. . .. . . . . . . . .. . . . . . . . .. . 97 4.3 CircleDrawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.4 Cohen–SutherlandLineClipping. . . . . . . . . . . . . . . . . . . . . . . . 106 4.5 Sutherland–HodgmanPolygonClipping. . . . . . . . . . . . . . . . . . 112 4.6 Be´zierCurves.. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . . . .. . 118 4.7 B-SplineCurveFitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5 Perspectiveand3DDataStructure. . . . . . . . . . . . . . . . . . . . . . . . . 137 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.2 ViewingTransformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3 PerspectiveTransformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.4 ACubeinPerspective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5.5 SpecificationandRepresentationof3DObjects. . . . . . . . . . . . . 149 5.6 SomeUsefulClasses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 5.7 AProgramforWireframeModels. . . . . . . . . . . . . . . . . . . . . . . 172 5.8 AutomaticGenerationofObjectSpecification. . . . . . . . . . . . . . 177 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 6 Hidden-LineandHidden-FaceRemoval. . . . . . . . . . . . . . . . . . . . . 191 6.1 Hidden-LineAlgorithm. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. 191 6.2 BackfaceCulling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 6.3 Painter’sAlgorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 6.4 Z-BufferAlgorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 7 Color,Texture,andShading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 7.1 ColorTheories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 7.2 AdditiveandSubtractiveColors. . . . . . . . . . . . . . . . . . . . . . . . 227 7.3 RGBRepresentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 7.4 HSVandHSLColorModels. . . . . . . . . . . . . . . . . . . . . . . . . . . 234 7.5 Transparency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 7.6 Texture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 7.7 SurfaceShading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 8 Fractals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 8.1 KochCurves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 8.2 StringGrammars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 8.3 MandelbrotSet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 8.4 JuliaSet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 Exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 Contents ix AppendixA:Interpolationof1/z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 AppendixB:ClassObj3D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 AppendixC:Hidden-LineTestsandImplementation. . . . . . . . . . . . . . 293 AppendixD:Several3DObjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 AppendixE:HintsandSolutionstoExercises. . . . . . . . . . . . . . . . . . . . 349 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 Chapter 1 Elementary Concepts This book is primarily about computer graphics programming and related mathe- matics.Ratherthandiscussinggeneralgraphicssubjectsforendusersorhowtouse graphicssoftware,wewillcovermorefundamentalsubjects,requiredforgraphics programming.Inthischapter,wewillfirstunderstandandappreciatethenatureof discretenessofdisplayedgraphicsoncomputerscreens.Wewillthenseethatx-and y-coordinatesneednotnecessarilybepixelnumbers,alsoknownasdevicecoordi- nates.Inmanyapplications,logicalcoordinatesaremoreconvenient,providedwe canconvertthemtodevicecoordinatesbeforedisplayingonthescreen.Withinput from a mouse, we would also need the inverse conversion, i.e. converting device coordinatestologicalcoordinates,aswewillseeattheendofthischapter. 1.1 Pixels and Device Coordinates The most convenient way ofspecifying a line segment on a computer screen is by providingthecoordinatesofitstwoendpoints.Inmathematics,coordinatesarereal numbers,butprimitiveline-drawingroutinesmayrequirethesetobeintegers.Thisis thecase,forexample,intheJavalanguage,tobeusedthroughoutthisbook.TheJava AbstractWindowsToolkit(AWT)providestheclassGraphicscontainingthemethod drawLine,whichweuseasfollowstodrawthelinesegmentconnectingAandB: g.drawLine(xA, yA, xB, yB); Thegraphicscontextginfrontofthemethodisnormallysuppliedasaparameter of the paint method in the program, and the four arguments of drawLine are integers, ranging from zero to some maximum value. The above call to drawLine producesexactlythesamelineonthescreenasthisone: g.drawLine(xB, yB, xA, yA); ©SpringerInternationalPublishingAG2017 1 L.Ammeraal,K.Zhang,ComputerGraphicsforJavaProgrammers, DOI10.1007/978-3-319-63357-2_1

Description:
This third edition covers fundamental concepts in creating and manipulating 2D and 3D graphical objects, including topics from classic graphics algorithms to color and shading models. It maintains the style of the two previous editions, teaching each graphics topic in a sequence of concepts, mathema
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.